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RELATIVELY WEAK∗ CLOSED IDEALS OF A(G), SETS OF
SYNTHESIS AND SETS OF UNIQUENESS

BY

A. ÜLGER (Istanbul)

Abstract. Let G be a locally compact amenable group, and A(G) and B(G) the
Fourier and Fourier–Stieltjes algebras of G. For a closed subset E of G, let J(E) and k(E)
be the smallest and largest closed ideals of A(G) with hull E, respectively. We study sets
E for which the ideals J(E) or/and k(E) are σ(A(G), C∗(G))-closed in A(G). Moreover,
we present, in terms of the uniform topology of C0(G) and the weak∗ topology of B(G),
a series of characterizations of sets obeying synthesis. Finally, closely related to the above
issues, we present a series of results about closed sets of uniqueness (i.e. closed sets E for

which J(E)
w∗

= B(G)).

Introduction. Let G be a locally compact amenable group and, as de-
fined by Eymard in his seminal paper [Ey], A(G) and B(G) be the Fourier
algebra and the Fourier–Stieltjes algebra of G, respectively. These are com-
mutative semisimple function algebras on G, and A(G) is a closed ideal of
B(G). The algebra B(G) is the dual space of the group C∗-algebra C∗(G)

of G. For a subset X of A(G), we denote by X
σ

and X
w∗

, respectively, the
σ(A(G), C∗(G))-closure of X in A(G) and the weak∗ closure of X in B(G),

so that X
σ

= A(G) ∩ Xw∗
. For any Banach space X, we denote by X1

the closed unit ball of X and, for any subspace Y of X, we let Y ⊥ be the
annihilator of Y in X∗.

As usual, to any closed subset E of G, the following two ideals are asso-
ciated:

k(E) = {a ∈ A(G) : a = 0 on E},
j(E) = {a ∈ A(G) : the support of a is compact and disjoint from E}.

The ideals J(E) = j(E) and k(E) are, respectively, the smallest and the
largest closed ideals in A(G) with hull E. When these two closed ideals
coincide, the set E is said to be a set of synthesis. Following the terminology
of [Gr-McG] and [Ke-Lo], we call a closed subset E of G a set of uniqueness if
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J(E)
w∗

= B(G). Finally, for any f ∈ A(G)∗, we denote by σ(f) the spectrum
of the functional f (all the notations and terms used in this section will be
defined or referenced in the next section).

We can now summarize the main results of the paper. Below, E is a
closed subset of G, and <c(G) is the closed coset ring of G.

A. To any closed subset E of G we associate the following two closed
sets:

EJ =
⋃

ϕ∈J(E)⊥∩C∗(G)

σ(ϕ) and Ek =
⋃

ϕ∈k(E)⊥∩C∗(G)

σ(ϕ).

If EJ = E (resp. Ek = E) we say that E is a J-set (resp. k-set).

Concerning σ(A(G), C∗(G))-closedness of the ideals J(E) and k(E) in
A(G), we present the following results:

1. EJ is the hull of the ideal J(E)
σ

and Ek is the hull of the ideal k(E)
σ
.

2. E is a J-set iff J(E)
σ ⊆ k(E). And, E is a k-set iff k(E)

σ
= k(E).

3. Any closed regular set E (i.e. E = E◦) is a k-set, so a J-set.
4. The union of two J-sets (resp. k-sets) is a J-set (resp. k-set).
5. If E is a J-set (resp. k-set) then, for any closed subset F of G, the set
E \ F is a J-set (resp. k-set).

B. We recall that A(G) is contained in C0(G), the space of complex
valued continuous functions on G that vanish at infinity. The space C0(G)
is, as usual, equipped with the uniform convergence norm.

Concerning sets of synthesis, we present the following results:

1. E is a set of synthesis iff the uniform closures of J(E)1 and k(E)1 in
C0(G) are the same.

2. E is a set of synthesis iff the weak∗ closures of J(E)1 and k(E)1 in
B(G) are the same.

3. E is a set of synthesis iff, given any a ∈ k(E)1, there is a sequence
(bn)n≥0 in J(E)1 that converges pointwise on G to a.

4. E is a set of synthesis iff there is some set F ∈ <c(G) such that E∩F
and E ∪ F are sets of synthesis.

5. Let E be a J-set. Then E is a set of synthesis iff J(E)
σ

= J(E) and
J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G).

6. Suppose that E is a J-set and its boundary is a set of uniqueness. Then
E is a set of synthesis iff the ideal J(E) is σ(A(G), C∗(G))-closed in
A(G).

7. Suppose that G is metrizable with metric d, and δ(E) denotes the
diameter of the setE. ThenE is a set of synthesis iff there is a sequence
(Fn)n≥0 of sets of synthesis contained in E such that δ(E\ Fn) → 0
as n→∞.
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C. Concerning sets of uniqueness, we present the following results:

1. For any subset U of G the following two assertions are equivalent:

(i) Every closed subset of U is a set of uniqueness.
(ii) For any J-set E, E \ U = E.

2. Every closed subset E of G decomposes in a unique way as the disjoint
union of two sets: a J-set and one like U in (i) above.

