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Abstract. Fully inert submodules of torsion-free Jp-modules are investigated. It is
proved that if the module considered is either free or complete, these submodules are
exactly those which are commensurable with fully invariant submodules; examples are
given of torsion-free Jp-modules for which this property fails.

1. Introduction. A subgroup H of an Abelian group G is fully inert
if, given any endomorphism φ of G, H has finite index in φH + H. The
class of fully inert subgroups includes finite subgroups, subgroups of finite
index, and fully invariant subgroups. The motivation for studying fully inert
subgroups comes from the investigation of the dynamical properties of an
endomorphism of an Abelian group (see [4], [6] and [12]).

In two recent papers, [5] and [7], fully inert subgroups of divisible Abelian
groups and of free Abelian groups have been characterized. The groups in
these two classes have the pleasant property that their endomorphism rings
contain many projections, which allows an easy characterization of their
fully invariant subgroups and, consequently, facilitates a characterization
of their fully inert subgroups. It is worth noting that divisible torsion-free
groups of finite rank have plenty of fully inert subgroups which fail to be
commensurable with fully invariant subgroups.

The definition of fully inert subgroup can be transferred to modules over
the ring Jp of p-adic integers, since the torsion Jp-modules are exactly the
p-groups. The goal of this paper is to investigate fully inert submodules of
torsion-free Jp-modules. An advantage of dealing with these modules is that
if they are reduced, then they are separable in the sense that their finitely
generated submodules are contained in free summands of finite rank. Fur-
thermore, their fully invariant submodules are, with one exception, precisely
their own multiples (see Proposition 2.2 below).

Fully inert submodules of free and of complete Jp-modules are described
in Sections 2 and 3, respectively. In both cases, they are exactly the sub-
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modules commensurable with the fully invariant submodules. They are also
characterized by the fact that their cokernels are bounded p-groups with
at most one infinite Ulm–Kaplansky invariant, plus an additional finiteness
condition in case they are not of finite index in the containing module.

In the final Section 4, examples are provided of torsion-free Jp-modules
containing fully inert submodules which fail to be commensurable with any
fully invariant submodule.

For unexplained notions of Abelian group theory, we refer to [8] and [1].

2. Fully inert submodules of free Jp-modules. Let G be a Jp-
module. A submodule H of G is said to be fully inert if, for any endomor-
phism φ of G, the Jp-module (H + φH)/H is finite.

Let A,B be submodules of the Jp-module G. We say that A,B are com-
mensurable if (A + B)/A and (A + B)/B are both finite. It is easily seen
that commensurability is an equivalence relation (cf. [7, Lemma 2.3]).

The following easy fact was proved, for Abelian groups, in [5, Corollary
2.10], and the argument there is adaptable to Jp-modules. We give a direct
proof, for the sake of completeness.

Proposition 2.1. Let G be a Jp-module, Z a fully invariant submodule
of G, and H a submodule commensurable with Z. Then H is fully inert.

Proof. By hypothesis, both (H +Z)/Z and (H +Z)/H are finitely gen-
erated torsion Jp-modules (i.e., p-groups), say (H +Z)/Z = 〈ai +Z : i ≤ n〉
and (H +Z)/H = 〈bi +H : i ≤ n〉 (we take the same number of generators
to simplify the notation). Then H ⊆ 〈ai, Z : i ≤ n〉. Let φ be an arbitrary
endomorphism of G. Since Z is fully invariant, we get φH ⊆ 〈φ(ai), Z :
i ≤ n〉. Now we note that every φ(ai) + H is a torsion element of G/H;
in fact, pmai ∈ Z and pmZ ⊆ H for some m ≥ 0 sufficiently large, hence
p2mφ(ai) ∈ pmφZ ⊆ pmZ ⊆ H. From the relation

(H + φH)/H ⊆ 〈ai +H,φ(ai) +H, (Z +H)/H : i ≤ n〉
= 〈φ(ai) +H, bi +H : i ≤ n〉

we conclude that (H+φH)/H is a submodule of a finitely generated torsion
Jp-module, hence it is finite. Since φ was arbitrary, H is fully inert.

