A NOTE ON ARC-DISJOINT CYCLES IN TOURNAMENTS

by

JAN FLOREK (Wroclaw)

Abstract. We prove that every vertex v of a tournament T belongs to at least

$$\max\{\min\{\delta^+(T), 2\delta^+(T) - d^+_T(v) + 1\}, \min\{\delta^-(T), 2\delta^-(T) - d^-_T(v) + 1\}\}$$

arc-disjoint cycles, where $\delta^+(T)$ (or $\delta^-(T)$) is the minimum out-degree (resp. minimum in-degree) of T, and $d^+_T(v)$ (or $d^-_T(v)$) is the out-degree (resp. in-degree) of v.

1. Introduction. Notation used in this paper is consistent with Bang-Jensen and Gutin [1]. Cycles are always directed. A tournament is an orientation of a complete graph. The out-degree (resp. in-degree) $d^+_T(v)$ (resp. $d^-_T(v)$) of a vertex v of a tournament T is the number of arcs with tail at v (resp. with head at v). We denote by $\delta^+(T)$ (resp. $\Delta^+(T)$) the minimum out-degree (resp. maximum out-degree) of T. Moreover, we denote by $\delta^-(T)$ (resp. $\Delta^-(T)$) the minimum in-degree (resp. maximum in-degree) of T.

Landau [2] proved that in every tournament T, if a vertex v has the minimum out-degree, then it belongs to $\delta^+(T)$ different 3-cycles. In this article, we prove that in every tournament T, every vertex v belongs to at least $C_T(v)$ arc-disjoint cycles, where $C_T(v)$ is equal to

$$\max\{\min\{\delta^+(T), 2\delta^+(T) - d^+_T(v) + 1\}, \min\{\delta^-(T), 2\delta^-(T) - d^-_T(v) + 1\}\}.$$

This implies that v belongs to at least $C_T(v)$ different 3-cycles. Moreover, if either $\Delta^+(T) \leq 2\delta^+(T)$, or $\Delta^-(T) \leq 2\delta^-(T)$, then every vertex of $T \neq K_1$ belongs to a 3-cycle.

Note that for every tournament T which has a vertex v such that the tournament $T - v$ is regular, the lower bound $C_T(v)$ is the best possible. Indeed, $d^+_T(v) + d^-_T(v) = 2\delta^+(T - v) + 1$. Thus, if $d^+_T(v) \leq \delta^+(T - v)$, then

$$\min\{d^+_T(v), d^-_T(v)\} = d^+_T(v) = \delta^+(T) \leq 2\delta^+(T) - d^+_T(v) + 1.$$

If $d^+_T(v) > \delta^+(T - v)$, then

$$\min\{d^+_T(v), d^-_T(v)\} = d^-_T(v) = 2\delta^+(T) - d^+_T(v) + 1 \leq \delta^+(T).$$

Hence,

$$\min\{d^+_T(v), d^-_T(v)\} = \min\{\delta^+(T), 2\delta^+(T) - d^+_T(v) + 1\}.$$
Similarly, from $d_T^+(v) + d_T^-(v) = 2\delta^-(T - v) + 1$, it follows that
$$\min\{d_T^+(v), d_T^-(v)\} = \min\{\delta^-(T), 2\delta^-(T) - d_T^-(v) + 1\}.$$

2. Arc-disjoint cycles through a vertex in a tournament. Let
$T = (V, A)$ be a tournament with vertex set V and arc set A. For an arc
$xy \in A$ the first vertex x is its tail and the second vertex y is its head. For
a vertex v in T we use the following notation:
$$N^+(v) = \{u \in V \setminus \{v\} : vu \in A\}, \quad N^-(v) = \{u \in V \setminus \{v\} : uv \in A\}.$$
For a pair X, Y of vertex sets in T we define
$$(X, Y) = \{xy \in A : x \in X, y \in Y\}.$$

Theorem 2.1. Every vertex v of a tournament T belongs to at least
$$\max\{\min\{\delta^+(T), 2\delta^+(T) - d_T^+(v) + 1\}, \min\{\delta^-(T), 2\delta^-(T) - d_T^-(v) + 1\}\}$$
arcs disjoint cycles.

Proof. For a vertex v of a tournament T, let $\Gamma = \{\gamma^1, \ldots, \gamma^m\}$ be a
maximum family of arc-disjoint cycles through v. Let $\gamma^i = v v^i_1 \ldots v^i_{n(i)} v$ for
i = 1, \ldots, m. By Menger’s theorem (see [1]) there exists a set Ω of m arcs
covering all cycles containing the vertex v. Suppose that k is the number of
arcs in Ω with head v. If $k > 0$, we can assume that the arc $v^i_{n(i)} v$ is in Ω
for $1 \leq i \leq k$. Let us denote $K = \{v^i_1 : 1 \leq i \leq k\}$, $L = \{v^i_1 : k < i \leq m\}$,
$M = N^+(v) \setminus K \cup L$, $X = \{v^i_{n(i)} : 1 \leq i \leq k\}$ (if $k = 0$ we set $K = X = \emptyset$),
and $Y = N^-(v) \setminus X$.