3. The union of countably many sets of uniqueness does not contain any
nonempty J-set.

The exposition also contains several corollaries of these results. The pa-
per is essentially self-contained and the proofs are functional-analytic. After
a preliminary section, the results are presented in three sections in the above
order. The main ingredient in Section 3 concerning sets of synthesis is the
result that on the unit sphere of B(G), weak∗ convergence is equivalent to
multiplier convergence [Gr-Le] (Theorem 3.0 below). As far as we know, the
results listed above are new.

1. Notation and preliminary results. In this section we gather the
notation that we use and the preliminary results that we need in order to
logically explain the results that we aim to present.

For any Banach space X we denote by X∗ the dual space of X. We
always consider X as naturally embedded into its second dual. For x ∈ X
and f ∈ X∗, we denote by 〈x, f〉 (and also by 〈f, x〉) the natural (X,X∗)-
duality. If A is a Banach algebra then, for a ∈ A and f ∈ A∗, we write a.f
for the element of A∗ defined by

〈b, a.f〉 = 〈ba, f〉.

Fourier and Fourier–Stieltjes algebras. Let nowG be a locally com-
pact group equipped with its left Haar measure. Eymard [Ey] has associated
to G two important commutative Banach function algebras: the Fourier al-
gebra A(G) and the Fourier–Stieltjes algebra B(G).

The Fourier–Stieltjes algebra B(G) is the linear span of the set of contin-
uous positive definite complex valued functions onG. This is also the space of
coefficient functions of the unitary representations of the group G. More pre-
cisely, given u ∈ B(G), there exists a unitary representation π of G and two
vectors ξ and η in the representation space H(π) of π such that, for x ∈ G,

u(x) = 〈π(x)ξ, η〉.
Equipped with the norm ‖u‖ = infξ,η ‖ξ‖ · ‖η‖, where the infimum is taken
over all ξ and η satisfying the preceding equality, and with pointwise mul-
tiplication, B(G) is a commutative Banach algebra. The Banach algebra
B(G) is also the dual space of the group C∗-algebra C∗(G).



274 A. ÜLGER

The Fourier algebra A(G) is the closed ideal of B(G) generated by the
elements of B(G) with compact supports. The algebra A(G) can also be
defined as the set of coordinate functions of the left regular representation
of G in L2(G). The dual space of A(G) is the group von Neumann algebra
VN(G) of G.

We shall denote the elements of A(G) by letters such as a, b, and those of
VN(G) by f , g. The elements of C∗(G) will be denoted by ϕ, φ, and those
of B(G) by u, v. Eymard’s paper [Ey] and Pier’s book [Pi] are our main
references for these algebras.

When G is abelian, by way of the Fourier transform,

A(G) = L1(Ĝ), B(G) = M(Ĝ) and C∗(G) = C0(Ĝ).

Since their introduction in the 1960’s by Eymard, these algebras have been
constant objects of study and they are among the most important Banach
algebras of harmonic analysis. Both A(G) and B(G) are semisimple. More-
over A(G) is regular and Tauberian. The Gelfand spectrum of A(G) can
be identified with the group G. Each element of G acts on A(G) as point
evaluation. For each x ∈ G, the corresponding multiplicative functional (i.e.
the point evaluation at x) will be denoted as ρx. The algebra A(G) has a
BAI iff the group G is amenable [Lep]. As is well-known, abelian groups and
compact groups are amenable. On the negative side, noncompact semisimple
Lie groups, as well as any group containing a closed free subgroup generated
by more than one generator, are not amenable. The reader can find ample
information on this notion in [Gre] and [Pat].

Closed coset ring <c(G). We denote by <(G) the Boolean ring gen-
erated by all cosets of subgroups of the algebraic group G. We denote by
<c(G) the closed coset ring of G. This is the subring of <(G) consisting
of the closed elements of <(G). For abelian groups, the structure of the
elements of <c(G) has been described, independently, by Gilbert [Gi] and
Schreiber [Schr]. Forrest [Fo] verified that the same description is also valid
in the nonabelian case.

Spectrum of a functional f . For f ∈ VN(G), the spectrum σ(f)
of f can be defined in several ways, each of them having its own usage.
The set σ(f) is a closed subset of the Gelfand spectrum of A(G), that
we identify with G, defined in any of the following equivalent ways. For
more on this notion, see [Ey, Proposition 4.4], [Ka, Chapter 5] and [Re-St,
Chapter 7].

(i) For x ∈ G, x ∈ σ(f) iff, for any a ∈ A(G), a.f = 0 implies a(x) = 0.
(ii) For x ∈ G, x ∈ σ(f) iff there is a net (ai)i∈I in A(G) such that

ai.f → ρx in the weak∗ topology of VN(G) = A(G)∗. Here ρx is the
point evaluation at x.
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(iii) σ(f) is the support of f as defined in [Ey, Proposition 4.4].
(iv) Let Jf = {a ∈ A(G) : a.f = 0}. This is a closed ideal of A(G). The

spectrum of f is the hull of the ideal Jf .

The properties of the spectrum that we need are:

(I) σ(f) = ∅ iff f = 0.
(II) For a ∈ A(G), σ(a.f) ⊆ σ(f) ∩ supp(a).