The next result shows that the fully invariant submodules of a torsion-
free Jp-module are the obvious ones; this result is well known—see, for ex-
ample, [11, Exercise 72(b)].

Proposition 2.2. A nonzero submodule N of a torsion-free Jp-module
M is fully invariant if and only if N = pkM for some nonnegative k or
N = D, the maximal divisible submodule of M .
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The proof of the next proposition follows verbatim [7, proof of Proposi-
tion 2.4].

Proposition 2.3. For a nonzero submodule H of a free Jp-module A of
finite rank n, the following are equivalent:

(1) H is fully inert in A;
(2) H has rank n;
(3) H has finite index in A;
(4) H is commensurable with some fully invariant submodule of A.

Also the next result has its parallel in [7, Theorem 2.8].

Theorem 2.4. Let A be a free Jp-module of infinite rank, and let H be a
submodule of A. Then H is fully inert in A if and only if H is commensurable
with pkA for some k ≥ 0.

Proof. The proof goes as that of [7, Theorem 2.8], where the Cohen–
Gluck theorem [2] is used. That theorem is valid for free modules over arbi-
trary PIDs, hence, in particular, for Jp-modules. Actually, the final part of
that proof, where the case of two integers, none of which divides the other,
is considered, is not needed, since Jp is a valuation domain.

Now we characterize the fully inert submodules H of a free Jp-module A
by means of the Jp-modules A/H and (H + pA)/pA.

Theorem 2.5. Let A be a free Jp-module of infinite rank, and let H
be a submodule of A. Then H is fully inert in A if and only if A/H is
a bounded p-group with at most one infinite Ulm–Kaplansky invariant and
(H + pA)/pA is finite in case A/H is infinite.

Proof. Sufficiency. We prove that H is commensurable with pnA for
some n ≥ 0. If all the Ulm–Kaplansky invariants of the bounded p-group
A/H are finite, then A/H is finite and H is commensurable with A itself,
so it is fully inert by Proposition 2.1. If the nth Ulm–Kaplansky invariant of
A/H is infinite, say equal to α, then there exists a submodule K such that
H ⊆ K ⊆ A, K/H is finite, and A/K ∼=

⊕
α Z(pn), hence K ⊇ pnA. As com-

mensurability is an equivalence relation and H is commensurable with K,
it is enough to prove that K is commensurable with pnA. By hypothesis,
(H + pA)/pA is finite, hence also (K + pA)/pA is finite. The Cohen–Gluck
theorem ensures that we can write A =

⊕
α eαJp and K =

⊕
α p

nαeαJp; the
isomorphism A/K ∼=

⊕
α Z(pn) implies that each nα equals either 0 or n.

From the fact that (K+pA)/pA is finite it follows that the set I of indices α
such that nα = 0 is finite, therefore K/pnA is isomorphic to the direct sum
of |I| copies of Z(pn), so it is finite, as desired.

Necessity. If A/H is finite, then it is trivially bounded and all its Ulm–
Kaplansky invariants are finite. So, assume A/H infinite. By Theorem 2.4, H
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is commensurable with pkA for some k ≥ 1. It follows that A/H is bounded,
being a quotient of A/(pkA ∩H), which is bounded as an extension of the
finite group pkA/(pkA ∩H) by the bounded group A/pkA. From the exact
sequence

0→ (pkA+H)/H → A/H → A/(pkA+H)→ 0

and from the finiteness of (pkA+H)/H it follows that A/H has exactly one
infinite Ulm–Kaplansky invariant if and only if this happens forA/(pkA+H).
From the exact sequence

0→ (pkA+H)/pkA→ A/pkA→ A/(pkA+H)→ 0

and from the finiteness of (pkA+H)/pkA it follows that A/(pkA+H) has
exactly one infinite Ulm–Kaplansky invariant if and only if this happens
for A/pkA, which clearly holds, because A/pkA is infinite and pkA is com-
mensurable with H. Finally, (H + pA)/pA is finite, being an epic image of
(H + pkA)/pkA, which is finite by the commensurability of H with pkA.

