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Abstract. We determine the Hochschild cohomology of all finite-dimensional gen-
eralized multicoil algebras over an algebraically closed field, which are the algebras for
which the Auslander–Reiten quiver admits a separating family of almost cyclic coher-
ent components. In particular, the analytically rigid generalized multicoil algebras are
described.

1. Introduction and the main results. Throughout the paper by
an algebra we mean a basic, finite-dimensional k-algebra over a fixed alge-
braically closed field k. For an algebra A, we denote by modA the category
of finitely generated right A-modules, and by indA a full subcategory of
modA consisting of a complete set of representatives of the isomorphism
classes of indecomposable modules. We shall denote by rad(modA) the Ja-
cobson radical of modA, and by rad∞(modA) the intersection of all pow-
ers radi(modA), i ≥ 1, of rad(modA). Moreover, we denote by ΓA the
Auslander–Reiten quiver of A, and by τA and τ−A the Auslander–Reiten
translations DTr and TrD, respectively. We will not distinguish between a
module in indA and the corresponding vertex of ΓA. Following [42] a family
C of components in ΓA is said to be generalized standard if rad∞(X,Y ) = 0
for all modules X and Y in C. We note that different components of a gen-
eralized standard family C of components in ΓA are orthogonal. Recall also
that a family C of components in ΓA is called sincere if any simple A-module
occurs as a composition factor of a module in C.

The Auslander–Reiten quiver is an important combinatorial and homo-
logical invariant of the module category modA of an algebra A. Frequently,
we may recover A from the behaviour of distinguished components of ΓA
in the category modA. For example, this is the case for tilted algebras
[14, 19, 41], or more generally, double tilted [34] and generalized double
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tilted algebras [35, 46] whose Auslander–Reiten quiver admits a faithful
component with a finite section (respectively, double section, multisection)
satisfying a vanishing hom-condition.

In the representation theory of algebras a prominent role is played by
algebras with a separating family of stable tubes (in the sense of Ringel
[36]). This class of algebras contains the tame hereditary algebras, the tame
concealed algebras, the tubular algebras, the canonical algebras and, more
generally, the concealed canonical algebras. It has been proved in [17] that
the class of algebras with a separating family of stable tubes coincides with
the class of concealed canonical algebras. This was deepened in [33, 45],
where a characterization of concealed canonical algebras in terms of external
short paths (cycles) was established. Moreover, in order to deal with wider
classes of algebras, a slightly more general concept of a separating family of
components is natural. Namely, a family C = (Ci)i∈I of components of ΓA
is said to be separating in modA if the modules in indA split into three
disjoint classes PA, CA = C and QA such that:

(S1) CA is a sincere generalized standard family of components;
(S2) HomA(QA,PA) = 0, HomA(QA, CA) = 0 and HomA(CA,PA) = 0;
(S3) any morphism from PA to QA factors through add CA.

We then say that CA separates PA from QA and write indA=PA∨CA∨QA.
We note that PA and QA are then uniquely determined by CA (see [5]). We
also refer to the survey article [29] for the structure of arbitrary algebras
with separating families of Auslander–Reiten components.

In [2, 3, 4] Assem and Skowroński introduced a natural generalization of
the concept of tube, called a coil, and then the class of coil algebras, which
are the tame algebras with a separating family of coils. The coil algebras have
played a fundamental role in the study of tame strongly simply connected
algebras [6, 43] as well as in describing the geometric and homological prop-
erties of indecomposable modules over strongly simply connected algebras
of polynomial growth (see [30, 31, 32, 47] for some results).

Motivated by the importance of coils and coil algebras, the present au-
thors introduced in [25] the concept of a generalized multicoil, and then of
a generalized multicoil algebra [26]. A generalized multicoil is a translation
quiver obtained from a finite family of stable tubes by iterated application
of a sequence of admissible operations of types (ad 1)–(ad 5) and their duals
(ad 1∗)–(ad 5∗). We recall that a coil in the sense of [3] is a translation
quiver obtained from one stable tube by iterated application of admissible
operations of types (ad 1)–(ad 3) and their duals (ad 1∗)–(ad 3∗). It has
been proved in [25] that a component C of the Auslander–Reiten quiver ΓA
of an algebra A is a generalized multicoil if and only if C is almost cyclic
and coherent. Recall that a component Γ of ΓA is called almost cyclic if
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all but finitely many modules in Γ lie on oriented cycles contained entirely
in Γ . Further, a component Γ of ΓA is called coherent if the following two
conditions are satisfied:

(C1) For each projective module P in Γ there is an infinite sectional
path P = X1 → X2 → · · · → Xi → Xi+1 → Xi+2 → · · · (that is,
Xi 6= τAXi+2 for any i ≥ 1) in Γ .

(C2) For each injective module I in Γ there is an infinite sectional path
· · · → Yj+2 → Yj+1 → Yj → · · · → Y2 → Y1 = I (that is, Yj+2 6=
τAYj for any j ≥ 1) in Γ .

The main result of [26], Theorem A, asserts that the Auslander–Reiten
quiver ΓA of an algebra A admits a separating family of almost cyclic com-
ponents if and only if A is a generalized multicoil enlargement of a finite
product of concealed canonical algebras by iterated application of admissi-
ble algebra operations of types (ad 1)–(ad 5) and their duals (corresponding
to the translation quiver operations (ad 1)–(ad 5) and their duals, leading
from a finite family of stable tubes to generalized multicoils). These algebras
are called generalized multicoil algebras and play a prominent role in recent
investigations (see [8, 21, 22, 23, 26, 27, 28] for some results concerning the
geometric and homological properties of their module categories).

We note that, by [26, Theorem E], each generalized multicoil algebra A
is of global dimension at most three and every module in indA has pro-
jective or injective dimension at most two. We also mention that the qua-
sitilted algebras of canonical type [18, 44] form a distinguished special class
of generalized multicoil algebras. Moreover, recently generalized multicoil
algebras have proved to be important in describing the support algebras of
infinite cyclic components of Auslander–Reiten quivers of algebras consisting
of cycle-finite indecomposable modules (see [24]).

Here, we are interested in the Hochschild cohomology spaces Hn(A) =
Hn(A,A), n ≥ 0, and the deformation theory of generalized multicoil alge-
bras A. In Section 4 we introduce numerical invariants dA, fA, pA, rA of a
generalized multicoil algebra A, depending on the types of admissible oper-
ations (ad 1)–(ad 5) and their duals, leading from a product C of concealed
canonical algebras to A.

The following theorem is the main result of the paper.

Theorem 1.1. Let A be a connected generalized multicoil algebra. Then:

(i) Hn(A) = 0 for n ≥ 3.
(ii) dimkH

2(A) = pA + rA.
(iii) dimkH

1(A) = dA + fA.
(iv) dimkH

0(A) = 1.

The numbers pA, rA, dA, fA will be defined at the end of Section 4.
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We note that in the very special case of quasitilted algebras the above
statements follow from results proved by Happel (see Section 3).

Following Gerstenhaber [11], a one-parameter deformation of an algebra
A is a k[[t]]-algebra structure on k[[t]]⊗kA given by f : A⊗kA→ k[[t]]⊗kA
where f(a⊗b) = ab+t⊗f1(a⊗b)+t2⊗f2(a⊗b)+· · · for k-bilinear morphisms
fi : A × A → A. Then the algebra A is said to be analytically rigid if any
one-parameter deformation of A is isomorphic to the trivial one given by
fi = 0 for i ≥ 1. It was shown in [11] that one-parameter deformations of A
are related to low Hochschild cohomology spaces, H i(A), 1 ≤ i ≤ 3. In fact,
for a one-parameter deformation of A given by f : A⊗kA→ k[[t]]⊗kA, the
first fi different from zero defines an element of H2(A). Hence, if H2(A) = 0,
then A is analytically rigid. Moreover, if H3(A) = 0 and A is analytically
rigid, then H2(A) = 0.