(III) For any closed subset E of G, σ(f) ⊆ E iff f ∈ J(E)⊥.
(IV) If E is a closed subset of G and if (fi)i∈I is a weak∗ convergent net

in VN(G) converging to some f , then the inclusions σ(fi) ⊆ E for
all i ∈ I imply that σ(f) ⊆ E too.

Sets of uniqueness (= U-sets). As in [Gr-McG] and [Ke-Lo], we call a

closed subset E of G a set of uniqueness if J(E)
w∗

= B(G). Since the group
G is supposed to be amenable, we have C∗(G) ⊆ VN(G), and the equality

J(E)
w∗

= B(G) is equivalent to J(E)⊥ ∩ C∗(G) = {0}. If k(E)
w∗

= B(G)
then E is said to be a U1-set. In [Bo-Py, p. 275], what is called here a U1-set
is called a weak uniqueness set.

The notion of set of uniqueness goes back to Cantor’s work in the 1870’s
on the uniqueness of trigonometric representation of functions on the interval
[0, 2π]. For the history of this subject and its development we refer the reader
to [Gr-McG] and [Ke-Lo]. In these books the definitions and results related
to sets of uniqueness are given for the unit circle group. For this group, our
definitions coincide with the corresponding ones in [Gr-McG] and [Ke-Lo].
In general a set of uniqueness need not be closed, but since in this paper
our approach is functional-analytic, we work with closed sets of uniqueness
only.

Product of two closed ideals. Let I and J be two closed ideals of
A(G). The closed ideal generated by all products ab (a ∈ I and b ∈ J) is

denoted by IJ . Thus IJ = {
∑n

i=1 aibi : ai ∈ I, bi ∈ J, n ∈ N}. If J = I, we
write I2 instead of II. We note that J(E)2 = J(E) for any closed subset
E of G. Indeed, the inclusion J(E)2 ⊆ J(E) is trivial, and the other one
follows from the facts that the hull of the closed ideal J(E)2 is E and that
J(E) is the smallest closed ideal with hull E.

2. σ(A(G), C∗(G))-closedness of the ideals J(E) and k(E). In this
section, G is a fixed locally compact amenable group and E a closed subset
of it. Our aims in this section are to determine the hulls of the ideals J(E)

σ

and k(E)
σ
, to study the problem of when the ideals J(E) and/or k(E) are

σ(A(G), C∗(G))-closed in A(G), and to study the stability properties of sets
that we have called J-sets and k-sets.
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For any closed ideal I of A(G), we denote by I
σ

its σ(A(G), C∗(G))-
closure in A(G). Since for any u ∈ B(G), the multiplication operator Lu :
B(G)→ B(G), Lu(v) = uv, is weak∗-weak∗ continuous, the space I

σ
is also

a closed ideal of A(G). As one can check easily, the annihilator of the ideal
I
σ

in A(G)∗ = VN(G) is the weak∗ closure of I⊥ ∩ C∗(G):

(I
σ
)⊥ = I⊥ ∩ C∗(G)

w∗

.

If E is the hull of I, we denote by EI the following closed subset of G:

EI =
⋃

ϕ∈I⊥∩C∗(G)

σ(ϕ).

If I = J(E) or I = k(E), instead of EI we write EJ and Ek, respectively.
We recall that if E = EJ (resp. E = Ek) we say that E is a J-set (resp.
k-set).

The next result explains the meaning of the set EI .

Theorem 2.1. Let I be a closed ideal of A(G) with hull E. Then EI is
the hull of the ideal I

σ
.

Proof. It is enough to prove that

J(EI) ⊆ I
σ ⊆ k(EI).

The left inclusion is equivalent to

(1) I⊥ ∩ C∗(G) ⊆ J(EI)
⊥.

Since, for a functional f in VN(G),

f ∈ J(EI)
⊥ iff σ(f) ⊆ EI ,

inclusion (1) follows from the definition of EI .

To prove the inclusion I
σ ⊆ k(EI), since k(EI)

⊥ = span(EI)
w∗

, it is

enough to show that EI ⊆ I⊥ ∩ C∗(G)
w∗

. Since

EI =
⋃

ϕ∈I⊥∩C∗(G)

σ(ϕ),

it is enough to prove that σ(ϕ) ⊆ I⊥ ∩ C∗(G)
w∗

for each ϕ ∈ I⊥ ∩ C∗(G).
So let x ∈ σ(ϕ). Then, by the definition (ii) of the spectrum in Section 1,
ρx = w∗-limi ai.ϕ for some net (ai)i∈I in A(G). Since ai.ϕ ∈ I⊥ ∩C∗(G) for

all i ∈ I, it follows that σ(ϕ) ⊆ I⊥ ∩ C∗(G)
w∗

. Hence EI ⊆ I⊥ ∩ C∗(G)
w∗

,
and I

σ ⊆ k(EI).

As immediate consequences of this theorem and the definitions of the
sets EJ and Ek, we record the following results, valid for any closed subset
E of G.
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(2) Since EJ is the hull of the ideal J(E)
σ
, we have

J(EJ) ⊆ J(E)
σ ⊆ k(EJ).

Similarly, since Ek is the hull of k(E)
σ
, we have

J(Ek) ⊆ k(E)
σ ⊆ k(Ek).

The set EJ is empty iff E is a set of uniqueness. The set Ek is empty iff E
is a U1-set.