The next example shows that, in Theorem 2.5, the technical assumption
that (H + pA)/pA is finite cannot be avoided in general.

Example 2.6. Let A be a free Jp-module of rank ℵ0; then A/pA is a
vector space of dimension ℵ0. Take H ⊇ pA such that both H/pA and A/H
have infinite dimension. Then A/H is a bounded p-group with exactly one
infinite Ulm–Kaplansky invariant, and H is commensurable neither with A
nor with pA (so, a fortiori, not commensurable with pnA, n ≥ 1). Hence H
is not fully inert, by Theorem 2.4.

3. Fully inert submodules of complete torsion-free Jp-modules.
The main purpose of this section is to show that a fully inert submodule of
a complete torsion-free Jp-module is commensurable with a fully invariant
submodule. Thus we get a result analogous to those valid for free Jp-modules,
proved in Section 2, as well as for free groups and torsion divisible groups,
as proved in [7, Theorem 2.8] and [5, Theorem 5.3] respectively.

Lemma 3.1. Let X be a Jp-module that contains a bounded submodule Y
such that X/Y is divisible. Let m ≥ 0 be an integer such that pmY = 0. Then
X = C ⊕ D, where C is bounded and D = pmX is the maximal divisible
submodule of X, and C has the same annihilator as Y .

Proof. Since, by assumption, Y ⊆ X[pm], we get

pmX ∼=
X

X[pm]
∼=

X/Y

X[pm]/Y
.

Then pmX is divisible, being a homomorphic image of X/Y , and so X =
C ⊕ pmX, where C ∼= X/pmX is bounded.
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The next lemma, valid for arbitrary reduced torsion-free Jp-modules, has
some independent interest.

Lemma 3.2. Let G be a reduced torsion-free Jp-module and H a fully
inert submodule of G. Then G/H is torsion.

Proof. Assume, for a contradiction, that x+H ∈ G/H has infinite order.
Then 〈x〉∩H = 0, hence also 〈pnx〉∩H = 0 for all n > 0. Choose y ∈ H and
let 〈y〉∗ denote the purification of Jpy in G. Since G is reduced, 〈y〉∗ = Jpz,
where pmz = y, say. Then 〈z〉 is a pure submodule of G, and hence a
summand, say G = 〈z〉⊕G1. Consider the endomorphism ψ of G defined by

ψ : z 7→ x, G1 → 0.

Then

ψ(H) +H

H
⊇ 〈ψ(y)〉+H

H
=
〈ψ(pmz)〉+H

H
=
〈pmx〉+H

H
∼= 〈pmx〉.

It follows that (ψ(H) +H)/H is infinite, which is impossible.

From now on, A =
⊕

α<λ Jpeα denotes a free Jp-module, where λ is a

cardinal number, and Â denotes the p-adic completion of A. We want to
characterize the fully inert submodules of Â.

Lemma 3.3. Let H be a fully inert submodule of Â. Then (A+H)/H is
bounded.

Proof. Since Â is reduced, we know from Lemma 3.2 that Â/H is a
torsion group. Our statement is true when λ is finite, since in that case
Â = A, and a finitely generated torsion Jp-module is clearly bounded. Hence,
in the remainder of the proof, we may safely assume that λ ≥ ω.

We suppose, for a contradiction, that (A + H)/H is unbounded. Now,
for n < ω, we pick nonzero elements yn = anen ∈ H for suitable positive
integers an (which, under the present circumstances, are powers of p). This
is possible since Â/H is torsion. For α < λ, we denote by o(eα + H) its
order in (A + H)/H. We construct by induction a strictly ascending chain
{mn}n<ω of positive integers such that

(i) mn+1 > an+1mn,

and a sequence {f(n)}n≥1 of ordinals < λ such that

(ii) o(ef(n) +H) = mn.