In order to describe analytically rigid generalized multicoil algebras we
need two numerical invariants. Let C be a connected concealed canonical
algebra of tubular type pC = (p1, . . . , pt) (see Section 3 for details). Then
we set tC = t and define the number eC as follows:

eC =


0 if tC ≥ 3,

1 if pC = (p1, p2) with p1, p2 ≥ 2,

2 if pC = (p1, p2) with p1 = 1, p2 ≥ 2,

3 if pC = (p1, p2) with p1 = p2 = 1.

As a consequence of Theorem 1.1 and Gerstenhaber’s results, described
above, we obtain the following fact.

Corollary 1.2. Let A be a connected generalized multicoil algebra. The
following statements are equivalent:

(i) A is analytically rigid.
(ii) H2(A) = 0.
(iii) A is a generalized multicoil enlargement of a family C1, . . . , Cm

of connected concealed canonical algebras such that, for any i ∈
{1, . . . ,m}, tCi ≤ 3 and the number of operations applied to mod-
ules from the mouth of stable tubes of rank one in ΓCi is at most eCi.

We note that analytically rigid coil algebras, or more generally strongly
simply connected algebras of polynomial growth, have been characterized in
[10, 40].

For basic background on the representation theory of algebras we refer to
the books [1, 36, 37, 38], and for Hochschild cohomology and deformations
of algebras to the articles [10, 11, 12].
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2. Hochschild cohomology of algebras. Let A be an algebra. Denote
by C•A the Hochschild complex C• = (Ci, di)i∈Z defined as follows: Ci = 0,
di = 0 for i < 0, C0 = AAA, Ci = Homk(A

⊗i, A) for i > 0, where A⊗i

denotes the i-fold tensor product over k of A itself, d0 : A → Homk(A,A)
with (d0x)(a) = ax− xa for x, a ∈ A, di : Ci → Ci+1 with

(dif)(a1 ⊗ · · · ⊗ ai+1) = a1f(a2 ⊗ · · · ⊗ ai+1)

+

i∑
j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f(a1 ⊗ · · · ⊗ ai)ai+1

for f ∈ Ci and a1, . . . , ai+1 ∈ A. Then H i(A) = H i(C•A) is called the ith
Hochschild cohomology space of A (see [7, Chapter IX]). Recall that the first
Hochschild cohomology space H1(A) of an algebra A is isomorphic to the
space Der(A,A)/Der0(A,A) of outer derivations of A, where Der(A,A) =
{δ ∈ Homk(A,A) | δ(ab) = aδ(b)+δ(a)b for a, b ∈ A} is the space of k-linear
derivations of A, and Der0(A,A) is the subspace {δx ∈ Homk(A,A) | δx(a) =
ax− xa for a ∈ A} of inner derivations of A.

We recall the following classical result (see [12, Proposition 1.6 and Corol-
lary 1.7])

Proposition 2.1. Let A be the path algebra KQ of a connected quiver Q.
Then:

(i) H0(A) ∼= k and Hn(A) = 0 for n ≥ 2.
(ii) H1(A) = 0 if and only if Q is a tree.

The following tilting invariance of Hochschild cohomology spaces of al-
gebras has been established by Happel [12, Theorem 4.2].

Proposition 2.2. Let B be an algebra, T a tilting B-module and A =
EndB(T ). Then Hn(A) ∼= Hn(B) for any n ≥ 0.

Frequently an algebra A can be obtained from another algebra B by
a sequence of one-point extensions and one-point coextensions. Recall that
the one-point extension of an algebra B by a B-module M is the matrix
algebra

B[M ] =

[
B 0

M k

]
with the usual addition and multiplication of matrices. The quiver of B[M ]
contains QB as a convex subquiver and there is an additional (extension)
point which is a source. B[M ]-modules are usually identified with triples
(V,X, ϕ), where V is a k-vector space, X a B-module and ϕ : V →
HomB(M,X) a k-linear map. A B[M ]-linear map (V,X, ϕ)→ (V ′, X ′, ϕ′) is
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then identified with a pair (f, g), where f : V → V ′ is k-linear, g : X → X ′

is B-linear and ϕ′f = HomB(M, g)ϕ. One defines dually the one-point co-
extension [M ]B of B by M (see [36]).

The following theorem proved by Happel [12, Theorem 5.3] provides an
important tool for calculation of the Hochschild cohomology of algebras.

Theorem 2.3. Let A be the one-point extension B[M ] of an algebra
B by a B-module M . Then there exists the following long exact sequence
connecting the Hochschild cohomology spaces of A and B:

0→ H0(A)→ H0(B)→ HomB(M,M)/k → H1(A)→ H1(B)

→ Ext1
B(M,M)→ · · · → ExtiB(M,M)→ H i+1(A)→ H i+1(B)

→ Exti+1
B (M,M)→ · · · .

3. Concealed canonical algebras. An important role in our consid-
erations will be played by certain tilts of canonical algebras introduced by
Ringel [36]. Let p1, . . . , pt be a sequence of positive integers with t ≥ 2,
1 ≤ p1 ≤ . . . ≤ pt, and p1 ≥ 2 if t ≥ 3. Denote by ∆(p1, . . . , pt) the quiver

◦
α11

��

◦α12oo · · ·oo ◦oo ◦
α1p1−1oo

◦ ◦α21oo ◦α22oo · · ·oo ◦oo ◦
α2p2−1oo ◦

α2p2oo

α1p1

__

αtpt��
◦

αt1

__

◦αt2

oo · · ·oo ◦oo ◦αtpt−1

oo

For t ≥ 3, consider a (t+ 1)-tuple of pairwise different elements of P1(k) =
k ∪ {∞}, normalized so that λ1 = ∞, λ2 = 0, λ3 = 1, and the admis-
sible ideal I(λ1, . . . , λt) in the path algebra k∆(p1, . . . , pt) of ∆(p1, . . . , pt)
generated by the elements

αipi . . . αi2αi1 + α2p2 . . . α22α21 + λiα1p1 . . . α12α11, 3 ≤ i ≤ t.
Then the bound quiver algebra Λ(p, λ) = k∆(p1, . . . , pt)/I(λ1, . . . , λt) is said
to be the canonical algebra of type p = (p1, . . . , pt). Moreover, for t = 2, the
path algebra Λ(p) = k∆(p1, p2) is said to be the canonical algebra of type
p = (p1, p2). It has been proved in [36, Theorem 3.7] that if Λ is a canonical
algebra of type (p1, . . . , pt) then indΛ = PΛ∨TΛ∨QΛ for a P1(k)-family TΛ
of stable tubes of tubular type (p1, . . . , pt), separating PΛ from QΛ.

Following [16] a connected algebra C is called a concealed canonical alge-
bra of type (p1, . . . , pt) if C is the endomorphism algebra EndΛ(T ) for some
canonical algebra Λ of type (p1, . . . , pt) and a tilting Λ-module T whose in-
decomposable direct summands belong to PΛ. Then the images of modules
from TΛ via the functor HomΛ(T,−) form a separating family TC of stable
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tubes of ΓC , and in particular we have a decomposition indC = PC∨TC∨QC .
It has been proved by Lenzing and de la Peña [17, Theorem 1.1] that the class
of (connected) concealed canonical algebras coincides with the class of all
connected algebras with a separating family of stable tubes. It is also known
that the class of concealed canonical algebras of type (p1, p2) coincides with

the class of hereditary algebras Euclidean types Ãm, m ≥ 1 (see [15]).

