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ESTIMATES FOR THE ARCTANGENT FUNCTION
RELATED TO SHAFER’S INEQUALITY

BY
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H. M. SRIVASTAVA (Victoria, BC)

Abstract. The aim of this article is to give new refinements and sharpenings of
Shafer’s inequality involving the arctangent function. These are obtained by means of a
change of variables, which makes the computations much easier than the classical ap-
proach.

1. Introduction and motivation. Shafer [9] presented the following
inequality involving the arctangent function for x > 0:

(1) arctanx >
3x

1 + 2
√

1 + x2
,

which has attracted the attention of many authors in recent years. Many
refinements and extensions of this inequality, together with its analogues for
arcsine and arccosine functions, have been provided (see, for example, [1],
[2], [4]–[15], and the references therein). Moreover, it is proven in [3, p. 288]
that, for every x > 0,

(2) arctanx <
2x

1 +
√

1 + x2
.

Grinstein et al. [10] proved (1) by using the fact that the function F (x)
defined by

F (x) := arctanx− 3x

1 + 2
√

1 + x2

is increasing for x > 0.
Qi [7]–[8] obtained some interesting results by using the behavior of the

function fa(x) which is defined on (0,∞) by

fa(x) =
(a+

√
1 + x2) arctanx

x
,

where a is a real parameter.
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The results presented in this article are derived by means of the following
change of variables:

(3) x =
2t

1− t2
(t ∈ (0, 1)).

Clearly, as t increases from 0 to 1, x will increase from 0 to ∞. The impor-
tance of this change of variables is that

√
1 + x2 becomes a rational function

of t: √
1 + x2 =

1 + t2

1− t2
,

from which further computations will become fairly easy. For example, after
making the change of variables (3), the inequality (1) becomes

G(t) > 0 (t ∈ (0, 1)),

where

G(t) := arctan

(
2t

1− t2

)
− 6t

3 + t2

and

G′(t) =
8t4

(t2 + 1)(t2 + 3)2
> 0.

On the other hand, the inequality (2) reads

H(t) < 0 (t ∈ (0, 1)),

where

H(t) := arctan

(
2t

1− t2

)
− 2t

and

H ′(t) = − 2t2

t2 + 1
< 0.

Many of the proofs of the results given in [4]–[15] can be simplified consid-
erably by using the transformation (3). Our refinements and sharpenings of
the inequalities (1) and (2) are presented in the following sections.

2. Refinements of Shafer’s inequality. One improvement of Shafer’s
inequality (1) stems essentially from the fact that (1) gives good results near
zero, since

(4) lim
x→0

(
arctanx− 3x

1 + 2
√

1 + x2

)
= 0,

which we write as

(5) arctanx ≈ 3x

1 + 2
√

1 + x2
as x→ 0,
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Related to (5), we present the following two-sided inequalities, which give
good results near the origin.

Theorem 1. For every x > 0,

(6)
3x

1 + 2
√

1 + x2
+ a(x) < arctanx <

3x

1 + 2
√

1 + x2
+ b(x),

where

a(x) =
1

180
x5 − 13

1512
x7 and b(x) =

1

180
x5.

Another way to extend Shafer’s inequality (1) starts from approxima-
tions near the origin of the form

arctanx ≈ 3x+ ω(x)

1 + 2
√

1 + x2
,

where ω(x)→ 0 as x→ 0. Our result is stated below.

Theorem 2. For every x > 0,

(7)
3x+ c(x)

1 + 2
√

1 + x2
< arctanx <

3x+ d(x)

1 + 2
√

1 + x2
,

where

c(x) =
1

60
x5 − 17

840
x7 and d(x) =

1

60
x5.

Evidently, (6) and (7) provide strong improvements of (1).
Now, observe that

(8) lim
x→∞

(
arctanx− 3x

1 + 2
√

1 + x2

)
=
π − 3

2
,

that is,

arctanx ≈ π − 3

2
+

3x

1 + 2
√

1 + x2
+ λ(x),

where λ(x)→ 0 as x→∞. We present the following more precise result.