We start with any m0 > 0. Since (A + H)/H is unbounded, we readily
see that there exists f(1) < λ such that o(ef(1)+H) > a0m0. Of course, here
we define m1 = o(ef(1)+H). Moreover, once mn−1 is defined, we may choose
f(n) < λ such that o(ef(n) + H) = mn > anmn−1, again since (A + H)/H
is unbounded, and we are done by induction.
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Now we consider the endomorphism φ of A that extends the assignments

φ : en 7→ ef(n), n ≥ 1, eα 7→ 0, α 6= n.

Let φ̂ ∈ EndJp(Â) be the extension of φ to the completion of A. Note that

φ̂(yn) = anef(n) ∈ φ̂(H) for all n ≥ 1, and

o(anef(n) +H) ≥ mn/an > mn−1.

Since limnmn =∞, it follows that (φ̂H +H)/H contains elements of arbi-

trarily large orders, and therefore (φ̂H+H)/H is unbounded, hence infinite,
a contradiction.

As we will see in Theorem 4.1, the preceding lemma is no longer true if
we replace Â with an arbitrary submodule of Â containing A.

Proposition 3.4. Let H be fully inert in Â. Then Â/H is reduced. As
a consequence, Â/H is bounded and Â = A+H

Proof. By Lemma 3.3, (A+H)/H is a bounded submodule of Â/H such
that the quotient is divisible, being isomorphic to a quotient of Â/A. Thus
we are in a position to apply Lemma 3.1, concluding that Â/H = C ⊕ D,
where D is divisible, and C is bounded, with the same annihilator as that
of (A+H)/H, say pkJp. We conclude that Â/H is bounded if it is reduced.

Moreover, if Â/H is bounded, say pk(Â/H) = 0, then necessarily Â = A+H,
since, by density, Â = A+ pkÂ, and pkÂ ⊆ H. Thus it suffices to show that
Â/H is reduced.

Assume, for a contradiction, that Â/H contains a copy of Z(p∞) (recall
that Â/H is torsion), say G/H ∼= Z(p∞) where G ⊆ Â. Then G = H + 〈xi :
i < ω〉, where the xi are suitable elements of Â that satisfy the relations

pxi+1 − xi ∈ H, i < ω.

Now define a map φ : A→ Â by

φ : ei 7→ xi+k, i < ω, eα 7→ 0, ω ≤ α < λ.

Then φ extends to an endomorphism φ̂ of Â. Since pkA ⊆ H, we get
φ̂(pkei) = pkxi+k ∈ φ̂H. Since pkxi+k ≡ xi modulo H, it follows that

H + φ̂H ⊇ H + 〈xi : i < ω〉 = G, and therefore (H + φ̂H)/H is infinite,
since it contains G/H ∼= Z(p∞), a contradiction.

We prove now that every fully inert submodule of a complete torsion-
free Jp-module belongs to the equivalence class of a fully invariant subgroup
with respect to the commensurability relation. Firstly we need the following
lemma, of independent interest.

Lemma 3.5. Let H be a fully inert submodule of Â. Then H ∩A is fully
inert in A.
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Proof. Take any endomorphism φ : A → A; our aim is to show that
(H ∩ A + φ(H ∩ A))/H ∩ A is finite. Consider the unique extension φ̂ ∈
EndJp(Â) of φ; obviously, φ(H ∩ A) ⊆ φ̂H. Since H is fully inert in Â, the

Jp-module (H + φ̂H)/H is finite, hence obviously so is (H + φ(H ∩A))/H.
Noticing that

H ∩A+ φ(H ∩A)

H ∩A
=

A ∩ (H ∩A+ φ(H ∩A))

A ∩ ((H ∩A+ φ(H ∩A)) ∩H

∼=
A ∩ (H ∩A+ φ(H ∩A)) +H

H
=
H + φ(H ∩A)

H

we get the desired conclusion.