We need the following facts on the Hochschild cohomology of concealed
canonical algebras, proved in [12, Proposition 1.6] and [13, Theorem 2.4].

Proposition 3.1. Let C be a connected concealed canonical algebra of
type (p1, p2). Then H0(C) ∼= k, Hn(C) = 0 for n ≥ 2, and

(i) H1(C) ∼= k if p1, p2 ≥ 2,
(ii) H1(C) ∼= k2 if p1 = 1, p2 ≥ 2,

(iii) H1(C) ∼= k3 if p1 = p2 = 1.

Proposition 3.2. Let C be a connected concealed canonical algebra of
type (p1, . . . , pt) with t ≥ 3. Then H0(C) ∼= k, H2(C) ∼= kt−3, and Hn(C)
= 0 for n 6= 0, 2.

4. Admissible operations. Recall from [9, 36] that a translation quiver
Γ is called a tube if it contains a cyclic path, and if its underlying topological
space is homeomorphic to S1×R+ (where S1 is the unit circle, and R+ the
nonnegative real half-line). A tube has only two types of arrows: arrows
pointing to infinity and arrows pointing to the mouth. Tubes containing
neither projective vertices nor injective vertices are called stable. Recall that
if A∞ is the quiver 0→ 1→ 2→ · · · , then ZA∞ is the translation quiver

(i− 1, 0) (i, 0) (i+ 1, 0) (i+ 2, 0)

(i− 1, 1) (i, 1) (i+ 1, 1)

(i− 1, 2) (i, 2)
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···

with τ(i, j) = (i− 1, j) for i ∈ Z, j ∈ N. For r ≥ 1, denote by ZA∞/(τ r) the
translation quiver Γ obtained from ZA∞ by identifying each vertex (i, j)
of ZA∞ with the vertex τ r(i, j), and each arrow x → y in ZA∞ with the
arrow τ rx → τ ry. Translation quivers of the form ZA∞/(τ r), r ≥ 1, are
called stable tubes of rank r. The rank of a stable tube Γ is the least positive
integer r such that τ rx = x for all x in Γ . A stable tube of rank 1 is said
to be homogeneous. The τ -orbit of a stable tube Γ formed by all vertices
having exactly one direct predecessor is said to be the mouth of Γ .



238 P. MALICKI AND A. SKOWROŃSKI

We also note that the generalized canonical algebras (introduced in [45])
provide a wide class of algebras whose Auslander–Reiten quivers admit gen-
eralized standard stable tubes.

It has been proved in [25, Theorem A] that a connected component Γ
of ΓA is almost cyclic and coherent if and only if Γ is a generalized multicoil
obtained from a family of stable tubes by a sequence of operations called
admissible. Our task in this section is to recall the latter and simultaneously
define the corresponding enlargements of algebras.

For r ≥ 1, we denote by Tr(k) the r × r lower triangular matrix algebra

k 0 0 . . . 0 0

k k 0 . . . 0 0

k k k . . . 0 0
...

...
...

. . .
...

...

k k k . . . k 0

k k k . . . k k


Given a generalized standard component Γ of ΓA, and an indecompos-
able module X in Γ , the support S(X) of the functor HomA(X,−)|Γ is
the k-linear category defined as follows [4]. Let HX denote the full sub-
category of Γ consisting of all indecomposable modules M in Γ such that
HomA(X,M) 6= 0, and IX denote the ideal of HX consisting of all mor-
phisms f : M → N (with M,N in HX) such that HomA(X, f) = 0. We
define S(X) to be the quotient category HX/IX . Following the above con-
vention, we usually identify the k-linear category S(X) with its quiver.

From now on let A be an algebra and Γ be a family of generalized
standard infinite components of ΓA. For an indecomposable module X in Γ ,
called the pivot, one defines five admissible operations (ad 1)–(ad 5) and
their duals (ad 1∗)–(ad 5∗) modifying the translation quiver Γ = (Γ, τ) to
a new translation quiver (Γ ′, τ ′) and the algebra A to a new algebra A′,
depending on the shape of the support S(X) (see [25, Section 2] for figures
illustrating the modified translation quivers Γ ′).

(ad 1) Let t ∈ N and assume S(X) consists of an infinite sectional path
starting at X:

X = X0 → X1 → X2 → · · · .

If t ≥ 1 then D = Tt(k) and Y1, . . . , Yt denote indecomposable injective
D-modules with Y = Y1 the unique indecomposable projective-injective D-
module. We define the modified algebra A′ of A to be the one-point extension

A′ = (A×D)[X ⊕ Y ],
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and the modified translation quiver Γ ′ of Γ to be obtained by inserting in
Γ the rectangle consisting of the modules Zij =

(
k,Xi ⊕ Yj ,

[
1
1

])
for i ≥ 0,

1 ≤ j ≤ t, and X ′i = (k,Xi, 1) for i ≥ 0. The translation τ ′ of Γ ′ is defined as
follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1

if j ≥ 2, Z01 is projective, τ ′X ′0 = Yt, τ
′X ′i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X ′i

provided Xi is not an injective A-module, otherwise X ′i is injective in Γ ′. For
the remaining vertices of Γ ′, τ ′ coincides with the translation of Γ , or ΓD,
respectively.

Finally, if t = 0 we define the modified algebra A′ to be the one-point
extension A′ = A[X], and the modified translation quiver Γ ′ to be the
translation quiver obtained from Γ by inserting only the sectional path
consisting of the vertices X ′i, i ≥ 0.

The nonnegative integer t is such that the number of infinite sectional
paths parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals
t+ 1. We call t the parameter of the operation.

In case Γ is a stable tube, it is clear that any module on the mouth of
Γ satisfies the condition for being a pivot for the above operation. Actually,
the above operation is, in this case, the tube insertion as considered in [9].

(ad 2) Suppose that S(X) admits two sectional paths starting at X, one
infinite and the other finite with at least one arrow:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·
where t ≥ 1. In particular, X is necessarily injective. We define the modified
algebra A′ of A to be the one-point extension A′ = A[X], and the modified
translation quiver Γ ′ of Γ to be obtained by inserting in Γ the rectangle
consisting of the modules Zij =

(
k,Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t, and

X ′i = (k,Xi, 1) for i ≥ 1. The translation τ ′ of Γ ′ is defined as follows: X ′0 is
projective-injective, τ ′Zij = Zi−1,j−1 if i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1,
τ ′Z1j = Yj−1 if j ≥ 2, τ ′X ′i = Zi−1,t if i ≥ 2, τ ′X ′1 = Yt, τ

′(τ−1Xi) = X ′i
provided Xi is not an injective A-module, otherwise X ′i is injective in Γ ′.
For the remaining vertices of Γ ′, τ ′ coincides with the translation τ of Γ .

The integer t ≥ 1 is such that the number of infinite sectional paths
parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals t+ 1. We
call t the parameter of the operation.

(ad 3) Assume S(X) is the mesh-category of two parallel sectional paths:

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

where t ≥ 2. In particular, Xt−1 is necessarily injective. Moreover, we
consider the translation quiver Γ of Γ obtained by deleting the arrows
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Yi → τ−1
A Yi−1. We assume that the union Γ̂ of the connected components

of Γ containing the vertices τ−1
A Yi−1, 2 ≤ i ≤ t, is a finite translation quiver.