(3) Since Ek ⊆ EJ ⊆ E, if E = Ek then E = EJ too. That is, every
k-set is a J-set.

(4) Since EJ ⊆ E, so J(E) ⊆ J(EJ), we see by (2) that, J(EJ)
σ

=

J(E)
σ
.

(5) Since Ek ⊆ EJ ⊆ E, we have

J(EJ) ⊆ J(E)
σ ⊆ k(E)

σ ⊆ k(Ek).

In the next result we present a characterization of J-sets and k-sets.

Theorem 2.2.

(a) E is a J-set iff J(E)
σ ⊆ k(E).

(b) E is a k-set iff k(E)
σ

= k(E).

Proof. (a) If E is a J-set then, from (2), the inclusion J(E)
σ ⊆ k(E) is

clear. Conversely, suppose that this inclusion holds. We have to prove that

(6) E =
⋃

ϕ∈J(E)⊥∩C∗(G)

σ(ϕ).

By hypothesis,

(7) k(E)⊥ ⊆ J(E)⊥ ∩ C∗(G)
w∗

.

Since k(E)⊥ = span(E)
w∗

, we have

E ⊆ J(E)⊥ ∩ C∗(G)
w∗

.

In other words, for each x ∈ E, we have ρx = w∗-limi ϕi for some net (ϕi)i∈I
in J(E)⊥ ∩ C∗(G). Since σ(ϕi) ⊆ EJ for all i ∈ I, we see that x ∈ EJ , so
E ⊆ EJ . Hence E = EJ so that E is a J-set.

(b) If E is a k-set then, from (2), the inclusion k(E)
σ ⊆ k(E), hence the

equality k(E)
σ

= k(E), is clear. Conversely, suppose that k(E)
σ

= k(E) so
that

(8) k(E)⊥ = k(E)⊥ ∩ C∗(G)
w∗

.

Then E ⊆ k(E)⊥ ∩ C∗(G)
w∗

. From this inclusion and the definition of Ek,
as in the proof of (a), we see that E = Ek.
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Here we note that the preceding theorem, compared with [Ke-Lo, p. 227,
Proposition 8], shows that what we have called here “J-set” coincides with
“set of pure multiplicity” introduced, by a completely different definition,
in the setting of the Fourier algebra of the unit circle group T by Piatetski-
Shapiro [Pi-Sh].

(9) Since J(EJ) ⊆ J(E)
σ ⊆ k(EJ), from the above theorem it is clear

that, for any closed subset E of G, the set EJ is a J-set. Actually, by its
very definition, EJ is the largest J-set contained in E. In this paper, J-sets
play a more important role than k-sets.

(10) As Theorem 2.2(b) shows, for any k-set E, the equality k(E) =

k(E)
σ

holds whereas in general J(EJ) 6= J(EJ)
σ
. However, as we shall see

below (Theorem 3.6), if EJ is a set of synthesis then J(EJ) = J(EJ)
σ
. These

results show that the properties of the sets EJ and Ek are quite different.

We can now exhibit some classes of concrete J-sets and k-sets. The next
result and the examples following it present a very large class of k-sets, hence
J-sets.

Proposition 2.3. Any regular closed subset E of G (i.e. E is the closure
of its interior) is a k-set.

Proof. Let E be a regular closed subset of G. We want to show that
k(E)

σ
= k(E). Let (ai)i∈I be a net in k(E) that σ(A(G), C∗(G))-converges

to some a in A(G). Let x ∈ E◦. Since the set G \ E◦ is closed and x is not
in this set, by regularity of A(G), there is some b ∈ A(G) such that b(x) = 1
and b = 0 on G \E◦. Hence, the algebra A(G) being semisimple, bai = 0 for
all i ∈ I. Since multiplication in B(G) is weak∗ continuous when one of the
factors is kept fixed, passing to the weak∗ limit we get ba = 0. As b(x) = 1,
we conclude that a(x) = 0. This being true for each x ∈ E◦, a = 0 on E◦.
Since a is continuous on G, a = 0 on the closure of the set E◦. Since E is
supposed to be regular, a = 0 on E. Hence a ∈ k(E), and k(E)

σ
= k(E).

We note that, since the closure of any open set is a regular set, the above
proposition implies that E◦ ⊆ Ek for any closed subset E of G. Actually, for
any closed set F , the inclusion F ⊆ E implies Fk ⊆ Ek. As an illustration
of the above proposition we present the following examples.

Examples 2.4. (a) Since, for any open subset O of G, the set E = O
is regular, the support of any u ∈ B(G) is a regular set. Hence, if E =
supp(u), the ideal k(E) is σ(A(G), C∗(G))-closed in A(G). This example
shows that σ(A(G), C∗(G))-closed ideals in A(G) abundantly exist to justify
studying them. Associate to u ∈ B(G) the ideal I(u) = {a ∈ A(G) : au = 0}.
It is easy to see directly, without using the preceding proposition, that I(u)
is σ(A(G), C∗(G))-closed in A(G) and I(u) = k(E), where E = supp(u).
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(b) Let ϕ ∈ C∗(G) and E = σ(ϕ). Since ϕ ∈ J(E)⊥ ∩ C∗(G), we
have EJ = E so E is a J-set. Since E is the hull of the closed ideal
Jϕ = {a ∈ A(G) : a.ϕ = 0}, we have J(E) ⊆ Jϕ ⊆ k(E). The ideal Jϕ
is obviously σ(A(G), C∗(G))-closed in A(G) so that J(E)

σ ⊆ Jϕ ⊆ k(E), in
conformity with Theorem 2.2.