Theorem 3.6. A submodule H of a complete torsion-free Jp-module Â

is fully inert if and only if it is commensurable with pnÂ for some n ≥ 0.

Proof. Sufficiency is provided by Proposition 2.1. Let H be a fully inert
submodule of Â. Since Â = A+H by Proposition 3.4, we have the canonical
isomorphism Â/H ∼= A/A∩H. In view of Lemma 3.5, we know that A∩H
is fully inert in A. Then, by Theorem 2.4, A ∩ H is commensurable with
pnA for a suitable n ≥ 0. We verify that H is commensurable with pnÂ.

One finiteness condition is readily checked. Indeed,

H + pnÂ

H
=
H + pn(A+H)

H
∼=

pnA

H ∩ pnA
∼=
H ∩A+ pnA

H ∩A
,

hence the first Jp-module in the above relation is finite, since H ∩ A com-
mensurable with pnA yields (H ∩A+ pnA)/(H ∩A) finite.

Now we want to show that (H ∩ A + pnA)/pnA finite implies that
(H + pnÂ)/pnÂ = (H + pnA)/pnÂ is also finite. Note that, by the mod-
ular property, (H ∩A+ pnA)/pnA = (A/pnA) ∩ (H + pnA)/pnA.

Firstly, from Â = A+pnÂ we derive Â/pnA = pnÂ/pnA⊕A/pnA, where
the sum is direct since pnÂ/pnA ∼= Â/A is torsion-free divisible and A/pnA
is bounded. The modular property yields the equalities

H + pnA

pnA
=
H + pnA

pnA
∩ Â

pnA
=
H + pnA

pnA
∩
(
pnÂ

pnA
⊕ A

pnA

)
=
pnÂ

pnA
⊕
(
H + pnA

pnA
∩ A

pnA

)
.

We derive that
H + pnA

pnÂ
∼=
H + pnA

pnA
∩ A

pnA

where the second member of the congruence is known to be finite. The
desired conclusion follows.
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From Theorem 3.6 we derive a characterization similar to that of Theo-
rem 2.5 for fully inert submodules of free Jp-modules.

In the next easy lemma we emphasize a crucial isomorphism.

Lemma 3.7. Let A be a free Jp-module, Â its completion, H a submodule

of Â such that Â = A+H. Then (H + pÂ)/pÂ ∼= (H ∩A+ pA)/pA.

Proof. Note that from Â = A+H it also follows Â = A+pÂ = A+pH.
Since pA = A ∩ pÂ, we get the isomorphisms

H ∩A+ pA

pA
∼=

H ∩A
H ∩ pA

=
H ∩A

H ∩A ∩ pÂ
∼=
H ∩A+ pÂ

pÂ
.

To reach our conclusion, it remains to verify that H ∩ A + pÂ = H + pÂ.
It suffices to show that H ⊆ H ∩A+ pH, and this inclusion readily follows
from H ⊆ A+ pH.

Theorem 3.8. Let Â be the completion of a free Jp-module A of infinite

rank, and let H be a submodule of Â. Then H is fully inert in Â if and
only if Â/H is a bounded p-group with at most one infinite Ulm–Kaplansky
invariant and (H + pÂ)/pÂ is finite when Â/H is infinite.

Proof. Necessity. From Proposition 3.4 we know that Â = A + H, so
Â/H ∼= A/(A ∩H). From Lemma 3.5 we get A ∩H fully inert in A, so we
are in a position to apply Theorem 2.5. Then A/(A ∩H) is bounded, and
(A∩H+pA)/pA is finite, whence, by Lemma 3.7, (H+pÂ)/pÂ is also finite.

Sufficiency. If Â/H is finite, then H is obviously fully inert. Assume
that Â/H is a bounded Jp-module (equivalently, a p-group) with exactly one

infinite Ulm–Kaplansky invariant. Since Â/H is bounded, we get H ⊇ pkÂ
for some k ≥ 0, hence Â = A + pkÂ = A + H. Moreover, since exactly one
Ulm–Kaplansky invariant is infinite, we may write Â/H = F⊕

⊕
α Z(pn) for

some infinite cardinal α and a positive integer n, where F is a finite direct
sum of cyclic p-groups not isomorphic to Z(pn).