Theorem 3. For every x > 0,

π − 3

2
+

3x

1 + 2
√

1 + x2
+ u(x) < arctanx(9)

<
π − 3

2
+

3x

1 + 2
√

1 + x2
+ v(x),

where

u(x) = − 1

4x
and v(x) = − 1

4x
+

3

8x2
.

Remark 1. Evidently, since u(x) → 0 and v(x) → 0 as x → ∞, the
assertion (9) considerably improves Shafer’s inequality (1) for large values
of x.

To prove Theorems 1–3 above, we need the following three lemmas.
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Lemma 1. Let

w(t) := 1431− 904t+ 2077t2 − 1504t3 + 753t4 − 216t5 + 27t6.

Then w(t) > 0 for every t ∈ [0, 1].

Proof. It suffices to prove that w1(t) > w2(t), where

w1(t) = 1431 + 2077t2 + 753t4 + 27t6,

w2(t) = 904t+ 1504t3 + 216t5.

As w1(0) = 1431 and w2(3/4) = 174 561
128 = 1363.757 . . . , for every t ∈ [0, 3/4]

we have

w1(t) ≥ w1(0) > w2(3/4) ≥ w2(t).

As w1(
3
4) = 11 642 355

4096 = 2842.371 . . . and w2(1) = 2624, for every t ∈ [3/4, 1]
we have

w1(t) ≥ w1(3/4) > w2(1) ≥ w2(t).

Let us call the points 0 < 3/4 < 1 in the proof of Lemma 1 breaking
points. We are in a position to state the next two lemmas.

Lemma 2. Let

z(t) := 3753− 2743t2 + 3864t4 − 2240t6 + 735t8 − 105t10.

Then z(t) > 0 for every t ∈ [0, 1].

Lemma 3. Let s(t) := 102− 133t2 + 155t4 − 75t6 + 15t8. Then s(t) > 0
for every t ∈ [0, 1].

After separating the terms of the same sign in z(t) and s(t), the proofs
of Lemmas 2 and 3 are similar to the proof of Lemma 1, using the breaking
points 0 < 4/5 < 1 and 0 < 3/4 < 9/10 < 1, respectively.

Proof of Theorem 1. In view of the transformation (3), we have to prove
that f(t) > 0 and g(t) < 0, for t ∈ (0, 1), where

f(t) := arctan

(
2t

1− t2

)
− 6t

3 + t2
− 1

180

(
2t

1− t2

)5

+
13

1512

(
2t

1− t2

)7

,

g(t) := arctan

(
2t

1− t2

)
− 6t

3 + t2
− 1

180

(
2t

1− t2

)5

.

Indeed, we have

f ′(t) =
8t8w(t2)

27(t2 + 1)(t2 + 3)2(t2 − 1)8
> 0

with w(t) given in Lemma 1, and
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g′(t) = −8t6(3− t2)(3t4 − 8t2 + 13)(3t4 − t2 + 2)

9(t2 + 1)(t2 + 3)2(t2 − 1)6
< 0,

which shows that f(t) is strictly increasing and g(t) is strictly decreasing on
(0, 1). As f(0) = g(0) = 0, the assertion follows readily.

Proof of Theorem 2. By virtue of (3), we have to prove that h(t) > 0
and k(t) < 0 on (0, 1), where

h(t) := arctan

(
2t

1− t2

)
−

3
(

2t
1−t2

)
+ 1

60

(
2t

1−t2
)5 − 17

840

(
2t

1−t2
)7

1 + 2
(
1+t2

1−t2
) ,

k(t) := arctan

(
2t

1− t2

)
−

3
(

2t
1−t2

)
+ 1

60

(
2t

1−t2
)5

1 + 2
(
1+t2

1−t2
) .