(c) If ϕ ∈ C∗(G) and F = σ(ϕ) is a set of synthesis then F is a k-set.
The class of k-sets is much richer than the class of regular sets. In this
connection, see Proposition 2.6 and Theorem 2.7 below.

(d) For E ∈ <c(G) we can explicitly determine the sets Ek and EJ .
Actually EJ = Ek = E◦. Indeed, since E is a set of synthesis [FKLS], EJ =
Ek. Again by [FKLS], the closed ideal k(E) has a bounded approximate
identity (ei)i∈I . Taking a subnet of it, we can assume that (ei) converges
weak∗ to some idempotent element u of B(G). Since au = a for a ∈ k(E),
one can easily see that u is the characteristic function of G \ E◦. It follows
that E◦ is also closed and the sets E◦ and ∂E = E \ E◦ are also in the
ring <c(G). As ∂E is in <c(G), the ideal k(∂E) has a bounded approximate
identity so that k(E) = k(E◦)k(∂E). As the ideal k(∂E) has a bounded
approximate identity and the set ∂E is nowhere dense,

k(∂E)
w∗

= B(G).

Since E◦ is closed, hence regular, we have k(E◦)
σ

= k(E◦). From this and

the equality k(E) = k(E◦)k(∂E), using the fact that k(∂E)
w∗

= B(G),

we obtain k(E)
σ

= k(E◦). Since E is a set of synthesis, by Theorem 2.2,

k(E)
σ

= k(Ek) too, and we conclude that Ek = E◦.

(e) The preceding example shows that the σ(A(G), C∗(G))-closed ideals
with bounded approximate identities of A(G) are exactly the ideals of the
form k(E) = θA(G), where E is a closed and open element of the ring <(G),
and θ is the idempotent element of B(G) whose support is G\E. (Compare
with the main result of [Ül].)

In the next example we give examples of “thin J-sets” that are not k-sets.

Example 2.5. Extending a famous theorem of Körner [Kö], originally
proved for the unit circle group, Saeki [Sa] showed that every locally com-
pact metrizable abelian infinite group Γ contains a closed set E such that
k(E)⊥ ∩ C0(Γ ) = {0} but J(E)⊥ ∩ C0(Γ ) 6= {0} (i.e. E is a U1-set but not
a set of uniqueness). Since, by a theorem of Zelmanov [Ze], every infinite
compact group contains an infinite compact abelian group, every locally
compact group containing an infinite compact metrizable group contains a
closed set E which is not a set of uniqueness but is a U1-set. Let E ⊆ G be
such a set. For any ϕ ∈ J(E)⊥ ∩ C∗(G), the set F = σ(ϕ) is a J-set that is
not a k-set.
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Next we present a stability property of J-sets and k-sets.

Proposition 2.6. The union of two J-sets (resp. k-sets) is also a J-set
(resp. k-set).

Proof. Let E and F be two J-sets in G. To show that the set E ∪F is a
J-set, by Theorem 2.2, it will be enough to show that J(E ∪ F )

σ ⊆ k(E∪F ).

To see this, let a ∈ J(E ∪ F )
σ
. Then there is a net (ai)i∈I in J(E ∪F ) that

σ(A(G), C∗(G))-converges to a. As

J(E ∪ F ) ⊆ J(E) ∩ J(F ),

we see that a ∈ J(E)
σ

and a ∈ J(F )
σ
. As E and F are J-sets, J(E)

σ ⊆ k(E)

and J(F )
σ ⊆ k(E) so that a ∈ k(E)∩ k(F ). It follows that a ∈ k(E ∪F ) so

that J(E ∪ F )
σ ⊆ k(E ∪ F ), and E ∪ F is a J-set.

Suppose now that E and F are k-sets, so k(E)
σ
= k(E) and k(F )

σ
= k(F ).

As k(E ∪ F ) = k(E) ∩ k(F ), the inclusions

k(E ∪ F )
σ ⊆ k(E)

σ ∩ k(F )
σ ⊆ k(E) ∩ k(F ) ⊆ k(E ∪ F )

are clear. The inclusion k(E ∪ F ) ⊆ k(E ∪ F )
σ

being always true, we see

that k(E ∪ F ) = k(E ∪ F )
σ

so that E ∪ F is a k-set.

The next result was a kind of surprise for us. It plays an important
role in the study of sets of uniqueness. Its proof uses the following simple
observation: Let (X, τ) be a Hausdorff topological space, H an arbitrary

subset of X and F a closed subset of X. Then H \ F = H \ F .

Theorem 2.7.

(a) Let E be a J-set. Then, for any closed subset F of G, the set E \ F
is also a J-set.

(b) Let E be a k-set. Then, for any closed subset F of G, the set E \ F
is also a k-set.

Proof. (a) Since E is a J-set, by the very definition of J-sets, we have

E =
⋃

ϕ∈J(E)⊥∩C∗(G)

σ(ϕ).