Then Γ is the disjoint union of Γ̂ and a cofinite full translation subquiver Γ ∗,
containing the pivot X. We define the modified algebra A′ of A to be the
one-point extension A′ = A[X], and the modified translation quiver Γ ′ of Γ
to be obtained from Γ ∗ by inserting the rectangle consisting of the modules
Zij =

(
k,Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t, j ≤ i, and X ′i = (k,Xi, 1)

for i ≥ 1. The translation τ ′ of Γ ′ is defined as follows: X ′0 is projective,
τ ′Zij = Zi−1,j−1 if i ≥ 2, 2 ≤ j ≤ t, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′X ′i = Yi if
1 ≤ i ≤ t, τ ′X ′i = Zi−1,t if i ≥ t+1, τ ′Yj = X ′j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′i
if i ≥ t provided Xi is not injective in Γ , otherwise X ′i is injective in Γ ′. For
the remaining vertices of Γ ′, τ ′ coincides with the translation τ of Γ ∗. We
note that X ′t−1 is injective.

The integer t ≥ 2 is such that the number of infinite sectional paths
parallel to X0 → X1 → X2 → · · · in the inserted rectangle equals t+ 1. We
call t the parameter of the operation.

(ad 4) Suppose that S(X) consists of an infinite sectional path starting
at X,

X = X0 → X1 → X2 → · · · ,

and let

Y = Y1 → Y2 → · · · → Yt

with t ≥ 1 be a finite sectional path in ΓA. Let r ∈ N. Moreover, we consider
the translation quiver Γ of Γ obtained by deleting the arrows Yi → τ−1

A Yi−1.

We assume that the union Γ̂ of the connected components of Γ containing
the vertices τ−1

A Yi−1, 2 ≤ i ≤ t, is a finite translation quiver. Then Γ is the

disjoint union of Γ̂ and a cofinite full translation subquiver Γ ∗, containing
the pivot X. For r = 0 we define the modified algebra A′ of A to be the
one-point extension A′ = A[X ⊕ Y ], and the modified translation quiver Γ ′

of Γ to be obtained from Γ ∗ by inserting the rectangle consisting of the
modules Zij =

(
k,Xi ⊕ Yj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t, and X ′i = (k,Xi, 1)

for i ≥ 1. The translation τ ′ of Γ ′ is defined as follows: τ ′Zij = Zi−1,j−1 if
i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 is projective,
τ ′X ′0 = Yt, τ

′X ′i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X ′i provided Xi is not
injective in Γ , otherwise X ′i is injective in Γ ′. For the remaining vertices
of Γ ′, τ ′ coincides with the translation of Γ ∗.

For r ≥ 1, let G = Tr(k), let U1,t+1, U2,t+1, . . . , Ur,t+1 denote the inde-
composable projective G-modules, and Ur,t+1, Ur,t+2, . . . , Ur,t+r denote the
indecomposable injective G-modules, with Ur,t+1 the unique indecompos-
able projective-injective G-module. We define the modified algebra A′ of A
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to be the triangular matrix algebra of the form

A′ =



A 0 0 . . . 0 0

Y k 0 . . . 0 0

Y k k . . . 0 0
...

...
...

. . .
...

...

Y k k . . . k 0

X ⊕ Y k k . . . k k


with r+2 columns and rows, and the modified translation quiver Γ ′ of Γ to be
obtained from Γ ∗ by inserting the rectangles consisting of the modules Usl =(
k, Yl ⊕ Us,t+1,

[
1
1

])
for 1 ≤ s ≤ r, 1 ≤ l ≤ t, and Zij =

(
k,Xi ⊕ Urj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t + r, and X ′i = (k,Xi, 1) for i ≥ 0. The translation τ ′

of Γ ′ is defined as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if
i ≥ 1, τ ′Z0j = Ur,j−1 if 2 ≤ j ≤ t + r, Z01, Uk1, 1 ≤ k ≤ r are projective,
τ ′Ukl = Uk−1,l−1 if 2 ≤ k ≤ r, 2 ≤ l ≤ t + r, τ ′U1l = Yl−1 if 2 ≤ l ≤ t + 1,
τ ′X ′0 = Ur,t+r, τ

′X ′i = Zi−1,t+r if i ≥ 1, τ ′(τ−1Xi) = X ′i provided Xi is not
injective in Γ , otherwise X ′i is injective in Γ ′. For the remaining vertices
of Γ ′, τ ′ coincides with the translation of Γ ∗, or ΓG, respectively.

We note that the quiver QA′ of A′ is obtained from the quiver of the
double one-point extension A[X][Y ] by adding a path of length r + 1 with
source at the extension vertex of A[X] and sink at the extension vertex
of A[Y ].

The integers t ≥ 1 and r ≥ 0 are such that the number of infinite
sectional paths parallel to X0 → X1 → X2 → · · · in the inserted rectangles
equals t+ r + 1. We call t+ r the parameter of the operation.

To define of the next admissible operation we also need finite versions of
the admissible operations (ad 1)–(ad 4), which we denote by (fad 1)–(fad 4),
respectively. In order to obtain these operations we replace all infinite sec-
tional paths of the form X0 → X1 → X2 → · · · (in the definitions of (ad 1)–
(ad 4)) by finite sectional paths of the form X0 → X1 → X2 → · · · → Xs.
For the operation (fad 1) we have s ≥ 0, for (fad 2) and (fad 4) we have
s ≥ 1, and for (fad 3) we have s ≥ t− 1. In all the above operations, Xs is
injective (see [25] or [26] for the details).

(ad 5) We define the modified algebra A′ of A to be the iteration of the
extensions described in the definitions of the admissible operations (ad 1)–
(ad 4), and their finite versions corresponding to the operations (fad 1)–
(fad 4). The modified translation quiver Γ ′ of Γ is obtained in the following
three steps: first we perform on Γ one of the operations (fad 1)–(fad 3), next
a finite number (possibly empty) of times the operation (fad 4) and finally
the operation (ad 4), all in such a way that the sectional paths starting from
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all the new projective vertices have a common cofinite (infinite) sectional
subpath.

Finally, together with the admissible operations (ad 1)–(ad 5), we con-
sider their duals, denoted by (ad 1∗)–(ad 5∗). These ten operations are
now called the admissible operations. Following [25] a connected transla-
tion quiver Γ is said to be a generalized multicoil if Γ can be obtained from
a finite family T1, . . . , Ts of stable tubes by iterated application of admissible
operations (ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3), (ad 3∗), (ad 4), (ad 4∗),
(ad 5) or (ad 5∗). If s = 1, such a translation quiver Γ is said to be a gener-
alized coil. The admissible operations of types (ad 1)–(ad 3), (ad 1∗)–(ad 3∗)
have been introduced in [2, 4, 5], and the admissible operations (ad 4) and
(ad 4∗) for r = 0 in [20].

Observe that any stable tube is trivially a generalized coil. A tube (in the
sense of [9]) is a generalized coil having the property that each admissible
operation in the sequence defining it is of the form (ad 1) or (ad 1∗). If we
apply only operations of type (ad 1) (respectively, of type (ad 1∗)) then such
a generalized coil is called a ray tube (respectively, a coray tube). Observe
that a generalized coil without injective (respectively, projective) vertices is
a ray tube (respectively, a coray tube). A quasi-tube (in the sense of [39]) is a
generalized coil with the property that each of the admissible operations in
the sequence defining it is of type (ad 1), (ad 1∗), (ad 2) or (ad 2∗). Finally,
following [3] a coil is a generalized coil having the property that each of the
admissible operations in the sequence defining it is of one of the forms (ad 1),
(ad 1∗), (ad 2), (ad 2∗), (ad 3) or (ad 3∗). We note that any generalized
multicoil Γ is a coherent translation quiver with trivial valuations, and its
cyclic part cΓ (the translation subquiver of Γ obtained by removing from Γ
all acyclic vertices and the arrows attached to them) is infinite, connected
and cofinite in Γ , and so Γ is almost cyclic.