First we prove that
$$|(K \cup X \cup M, Y)| \leq |(L, K \cup X \cup M)|.$$
Assume that an arc wv belongs to $(K \cup X \cup M, Y)$. Notice that $vy \notin \Omega$. If
w $\in K \cup M$, then the arc wv of the cycle $wvyv$ belongs to $\Omega \setminus \{v^i_{n(i)} v : i \leq k\}$.
If $w \in X$, then $w = v^i_{n(i)}$ for some $i \leq k$. Hence, the arc $wv = v^i_{n(i)}y$ of the
cycle $v v^i_1 \ldots v^i_{n(i)} v y$ belongs to $\Omega \setminus \{v^i_{n(i)} v : i \leq k\}$. Thus, wy is an arc
of the cycle γ^i, for some $i > k$. Suppose that v^i_1 is the first vertex of the
cycle γ^i which does not belong to L. Notice that wy is the only arc of γ^i
which belongs to Ω, because Ω and Γ have the same number of elements.
Hence, the vertex v^i_1 does not belong to Y. Otherwise, the cycle $v v^i_1 \ldots v^i_{l-1} v^i_l v$
would not be covered by Ω. Thus the edge $v^i_{l-1} v^i_l$ of the cycle γ^i belongs to
$(L, K \cup X \cup M)$. Accordingly, to every arc in $(K \cup X \cup M, Y)$ we can assign
an arc in $(L, K \cup X \cup M)$ such that the two arcs belong to the same cycle
γ^i, for some $i > k$. The above assignment is injective, because Ω and Γ have
the same number of elements, and Γ is a family of arc-disjoint cycles. Hence,
(1) holds.
By (1) we obtain
\[
|K \cup X \cup M|(|V| - 1) = |(V \setminus L, K \cup X \cup M)| + |(L, K \cup X \cup M)| \\
+ |(K \cup X \cup M, V)| \\
\geq |(V \setminus L, K \cup X \cup M)| + |(K \cup X \cup M, Y)| \\
+ |(K \cup X \cup M, V)| \\
= |(K \cup X \cup M, K \cup X \cup M)| \\
+ |(\{v\}, K \cup X \cup M)| + |(Y, K \cup X \cup M)| \\
+ |(K \cup X \cup M, Y)| + |(K \cup X \cup M, V)| \\
\geq |K \cup X \cup M| \cdot \frac{|K \cup X \cup M| - 1}{2} + |K| + |M| \\
+ |K \cup X \cup M||Y| + (|K| + |X| + M))\delta^+(T).
\]
Since \(|V| - 1 = d_T^+(v) + |X| + |Y|\) and \(|K| = |X|\), we have
\[
(2|K| + |M|)d_T^+(v) \geq (2|K| + |M|)\frac{|M|}{2} + \frac{|M|}{2} + (2|K| + |M|)\delta^+(T).
\]
Thus, either \(|M| = 0\), or \(d_T^+(v) > |M|/2 + \delta^+(T)\). Hence, either \(|M| = 0\), or
\[
d_T^+(v) - |M| > 2\delta^+(T) - d_T^+(v).
\]
Accordingly, the vertex \(v\) belongs to at least
\[
\min\{\delta^+(T), 2\delta^+(T) - d_T^+(v) + 1\}
\]
arc-disjoint cycles. By considering the tournament obtained from \(T\) by reversing the directions of the arcs of \(A\), we conclude in a similar fashion that the vertex \(v\) belongs to at least \(\min\{\delta^-(T), 2\delta^-(T) - d_T^-(v) + 1\}\) arc-disjoint cycles.

Remark 1. There exists a regular tournament \(R\) with a vertex which does not belong to \(\delta^+(R)\) arc-disjoint 3-cycles. For example, let \(R\) be the

![Diagram](image.png)

Fig. 1. A regular tournament \(R\). \((\{h, i, j\}, \{a, b, c\}) \cup (\{k\}, \{a, b, c, d, e\}) \cup \{ca, gd, jh\}\) is the set of all backward arcs with respect to the ordering \(a, b, c, d, e, f, g, h, i, j, k\) of vertices in \(R\).
tournament in Fig. 1. Let kv_1v_2 be a 3-cycle through the vertex k. Notice that, if $v_1 \in \{a, b, c\}$, then $v_2 \in \{f, g\}$. Hence, the vertex k does not belong to $\delta^+(R)$ arc-disjoint 3-cycles.

REFERENCES

Jan Florek
Institute of Mathematics and Cybernetics
University of Economics
Komandorska 118/120
53-345 Wroclaw, Poland
E-mail: jan.florek@ue.wroc.pl

Received 7 December 2013;
revised 8 June 2014