Let H ⊆ K ⊆ Â be such that K/H = F . Note that A + K = Â and
Â/K =

⊕
α Z(pn). Since commensurability is an equivalence relation, to

reach the desired conclusion it suffices to show that K is commensurable
with the fully invariant submodule pnÂ of Â. As A + K = Â, we have the
isomorphism Â/K ∼= A/(A ∩K). Moreover, since (H + pÂ)/pÂ and K/H
are finite, we get (K + pÂ)/pÂ finite, and therefore also (K ∩ A+ pA)/pA
is finite, by Lemma 3.7. Thus, from Theorem 2.5, it follows that K ∩ A is
fully inert in A.

The Cohen–Gluck theorem ensures that A ∼=
⊕

α Jpeα, and K ∩ A ∼=⊕
α Jpp

nαeα, where nα is either n or zero. Arguing as in the proof of Theorem
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2.5, we see that only finitely many nα are zero, say

K ∩A ∼=
⊕
I

Jp ⊕
⊕
β

Jpp
nβeβ =

⊕
I

Jp ⊕ pnA1,

where I is a finite set of indices and nβ = n for every β. Note that Â =⊕
I Jp ⊕ Â1; moreover, if we denote by Ĉ the completion of K ∩ A in its

p-adic topology, we have Ĉ =
⊕

I Jp ⊕ pnÂ1. Then we readily see that Ĉ is

commensurable with pnÂ.

As Â/K is reduced, [9, Corollary 3.9.2] ensures that K is complete in
its p-adic topology, which coincides with the topology induced by the p-adic
topology of Â, because Â/K is bounded. Since K/(A∩K) ∼= Â/A is divisible,
K ∩A is dense in K, and therefore K = K̂ coincides with the completion Ĉ
of K ∩A. We conclude that K is commensurable with pnÂ, as desired.

4. Fully inert submodules not commensurable with fully invari-
ant submodules. The purpose of this final section is to provide examples
of torsion-free Jp-modules that admit fully inert submodules not commen-
surable with any fully invariant submodule. These examples are furnished
by theorems on realization of commutative rings as endomorphism rings of
Jp-modules—see, for example, [10] or [3].

Theorem 4.1. There exist torsion-free Jp-modules X that contain fully
inert submodules noncommensurable with pnX, for all n ≥ 0.

Proof. We start with a free Jp-module A =
⊕

i<ω Jpei of countable rank,

and consider its p-adic completion Â. It follows from [10, Theorem 4.1] or
[3, Theorem 7.10] that there exists a Jp-module X, with A ⊆ X ⊆ Â, such
that

EndJp(X) = Jp.1X ⊕ E0(X),

where E0 is the ideal of endomorphisms φ such that φX is free of finite rank.

We first verify that every submodule H of X such that X/H is torsion,
is necessarily fully inert. Take any endomorphism f of X; then f = r + φ,
with r ∈ Jp and φ ∈ E0(X). Since H + f(H) = H + φH, it suffices to
show that (H +φH)/H is finite. Indeed, φH/H ∩φH is a finitely generated
torsion Jp-module, since φH is free of finite rank, and X/H is torsion, by
assumption. It follows that φH/H ∩ φH ∼= (H + φH)/H is finite.

Now we observe that X/pX is a Z(p)-vector space of infinite dimension.
So we may choose a submodule H containing pX and such that H/pX and
X/H both have infinite dimension over Z(p). It readily follows that H is
commensurable neither with X nor with pX; a fortiori, H is not commen-
surable with pnX, n ≥ 2, since |H/pnX| ≥ |H/pX|. As X/H is certainly
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torsion, H is fully inert in X but it is not commensurable with any fully
invariant submodule of X.
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