We want to prove that

E \ F =
⋃

ϕ∈J(E\F )⊥∩C∗(G)

σ(ϕ).

It is enough to show

(11) E \ F ⊆
⋃

ϕ∈J(E\F )⊥∩C∗(G)

σ(ϕ).
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To see this, let

H =
⋃

ϕ∈J(E)⊥∩C∗(G)

σ(ϕ),

so that H \F is a union of sets of the form σ(ϕ)\F for ϕ ∈ J(E)⊥∩C∗(G).
To prove (11), by the observation preceding the statement of the theorem,
it is enough to show that, for each ϕ ∈ J(E)⊥ ∩ C∗(G), the set σ(ϕ) \ F
is contained in the right hand side of (11). So let ϕ ∈ J(E)⊥ ∩ C∗(G) and
x ∈ σ(ϕ) \ F . Then, since F is closed and x /∈ F , there is a relatively
compact neighborhood V of x such that V ∩ F = ∅. Choose a ∈ A(G) such
that a(x) = 1 and supp(a) ⊆ V . Then the functional a.ϕ is in C∗(G) and

σ(a.ϕ) ⊆ E ∩ supp(a) ⊆ E \ F.
Hence a.ϕ ∈ J(E \ F )⊥∩C∗(G). As x ∈ σ(a.ϕ), we see that x indeed belongs
to the right hand side of (11).

(b) Let E be a k-set, so

(12) E =
⋃

ϕ∈k(E)⊥∩C∗(G)

σ(ϕ).

Let F be any closed subset of G. To see that E \ F is also a k-set, it is
enough to show that

(13) E \ F ⊆
⋃

ϕ∈k(E\F )⊥∩C∗(G)

σ(ϕ).

As before, it is enough to prove that, for each ϕ ∈ k(E)⊥ ∩ C∗(G), the set
σ(ϕ) \F is contained in the right hand side of (13). Let ϕ ∈ k(E)⊥ ∩C∗(G)
and x ∈ σ(ϕ) \ F . As above, choose an a ∈ A(G) such that a(x) = 1
and supp(a) ∩ F = ∅. We claim that a.ϕ ∈ k(E \ F )⊥. If this were not
the case, there would be a b ∈ k(E \ F ) such that 〈b, a.ϕ〉 = 〈ba, ϕ〉 6= 0.
Since ab = 0 on E and ϕ ∈ k(E)⊥, this is not possible. Hence a.ϕ ∈
k(E \ F )⊥ ∩ C∗(G). Since x ∈ σ(a.ϕ), we conclude that x belongs to the
right hand side of (13).

The next result will be needed in the subsequent sections. It suggests
that every closed set F included in E \ EJ is a set of uniqueness, a result
that will be justified in Section 4.

Proposition 2.8. For any closed subset E of G, we have

J(EJ)⊥ ∩ C∗(G) = J(E)⊥ ∩ C∗(G).

Proof. The inclusion ⊆ being clear, we prove the reverse inclusion. By
the definition of EJ , for ϕ ∈ J(E)⊥ ∩ C∗(G), we have σ(ϕ) ⊆ EJ . Hence
ϕ ∈ J(EJ)⊥ ∩ C∗(G) so that J(EJ)⊥ ∩ C∗(G) = J(E)⊥ ∩ C∗(G).
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If E is a set of synthesis then J(E)⊥∩C∗(G) = k(E)⊥∩C∗(G). However,
this equality may hold even if E is not a set of synthesis (see Remark 3.7
and Example 3.14 below). Actually, as the next proposition shows, this

equality holds iff J(E)
σ

= k(E)
σ
. Compare this result with Theorem 3.1(c)

below.

Proposition 2.9. For a closed subset E of G, we have

J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G) iff J(E)
σ

= k(E)
σ
.

Proof. Since, for any closed ideal I of A(G),

(I
σ
)⊥ = I⊥ ∩ C∗(G)

w∗

,

the direct implication is clear. Conversely, suppose that J(E)
σ

= k(E)
σ
.

Then

J(E)⊥ ∩ C∗(G)
w∗

= k(E)⊥ ∩ C∗(G)
w∗

.

Since J(E)⊥ ∩ C∗(G) ⊆ J(E)⊥ ∩ C∗(G)
w∗

and k(E)⊥ ∩ C∗(G)
w∗

⊆ k(E)⊥,
we see that

J(E)⊥ ∩ C∗(G) ⊆ k(E)⊥.

Hence J(E)⊥ ∩C∗(G) ⊆ k(E)⊥ ∩C∗(G); the reverse inclusion is obvious.

As seen above (Examples 2.4), closed sets E for which the ideal k(E)
is σ(A(G), C∗(G))-closed in A(G) abundantly exist. If such an E is also a

set of synthesis then J(E)
σ

= J(E). Except the k-sets that are also sets

of synthesis we do not know of any closed set E for which J(E)
σ

= J(E).
Actually, as we shall see below, for a J-set E to be a set of synthesis, the
equality J(E)

σ
= J(E) is a necessary condition.