Finally, let C be a (not necessarily connected) concealed canonical al-
gebra and TC a separating family of stable tubes of ΓC . Following [26] we say
that an algebra A is a generalized multicoil enlargement of C using modules
from TC if there exists a sequence of algebras

C = A0, A1, . . . , An = A

such that Ai+1 is obtained from Ai by an admissible operation of one of
the types (ad 1)–(ad 5), (ad 1∗)–(ad 5∗) performed either on stable tubes
of TAi , or on generalized multicoils obtained from stable tubes of TAi by
means of operations done so far. Observe that this definition extends the
concept of a coil enlargement of a concealed canonical algebra introduced
in [5]. We note that a generalized multicoil enlargement A of C invoking
only admissible operations of type (ad 1) (respectively, of type (ad 1∗)) is
a tubular extension (respectively, tubular coextension) of C in the sense
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of [36]. An algebra A is said to be a generalized multicoil algebra if A is a
connected generalized multicoil enlargement of a product C of connected
concealed canonical algebras.

In order to formulate our main result, we define some numerical in-
variants of A. Let A be a generalized multicoil enlargement of a concealed
canonical algebra C. Let C = C1 × · · · × Cl × Cl+1 × · · · × Cm be a decom-
position of C into a product of connected algebras such that C1, . . . , Cl are
of type (p1, p2) and Cl+1, . . . , Cm are of type (p1, . . . , pt) with t ≥ 3. By hi
we denote the number of all homogeneous tubes from ΓCi with 1 ≤ i ≤ l
used in the whole process of creating A from C, and hi = 0 if l+ 1 ≤ i ≤ m.
Moreover, let

ei =


0 if Ci is of type (p1, . . . , pt) with t ≥ 3,

1 if Ci is of type (p1, p2) with p1, p2 ≥ 2,

2 if Ci is of type (p1, p2) with p1 = 1, p2 ≥ 2,

3 if Ci is of type (p1, p2) with p1 = p2 = 1,

for i ∈ {1, . . . ,m}. We also define fCi = max(ei − hi, 0) for i ∈ {1, . . . ,m}
and set fA =

∑m
i=1 fCi =

∑l
i=1 fCi . Note that we can apply (ad 4), (fad 4),

(ad 4∗), (fad 4∗) in two ways. The first way is when the sectional paths
occurring in the definitions of these operations come from a component or
two components of the same connected algebra. The second one is when
these sectional paths come from two components of two connected algebras.
We denote by dA the number of operations of type (ad 4), (fad 4), (ad 4∗)
and (fad 4∗) used in the whole process of creating A from C which are
of the first type. Moreover, we denote by vi the number of all admissible
operations of type (ad 1), (ad 1∗), (ad 4), (ad 4∗), (ad 5) and (ad 5∗) applied
to an indecomposable pivot or copivot Ai-module X lying on the mouth of
a stable tube of rank one in the whole process of creating of A from C.
Next, we define the nonnegative integer numbers ri = max(vi − ei, 0) and
rA =

∑m
i=1 ri. Finally, we set pi = max(ti − 3, 0), 1 ≤ i ≤ m, where ti is

the number of arms of the algebra Ci, and define the invariant pA of A by
pA =

∑m
i=1 pi =

∑m
i=l+1 pi.

Proposition 4.1 ([26, Proposition 3.7]). Let C be a concealed canonical
algebra, TC a separating family of stable tubes of ΓC , and A a generalized
multicoil enlargement of C using modules from TC . Then ΓA admits a gener-
alized standard family CA of generalized multicoils obtained from the family
TC of stable tubes by a sequence of admissible operations corresponding to
the admissible operations leading from C to A.

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA, and indA = PA ∨ CA ∨ QA. Then, by [26, Theorem C],
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there are uniquely determined quasitilted algebras Al and Ar such that
PA = PAl

and QA = QAr . Moreover, from the proof of [26, Theorem C] we
obtain the following fact.

Proposition 4.2. Let A be an algebra with a separating family of almost
cyclic coherent components in ΓA. Then:

(i) A can be obtained from Al by a sequence of admissible operations of
types (ad 1)–(ad 5).

(ii) A can be obtained from Ar by a sequence of admissible operations of
types (ad 1∗)–(ad 5∗).

5. Proof of Theorem 1.1

(i) It follows from [26, Theorem E(iv)] that gl.dimA ≤ 3, and hence
Hn(A) = 0 for n ≥ 4. Moreover, we know (see details below) that A can be
obtained from a concealed canonical algebra C by one-point extensions or
one-point coextensions. Applying [27, Proposition 2.6], where we proved that
if M is a module in add CA then ExtrA(M,M) = 0 for r ≥ 2, Propositions
3.1, 3.2 and Theorem 2.3 (and its dual) we obtain H3(A) = 0.

(iv) It follows from [26, Corollary B] that the ordinary quiver of A has
no oriented cycles. Since A is connected, the center of A is a field, so that
H0(A) ∼= k. Hence dimkH

0(A) = 1.
(ii), (iii) From [26, Theorem A] we may assume that A is a generalized

multicoil enlargement of a concealed canonical algebra C. Let C = C1 ×
· · · ×Cm be a decomposition of C into a product of connected algebras and
let hi, ei, vi, ri, pi and pA, rA, dA, fA be as above. We shall prove our claims
by induction on the number n of admissible operations leading from C to
the algebra A.

Assume n = 1. Then we can only apply an admissible operation of type
(ad 1) or (ad 1∗). In particular, we have m = 1 and dA = 0. Assume that A
is obtained from C by applying an operation of type (ad 1). Then A = C[X]
if t = 0, and A = (C × D)[X ⊕ Y ] if t ≥ 1, where the C-module X is the
pivot and Y is the unique indecomposable projective-injective D-module
(see definition of (ad 1)). From Theorem 2.3 and the statements (i), (iv)
established above, we have the following exact sequences:

0→ k → k → HomC(X,X)/k → H1(A)→ H1(C)→ Ext1
C(X,X)

→ H2(A)→ H2(C)→ Ext2
C(X,X)→ 0

if t = 0, and

0→ k → k2 → HomC×D(X ⊕ Y,X ⊕ Y )/k → H1(A)→ H1(C ×D)

→ Ext1
C×D(X ⊕ Y,X ⊕ Y )→ H2(A)→ H2(C ×D)

→ Ext2
C×D(X ⊕ Y,X ⊕ Y )→ 0
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if t ≥ 1. In this case X is an indecomposable module from the mouth of a
stable tube of ΓC , and Y is either zero or a directing D-module. Therefore
we have HomC(X,X) ∼= k, HomD(Y, Y ) ∼= k, and hence

HomC×D(X ⊕ Y,X ⊕ Y ) ∼= HomC(X,X)⊕HomD(Y, Y ) ∼= k ⊕ k ∼= k2.