We have

h′(t) =
8t8z(t)

105(t2 + 1)(t2 + 3)2(t2 − 1)7
> 0,

where z(t) is given by Lemma 2, and

k′(t) = − 8t6s(t)

15(t2 + 1)(t2 + 3)2(t2 − 1)5
< 0,

where s(t) is given by Lemma 3. As h(0) = k(0) = 0, the conclusion fol-
lows.

Proof of Theorem 3. By using (3), we have to prove that p(t) > 0 and
q(t) < 0 when t ∈ (0, 1), where

p(t) := arctan

(
2t

1− t2

)
− π − 3

2
− 6t

3 + t2
+

1

4
(

2t
1−t2

) ,
q(t) := arctan

(
2t

1− t2

)
− π − 3

2
− 6t

3 + t2
+

1

4
(

2t
1−t2

) − 3

8
(

2t
1−t2

)2 .
We find that

p′(t) = −(1− t2)(−t3 + 7t2 + 3t+ 3)(t3 + 7t2 − 3t+ 3)

8t2(t2 + 1)(t2 + 3)2
< 0,

q′(t) =
(t− 1)2(t+ 1)(t4 + 4t3 + 18t2 + 12t+ 9)(−3t3 + 7t2 − 3t+ 3)

16t3(t2 + 1)(t2 + 3)2
> 0,

which imply the result as limt→1− p(t) = limt→1− q(t) = 0.

3. The dual of Shafer’s inequality. In this section, we discuss the
dual inequality (2) of Shafer’s inequality (1). We begin by proposing ap-
proximations near the origin of the form given by
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arctanx ≈ 2x

1 +
√

1 + x2
+ ε(x)

with ε(x) → 0 as x → 0. For large values of x, approximations of the form
given by

arctanx ≈
(
π

2
− 2

)
+

2x

1 +
√

1 + x2
+ υ(x)

with υ(x)→ 0 as x→∞ should be considered. More precisely, we state the
following inequalities which give good results near the origin and at infinity,
respectively.

Theorem 4. For every x > 0,

(10) − 1

12
x3 < arctanx− 2x

1 +
√

1 + x2
< − 1

12
x3 +

3

40
x5.

Theorem 5. For every x > 0,

(11)

(
π

2
− 2

)
+

1

x
− 1

x2
< arctanx− 2x

1 +
√

1 + x2
<

(
π

2
− 2

)
+

1

x
.

Remark 2. It is easily seen that (10) and (11) provide significant im-
provements of (2).

Proof of Theorem 4. Using (3), we have to prove that ρ(t) > 0 and
θ(t) < 0 on (0, 1), where

ρ(t) := arctan

(
2t

1− t2

)
− 2t+

1

12

(
2t

1− t2

)3

,

θ(t) := arctan

(
2t

1− t2

)
− 2t+

1

12

(
2t

1− t2

)3

− 3

40

(
2t

1− t2

)5

.

Indeed, we have

ρ′(t) =
2t4(3− t2)(2− t2 + t4)

(1 + t2)(1− t2)4
> 0,

θ′(t) = −2t6(29− 14t2 + 14t4 − 6t6 + t8)

(1 + t2)(1− t2)6
< 0.

Since ρ(0) = θ(0) = 0, the result follows.

Proof of Theorem 5. Making use of (3), we have to prove that φ(t) > 0
and η(t) < 0 on (0, 1), where

φ(t) :=

[
arctan

(
2t

1− t2

)
− 2t

]
−
(
π

2
− 2

)
− 1− t2

2t
+

(
1− t2

2t

)2

,
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η(t) :=

[
arctan

(
2t

1− t2

)
− 2t

]
−
(
π

2
− 2

)
− 1− t2

2t
.

It is easily observed that

φ′(t) = −(1 + t)(1− t)2(1 + 2t2 − t3)
2t3(1 + t2)

< 0,

η′(t) =
(1− t2)(1 + 3t2)

2t2(1 + t2)
> 0.

Since limt→1− φ(t) = limt→1− η(t) = 0, the proof is complete.
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and
Academy of Romanian Scientists
Splaiul Independenţei 54
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