3. Characterizations of sets of synthesis. Since Malliavin’s cele-
brated theorem [Ma], it has been known that every nondiscrete locally com-
pact abelian group G contains a closed set E which is not a set of synthesis
for the algebra A(G). This is also true for nonabelian locally compact groups
[Ka-La]. Two major unsolved problems in this area are (a) the union prob-
lem, which asks whether the union of two sets of synthesis is also a set of
synthesis, and (b) the so-called Ditkin set vs. set of synthesis problem, which
asks whether these two classes of sets are the same. We recall that a closed
subset E of G is said to be a Ditkin set if a ∈ aj(E) for each a ∈ k(E). This
notion is stronger than that of set of synthesis.

In this section we do not attack either of these two unsolved problems.
Our aim is much more modest: we want to better understand sets of synthe-
sis. We think that to achieve this, one should find as many characterizations
of them as one can, in terms of better known notions. That is what we
are going to do in this section, in the hope that some day one of these
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characterizations might be helpful in the solution of the above mentioned
problems.

In the first part of this section we do not assume that the group G is
amenable. Instead, we assume that

(14) a ∈ aA(G) for any a ∈ A(G).

We do not know of any locally compact group for which (14) does not hold.
Our main ingredient in this section is the following result, which is the fruit
of the work of several mathematicians. For a proof and short history, we
refer the reader to [Gr-Le]. This theorem is valid for any locally compact
group G.

Theorem 3.0. Let u ∈ B(G) and suppose that (ui)i∈I is a net in B(G)
such that limi ‖ui‖ = ‖u‖ and ui → u in the weak∗ topology of B(G). Then
‖uia− ua‖ → 0 for any a ∈ A(G).

For any subset X of A(G), we denote by X
∞

the uniform closure of X

in C0(G), and by X
w∗

the weak∗ closure of X in B(G). We also recall that,
for any Banach space X, we denote by X1 the closed unit ball of X. One of
the main results of this section is the following theorem.

Theorem 3.1. For any closed subset E of G the following assertions
are equivalent:

(a) E is a set of synthesis.

(b) J(E)1
∞

= k(E)1
∞
.

(c) J(E)1
w∗

= k(E)1
w∗

.

Proof. The implication (a)⇒(b) is clear. Let us prove (b)⇒(a). To this
end, let a ∈ k(E) with ‖a‖ = 1. By (b), there is a sequence (bn)n≥0 in
the unit ball of J(E) that converges uniformly on G to a. As this sequence
is bounded in the norm of B(G), hence in the supremum norm, by the
Lebesgue Dominated Convergence Theorem we have, for f ∈ L1(G),

〈bn, f〉 =
�

G

bn(t)f(t) dt→
�

G

a(t)f(t) dt = 〈a, f〉.

Since L1(G) is dense in C∗(G) and the sequence (bn)n≥0 is bounded in the
norm of B(G), we conclude that bn → a in the weak∗ topology of B(G).
Hence, as the norm of B(G) is lower semicontinuous with respect to that
topology, we have

1 = ‖a‖ ≤ lim inf ‖bn‖ ≤ lim sup ‖bn‖ ≤ 1.

Thus, limn→∞ ‖bn‖ = ‖a‖ = 1. So, by Theorem 3.0, for each b ∈ A(G),
‖bnb − ab‖ → 0 as n → ∞. Since bnb ∈ J(E), we conclude that ba ∈ J(E)
for all b ∈ A(G). Now, by (14), a ∈ aA(G). So, for some sequence (en)n≥0
in A(G), ‖aen − a‖ → 0 as n → ∞. By what we have seen, aen ∈ J(E) for
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all n ∈ N, so a ∈ J(E). Now let a ∈ k(E) be an arbitrary nonzero element.
Then, as a/‖a‖ ∈ J(E), we conclude that k(E) = J(E), hence E is a set of
synthesis.

The implication (a)⇒(c) is clear. That the converse is also true follows
from the proof of (b)⇒(a).

Remarks 3.2. (a) Let S = {a ∈ k(E) : ‖a‖ = 1} be the unit sphere
of k(E). The above proof shows in fact that E is a set of synthesis iff

S ⊆ J(E)1
w∗

.

(b) One can show that J(E)
∞

= k(E)
∞

for any closed subset E of G.

However, this equality does not imply J(E)1
∞

= k(E)1
∞

.

Since the set k(E)1 is convex, its norm and weak closures in C0(G) are
the same. Since a sequence (fn)n≥0 in C0(G) converges weakly to some
f ∈ C0(G) iff (fn)n≥0 is uniformly bounded on G and converges pointwise
to f on G, from the preceding theorem we deduce the following result.

Corollary 3.3. A closed subset E of G is a set of synthesis iff, given
any a ∈ k(E)1 there is a sequence (bn)n≥0 in the unit ball of J(E) that
converges pointwise to a on G.

From this point on until the end of the paper we assume that the group
G is amenable.

As recalled in Section 1, <c(G) is the closed coset ring of the group G.
Any F ∈ <c(G) is a set of synthesis and the ideal k(F ) has a bounded
approximate identity [FKLS]. The next theorem, which involves elements
of <c(G), gives another necessary and sufficient condition for a given closed
set to be a set of synthesis.

Theorem 3.4. Let E be a closed subset of G. Then E is a set of synthesis
iff there is some F ∈ <c(G) such that E∩F and E∪F are sets of synthesis.