Moreover,

ExtiC×D(X ⊕ Y,X ⊕ Y ) ∼= ExtiC(X,X)⊕ ExtiD(Y, Y ) ∼= ExtiC(X,X)

for i ≥ 0. Always H i(C × D) ∼= H i(C) for i = 1, 2. We have the following
four cases:

(1) l = 1, h1 = 1. Then Ext1
C(X,X) ∼= k and Ext2

C(X,X) = 0, because
pdC X = 1. Moreover, by our assumption on C and by Proposition 2.1, we
have H2(C) = 0. Hence, from the above exact sequences, we deduce that
dimkH

1(A) = dimkH
1(C)−1 = dA+fA and dimkH

2(A) = dimkH
2(C) =

0 = pA + rA.
(2) l = 1, h1 = 0. Then Ext1

C(X,X) = Ext2
C(X,X) = 0. Moreover,

by our assumption on C, we have H2(C) = 0. Then from the above exact
sequences we obtain dimkH

1(A) = dimkH
1(C) = e1 = fC1 = dA + fA,

dimkH
2(A) = dimkH

2(C) = 0 = pA + rA.
(3) l = 0, h1 = 0, v1 = 1. Then we get Ext1

C(X,X) ∼= k, Ext2
C(X,X) = 0.

Moreover, by our assumption on C, we have H1(C) = 0. So from the above
exact sequences we find that dimkH

1(A) = dimkH
1(C) = 0 = dA + fA,

dimkH
2(A) = dimkH

2(C) + 1 = p1 + 1 = pA + 1 = pA + rA.
(4) l = 0, h1 = 0, v1 = 0. Then Ext1

C(X,X) = Ext2
C(X,X) = 0.

Moreover, by our assumption on C, we have H1(C) = 0. Then from the
above exact sequences we infer that dimkH

1(A) = dimkH
1(C) = 0 =

dA + fA, dimkH
2(A) = dimkH

2(C) = pA + rA.

If the algebra A is obtained from C by applying (ad 1∗), then the proof
is dual.

Let n > 1 and Γ be a generalized multicoil of ΓA which is obtained
from a finite family T1, . . . , Ts of stable tubes of ΓC . Assume that the state-
ment holds for n − 1, so after applying n − 1 admissible operations we
have a disjoint union of a finite family of generalized multicoils Ω1, . . . , Ωq,
1 ≤ q ≤ s. If the nth admissible operation is of type (ad 1), (ad 1∗),
(ad 2), (ad 2∗), (ad 3) or (ad 3∗) then q = 1, so Γ is obtained from Ω1.
Note that we can apply an admissible operation (ad 2), (ad 3), or (ad 4)
(that is, also (ad 5)) (respectively (ad 2∗), (ad 3∗), (ad 4∗)) if the num-
ber of all successors (respectively, predecessors) of the module Yi (which
occurs in the definitions of the above admissible operations) is finite for
each 1 ≤ i ≤ t. Indeed, if this is not the case, then the family of gener-
alized multicoils obtained after applying such admissible operations is not
sincere, and then it is not separating. If the nth admissible operation is
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of type (ad 1), then let A = B[X] if t = 0, and A = (B × D)[X ⊕ Y ]
if t ≥ 1, where X is an indecomposable nondirecting B-module (pivot)
and Y is either zero or a directing D-module. Therefore HomB(X,X) ∼= k,
HomB×D(X ⊕ Y,X ⊕ Y ) ∼= HomB(X,X) ⊕ HomD(Y, Y ) ∼= k ⊕ k ∼= k2,
and ExtiB×D(X ⊕ Y,X ⊕ Y ) ∼= ExtiB(X,X) ⊕ ExtiD(Y, Y ) ∼= ExtiB(X,X)
for i ≥ 1. Moreover, H1(B ×D) ∼= H1(B) and H2(B ×D) ∼= H2(B). Then
from Theorem 2.3 and the statements (i), (iv) we have the following exact
sequences:

0→ k → k → 0→ H1(A)→ H1(B)
η−→ Ext1

B(X,X)

→ H2(A)→ H2(B)→ Ext2
B(X,X)→ 0

if t = 0, and

0→ k → k2 → k
0−→ H1(A)→ H1(B)

η−→ Ext1
B(X,X)

→ H2(A)→ H2(B)→ Ext2
B(X,X)→ 0

if t ≥ 1.
Note that B is a connected algebra. We will show that Ext2

B(X,X) = 0.
Clearly, we may assume that X is noninjective. Denote by Ω the generalized

multicoil of ΓB containing X. Let 0→ X
j−→ E be an injective envelope of X

in modB, and V be the cokernel of j. Then Ext2
B(X,X) ∼= Ext1

B(X,V ). In
order to prove that Ext2

B(X,X) = 0, it is sufficient to show, by [40, Lemma
5.7], that modB has no path W → · · · → X with W an indecomposable
direct summand of V . Since Ω is standard (see [25, Section 3]) and convex,
we infer from the proof of [40, Theorem 5.1] that Ext2

B(X,X) = 0. Note
that the Auslander–Reiten formula gives an isomorphism Ext1

B(X,X) ∼=
DHomB(τ−X,X). We have three cases:

(1) fA = fB, rA = rB + 1. Then Ext1
B(X,X) ∼= k, η = 0 and from

the above exact sequences we deduce that dimkH
1(A) = dimkH

1(B) =
dB +fB = dA+fA, dimkH

2(A) = dimkH
2(B)+1 = pB +rB +1 = pA+rA.

(2) fB 6= 0, fA = fB−1, rA = rB. Then Ext1
B(X,X) ∼= k, η 6= 0 and from

the above exact sequences we find that dimkH
1(A) = dimkH

1(B) − 1 =
dB + fB − 1 = dA + fA, dimkH

2(A) = dimkH
2(B) = pB + rB = pA + rA.

(3) fA = fB, rA = rB. Then Ext1
B(X,X) = 0 and from the above exact

sequences we infer that dimkH
1(A) = dimkH

1(B) = dB + fB = dA + fA,
dimkH

2(A) = dimkH
2(B) = pB + rB = pA + rA.

If the operation is of type (ad 1∗), then the proof is dual.
If the nth admissible operation is of type (ad 2) then let A be the algebra

obtained from B by applying this admissible operation with pivot X, so
A = B[X]. Note that B is a connected algebra. From Theorem 2.3 and the
statements (i), (iv) we have the exact sequence

(∗) 0→ k → k → HomB(X,X)/k → H1(A)→ H1(B)→ Ext1
B(X,X)

→ H2(A)→ H2(B)→ Ext2
B(X,X)→ 0.
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From the definition of the operation (ad 2) we know that X is an injective
B-module, so Ext1

B(X,X) = Ext2
B(X,X) = 0. Since X is the pivot, we get

HomB(X,X) ∼= k. Moreover, dA = dB, fA = fB, pA = pB, rA = rB, for
arbitrary t ≥ 1. Therefore, by the above remarks, by the exact sequence
(∗) and by our inductive assumption we have dimkH

1(A) = dimkH
1(B) =

dB + fB = dA + fA, dimkH
2(A) = dimkH

2(B) = pB + rB = pA + rA.

If the admissible operation leading from B to A is of type (ad 2∗), then
the proof is dual.

If the nth admissible operation is of type (ad 3) then let A be the alge-
bra obtained from B by applying this admissible operation with pivot X,
so A = B[X]. Note that B is a connected algebra. Again, from Theorem
2.3 and the statements (i), (iv) we have the exact sequence (∗). Denote

by Ω the generalized multicoil of ΓB containing X. Let 0 → X
j−→ E be

an injective envelope of X in modB and V be the cokernel of j. Then
Ext2

B(X,X) ∼= Ext1
B(X,V ). Again, in order to prove that Ext2

B(X,X) =
0, it is sufficient to show, by [40, Lemma 5.7], that modB has no path
W → · · · → X with W an indecomposable direct summand of V . Since Ω is
standard (see [25, Section 3]) and convex we infer from the proof of [40, The-
orem 5.1] that Ext2

B(X,X) = 0. Moreover, the Auslander–Reiten formula
gives Ext1

B(X,X) ∼= DHomB(τ−X,X), and by definition of (ad 3) we have
DHomB(τ−X,X) = DHomB(τ−X,X) = DHomB(Y2, X) = 0, where Y2 is
a directing B-module. Again, X is the pivot, which yields HomB(X,X) ∼= k.
We have dA = dB, fA = fB, pA = pB, rA = rB, for arbitrary t ≥ 2.
Hence, by the above remarks, by the exact sequence (∗) and by our induc-
tive assumption we have dimkH

1(A) = dimkH
1(B) = dB + fB = dA + fA,

dimkH
2(A) = dimkH

2(B) = pB + rB = pA + rA.

If the admissible operation leading from B to A is of type (ad 3∗), then
the proof is dual.

If the nth admissible operation is of type (ad 4) then let A be the algebra
obtained from B by applying this admissible operation with pivot X, so for
r = 0, A = B[X ⊕ Y ], and for r ≥ 1,

A =



B 0 0 . . . 0 0

Y k 0 . . . 0 0

Y k k . . . 0 0
...

...
...

. . .
...

...

Y k k . . . k 0

X ⊕ Y k k . . . k k


with r + 2 columns and rows. In this case q = 1 or q = 2, so Γ is obtained
from Ω or from the disjoint union of two generalized multicoils Ω,Ω′.
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If r = 0, then by Theorem 2.3 and condition (i) we have the exact
sequence

0→ H0(A)→ H0(B)→ HomB(X ⊕ Y,X ⊕ Y )/k → H1(A)→ H1(B)

→ Ext1
B(X ⊕ Y,X ⊕ Y )→ H2(A)→ H2(B)→ Ext2

B(X ⊕ Y,X ⊕ Y )→ 0.

If r ≥ 1, then observe that the modified algebra A of B can be obtained
by applying r + 1 one-point extensions in the following way: B0 = B[Y0],
B1 = B0[Y1], B2 = B1[Y2], . . . , Br−1 = Br−2[Yr−1] and finally A = Br =
Br−1[X ⊕ Yr], where Y0 = Y , and Yj is a projective Bj−1-module such that
radYj = Yj−1, for r ≥ 1, 1 ≤ j ≤ r. Therefore, from Theorem 2.3 and the
statement (i) we have the following finite sequence of exact sequences:

0→ H0(B0)→ H0(B)→ HomB(Y0, Y0)/k → H1(B0)→ H1(B)

→ Ext1
B(Y0, Y0)→ H2(B0)→ H2(B)→ Ext2

B(Y0, Y0)→ 0,

0→ H0(Bi)→ H0(Bi−1)→ HomBi−1(Yi, Yi)/k → H1(Bi)→ H1(Bi−1)

→ Ext1
Bi−1

(Yi, Yi)→ H2(Bi)→ H2(Bi−1)→ Ext2
Bi−1

(Yi, Yi)→ 0,

for i = 1, . . . , r − 1, and

0→ H0(A)→ H0(Br−1)→ HomBr−1(X ⊕ Yr, X ⊕ Yr)/k → H1(A)

→ H1(Br−1)→ Ext1
Br−1

(X ⊕ Yr, X ⊕ Yr)→ H2(A)→ H2(Br−1)

→ Ext2
Br−1

(X ⊕ Yr, X ⊕ Yr)→ 0.

Since the modules Y, Y1, . . . , Yr are directing and X is a pivot, we get

HomB(X ⊕ Y,X ⊕ Y ) ∼= HomB(X,X)⊕HomB(Y, Y ) ∼= k ⊕ k ∼= k2,

ExtjB(X ⊕ Y,X ⊕ Y ) ∼= ExtjB(X,X)⊕ ExtjB(Y, Y ) ∼= ExtjB(X,X),

for j = 1, 2,

HomB(Y0, Y0) ∼= k, Ext1
B(Y0, Y0) = Ext2

B(Y0, Y0) = 0,

HomBi−1(Yi, Yi) ∼= k, Ext1
Bi−1

(Yi, Yi) = Ext2
Bi−1

(Yi, Yi) = 0,

for i = 1, . . . , r − 1,

HomBr−1(X ⊕ Yr, X ⊕ Yr) ∼= HomBr−1(X,X)⊕HomBr−1(Yr, Yr)

∼= k ⊕ k ∼= k2,

ExtjBr−1
(X ⊕ Yr, X ⊕ Yr) ∼= ExtjBr−1

(X,X)⊕ ExtjBr−1
(Yr, Yr)

∼= ExtjBr−1
(X,X)

for j = 1, 2. Therefore, for r ≥ 1, we obtain

H0(B0) ∼= H0(B), H1(B0) ∼= H1(B), H2(B0) ∼= H2(B),

H0(Bi) ∼= H0(Bi−1), H1(Bi) ∼= H1(Bi−1), H2(Bi) ∼= H2(Bi−1),
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where i = 1, . . . , r − 1. These isomorphisms imply Hj(B) ∼= Hj(Br−1),
j = 0, 1, 2.

Hence, for r = 0 we have the exact sequence

(∗∗) 0→ H0(A)→ H0(B)→ k → H1(A)→ H1(B)
η−→ Ext1

B(X,X)

→ H2(A)→ H2(B)→ Ext2
B(X,X)→ 0,

and for r ≥ 1 we have the exact sequence

0→ H0(A)→ H0(B)→ k → H1(A)→ H1(B)→ Ext1
Br−1

(X,X)

→ H2(A)→ H2(B)→ Ext2
Br−1

(X,X)→ 0.

In order to simplify the notation we will consider the case when r = 0, so
X is an B-module, because the proof for r ≥ 1 is the same (just replace B by
Br−1). Note that in our situation the algebra B is not necessarily connected.
Without loss of generality we may assume that X belongs to the generalized
multicoilΩ of ΓB. We shall show now that Ext2

B(X,X) = 0. Clearly, we may

assume that X is noninjective. Let 0 → X
j−→ E be an injective envelope

of X in modB, and V be the cokernel of j. Then Ext2
B(X,X) ∼= Ext1

B(X,V ).
Again, in order to prove that Ext2

B(X,X) = 0, it is sufficient to show,
by [40, Lemma 5.7], that modB has no path W → · · · → X with W an
indecomposable direct summand of V . In our case the full subcategory
HomB(X,Ω) of the vector space category HomB(X,modB) consisting of
all objects HomB(X,V ) 6= 0 with V from Ω has the form

HomB(X,X0)→ HomB(X,X1)→ HomB(X,X2)→ · · ·
with X = X0.

If all modules Xi, i ≥ 0, are noninjective then E is a direct sum of
modules which do not belong to Ω. Then, since Ω is convex, modB has no
path W → · · · → X with W an indecomposable direct summand of V .

Hence assume that one of the modules Xi is injective. Let s be the
smallest index such that Xs is injective. Then Ω contains a full translation
subquiver

Z1 → Z2 → · · · → Zs

↑ ↑ ↑
X = X0 → X1 → X2 → · · · → Xs → Xs+1 → · · ·

and there is an exact sequence (see [2, (2.2)])

0→ X → Xs → Zs → 0.

Since Xs is indecomposable, we get E ∼= Xs and V ∼= Zs. Moreover, Ω is
standard (see [25, Section 3]) and is the convex generalized multicoil of ΓB,
which implies that there is no path in modB from Zs to X, and so our claim
follows.
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Assume first that B is a connected. Then by (iv) we get H0(B) ∼=
H0(A) ∼= k, and by our inductive assumption we have dimkH

1(B) =
dB + fB, dimkH

2(B) = pB + rB. Moreover, dA = dB + 1. Hence, by the
above remarks and from the exact sequence (∗∗) we get three cases:

(1) fA = fB, rA = rB, pA = pB. Then Ext1
B(X,X) = 0 and we deduce

that dimkH
1(A) = dimkH

1(B)+1 = dB+fB+1 = dA+fA, dimkH
2(A) =

dimkH
2(B) = pB + rB = pA + rA.

(2) fA = fB, rA = rB + 1, pA = pB. Then Ext1
B(X,X) ∼= k, η = 0 and

we infer that dimkH
1(A) = dimkH

1(B) + 1 = dB + fB + 1 = dA + fA,
dimkH

2(A) = dimkH
2(B) + 1 = pB + rB + 1 = pA + rA.

(3) fB 6= 0, fA = fB − 1, rA = rB, pA = pB. Then Ext1
B(X,X) ∼= k,

η 6= 0 and we have the factorization

0→ k → k
0−→ k → H1(A) −→ H1(B)

η−→ k
0−→ H2(A)→ H2(B)→ 0

↘ ↗
km

where m = dimkH
1(B)− 1. Note that fB 6= 0, so dimkH

1(B) ≥ 1. Hence,
dimkH

1(A) = dimkH
1(B) = dB + fB = dA − 1 + fA + 1 = dA + fA,

dimkH
2(A) = dimkH

2(B) = pB + rB = pA + rA.

Assume now thatB is not connected.Then by (iv) we see thatH0(B)∼=k2,
H0(A)∼=k, and by our inductive assumption we have dimkH

1(B) =dB+fB,
dimkH

2(B) = pB + rB. Moreover, dA = dB. Hence, by the above remarks
and from the exact sequence (∗∗) we again get three cases:

(1) fA = fB, rA = rB, pA = pB. Then Ext1
B(X,X) = 0 and we find

that dimkH
1(A) = dimkH

1(B) = dB + fB = dA + fA, dimkH
2(A) =

dimkH
2(B) = pB + rB = pA + rA.

(2) fA = fB, rA = rB + 1, pA = pB. Then Ext1
B(X,X) ∼= k, η = 0

and we deduce that dimkH
1(A) = dimkH

1(B) = dB + fB = dA + fA,
dimkH

2(A) = dimkH
2(B) + 1 = pB + rB + 1 = pA + rA.

(3) fB 6= 0, fA = fB − 1, rA = rB, pA = pB. Then Ext1
B(X,X) ∼= k,

η 6= 0 and we have dimkH
1(A) = dimkH

1(B)−1 = dB +fB−1 = dA+fA,
dimkH

2(A) = dimkH
2(B) = pB + rB = pA + rA.

If the admissible operation is of type (ad 4∗), then the proof is dual.
If the nth admissible operation is of type (ad 5) then Γ is obtained from

the disjoint union of the finite family of generalized multicoils Ω1, . . . , Ωq,
1 ≤ q ≤ s. Since in the definition of (ad 5) we use the finite versions (fad 1)–
(fad 4) of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4) and the
admissible operation (ad 4), we conclude that the required statement follows
from the above considerations. For type (ad 5∗) the proof is dual.

This finishes the proof of Theorem 1.1.
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6. Examples. We present two examples illustrating Theorem 1.1 and
Corollary 1.2.

Example 6.1. Consider the algebra A given by the quiver

1 4
α

~~
3

β
``

λ

vv δ~~
6 2 9

ρ

OO

σ~~

5

γ
``

7
µ

``

8ν
oo

bound by αλ = 0, γλ = 0, ρλ = 0, ρβ = 0, ρδ = 0, σµ = 0. We first
show that A is a generalized multicoil enlargement of a concealed canonical
algebra C. Indeed, let C be the hereditary algebra of Euclidean type D̃4

given by the vertices 1, 2, 3, 4, 5. Consider the dimension-vectors

a1 =
0 0
1

0 0
, a2 =

0 0
1

00 0
0 0

, b1 =
0 0
0

00 0
1 0

, b2 =
0 0
0

00 0
1 1

.

We apply (ad 1∗) to C with pivot the simple regular C-module with dimen-
sion-vector a1, and with parameter t = 2. The modified algebra B is given
by the quiver with the vertices 1, . . . , 8 bound by αλ = 0, γλ = 0. Finally, we
apply the admissible operation (ad 4) to B with pivot the simple B-module
X with dimension-vector a2 and with the finite sectional path Y1 → Y2 in
ΓB consisting of all indecomposable B-modules Y1 and Y2 with dimension-
vectors b1 and b2, respectively, and with parameter r = 0. The modified
algebra is then equal to A.

We now compute the Hochschild cohomology spaces of A. We have
dA = 1, fA = 0, pA = 0, rA = 0. Hence, applying Theorem 1.1, we get
dimkH

0(A) = 1, dimkH
1(A) = dA + fA = 1, dimkH

2(A) = pA + rA = 0,
and Hn(A) = 0 for n ≥ 3. In particular, A is an analytically rigid algebra.

Example 6.2. Consider the algebra D given by the quiver

1 4
α

~~
3

β
``

λ

vv δ~~

10

ϕ
aa

ψ}}
6 2 9

ρ

OO

σ~~

5

γ
``

7
µ

``

8ν
oo
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bound by αλ = 0, γλ = 0, ρλ = 0, ρβ = 0, ρδ = 0, σµ = 0, ϕαβ =
ψγβ, ϕαδ = aψγδ, where a ∈ k \ {0, 1}. Then D is a generalized multicoil
enlargement of the concealed canonical algebra C from Example 6.1. Indeed,
we apply the admissible operation (ad 1) with parameter t = 0 to the algebra
A from Example 6.1 with pivot the regular C-module X corresponding to
the indecomposable representation of the form

k k

[ 1
0 ]��

k2
[ 1 1 ]

__

[ a 1 ]

��
k k

[ 0
1 ]__

lying in a stable tube of rank 1 in ΓC (see [37, XIII.2.6(d)]). The modified
algebra is then equal to D.

We now compute the Hochschild cohomology spaces of D. We have
dD = 1, fD = 0, pD = 0, rD = 1. Hence, applying Theorem 1.1, we get
dimkH

0(D) = 1, dimkH
1(D) = dD + fD = 1, dimkH

2(D) = pD + rD = 1,
and Hn(D) = 0 for n ≥ 3. In particular, D is not an analytically rigid
algebra.

We also mention that there exist connected generalized multicoil algebras
A with arbitrarily large dimkH

1(A) and dimkH
2(A).
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forms, Adv. Math. 226 (2011), 887–951.

[7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton,
NJ, 1956.
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[25] P. Malicki and A. Skowroński, Almost cyclic coherent components of an Auslander–
Reiten quiver, J. Algebra 229 (2000), 695–749.
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[33] I. Reiten and A. Skowroński, Sincere stable tubes, J. Algebra 232 (2000), 64–75.
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E-mail: pmalicki@mat.uni.torun.pl

skowron@mat.uni.torun.pl

Received 31 January 2014;
revised 27 May 2014 (6151)

http://dx.doi.org/10.1006/jabr.1999.8386
http://dx.doi.org/10.1016/S0001-8708(02)00029-4
http://dx.doi.org/10.2969/jmsj/1191418706
http://dx.doi.org/10.2969/jmsj/04630517
http://dx.doi.org/10.1023/A:1000245728528
http://dx.doi.org/10.1006/jabr.1997.7328
http://dx.doi.org/10.4064/cm90-1-7
http://dx.doi.org/10.2478/BF02475668

	1 Introduction and the main results
	2 Hochschild cohomology of algebras
	3 Concealed canonical algebras
	4 Admissible operations
	5 Proof of Theorem 1.1
	6 Examples
	REFERENCES