Proof. If E is a set of synthesis, we can take for F either the empty set
or the group G itself: both are in the ring <c(G), and in either case, the sets
E ∩ F and E ∪ F are sets of synthesis.

Conversely, suppose that, for some F ∈ <c(G), the sets E∩F and E∪F
are sets of synthesis. Since

k(E ∪ F ) = k(E) ∩ k(F ),

we have

k(E ∪ F )⊥ = k(E)⊥ + k(F )⊥
w∗

.

Since the ideal k(E) has a bounded approximate identity, by a theorem of
Rudin [Ru], the sum k(E) + k(F ) is closed in A(G). Hence, k(E)⊥+ k(F )⊥

is weak∗ closed in VN(G) (see e.g. [Kat, p. 221, Theorem 4.8]). Thus

k(E ∪ F )⊥ = k(E)⊥ + k(F )⊥.
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Since, by hypothesis, E ∪ F is a set of synthesis, k(E ∪ F ) = J(E ∪ F ) so
that J(E)⊥ ⊆ k(E ∪ F )⊥. Let now f ∈ J(E)⊥. Then f = g + h for some
g ∈ k(E)⊥ and h ∈ k(F )⊥. Since k(E)⊥ ⊆ J(E)⊥, h = f − g is in J(E)⊥.
So σ(h) ⊆ E. On the other hand, since h ∈ k(F )⊥, also σ(h) ⊆ F . Hence

σ(h) ⊆ E ∩ F.
Let now a ∈ k(E). Since a ∈ k(E ∩ F ) and E ∩ F is a set of synthesis, we
have 〈a, h〉 = 0. Hence 〈a, f〉 = 〈a, g〉. As g ∈ k(E)⊥, also 〈a, g〉 = 0, so that
〈a, f〉 = 0. This being true for each f ∈ J(E)⊥ and a ∈ k(E), we conclude
that E is a set of synthesis.

We note that in the preceding proof we did not use the hypothesis that
E ∪ F is a set of synthesis; we only used the inclusion J(E)⊥ ⊆ k(E ∪ F )⊥,
which holds if there is a set of synthesis in between E and E ∪F . Moreover,
if E is a set of synthesis and F ∈ <c(G) then one can prove that E ∩ F is a
set of synthesis iff k(E ∩F ) = k(E) + k(F ). We do not present the proof of
this result since we do not need it.

The following result is actually much stronger than the preceding theo-
rem but the hypotheses here are not as elegant.

Proposition 3.5. Let E be a closed subset of G. Then E is a set of
synthesis iff there are a set F in <c(G) and two sets of synthesis D1, D2

such that E ∩ F ⊆ D1 ⊆ E ⊆ D2 ⊆ E ∪ F .
Proof. If E is a set of synthesis we can take F = G and D1 = D2 = E.

To prove the converse, suppose that there are sets F and D1, D2 as in
the statement. As in the preceding proof, we have

k(E ∪ F )⊥ = k(E)⊥ + k(F )⊥.

Since E ⊆ D2 ⊆ E ∪ F and D2 is a set of synthesis, we obtain

J(E)⊥ ⊆ J(D2)
⊥ ⊆ k(D2)

⊥ ⊆ k(E ∪ F )⊥.

Let f ∈ J(E)⊥. Then, since J(E)⊥ ⊆ k(E)⊥ + k(F )⊥, f is of the form
f = g + h for some g ∈ k(E)⊥ and h ∈ k(F )⊥. As in the previous proof,
since k(E)⊥ ⊆ J(E)⊥, h = f − g is in J(E)⊥. Hence σ(h) ⊆ E. On the
other hand, since h ∈ k(F )⊥, also σ(h) ⊆ F . Thus σ(h) ⊆ E ∩ F . Since
E∩F ⊆ D1 ⊆ E and D1 is a set of synthesis, for a ∈ k(E) ⊆ k(D1) we have
〈a, h〉 = 0. So 〈a, f〉 = 〈a, g〉. Since g ∈ k(E)⊥ and a ∈ k(E), also 〈g, a〉 = 0.
Hence 〈f, a〉 = 0 for all a ∈ k(E), so that E is a set of synthesis.

Now we return to J-sets and study the question when a J-set is a set
of synthesis. The main message of the next theorem is that a J-set E, in
particular a regular closed set E, cannot be a set of synthesis unless the ideal
J(E) is σ(A(G), C∗(G))-closed in A(G). This is one of the rare necessary
conditions that we know for a set to be a set of synthesis.
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Theorem 3.6. Let E be a J-subset of G. Then E is a set of synthesis
iff J(E)

σ
= J(E) and J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G).

Proof. Suppose first that E is a set of synthesis. Then obviously J(E)⊥∩
C∗(G) = k(E)⊥ ∩ C∗(G). Since E is a J-set, by Theorem 2.2,

J(E) ⊆ J(E)
σ ⊆ k(E).

Since E is supposed to be set of synthesis, J(E) = k(E) so that J(E) =

J(E)
σ
.

Conversely, suppose J(E)
σ
= J(E) and J(E)⊥∩C∗(G) = k(E)⊥∩C∗(G).

Then, since by Proposition 2.9, the equality J(E)⊥∩C∗(G)=k(E)⊥∩C∗(G)

is equivalent to J(E)
σ

= k(E)
σ
, we have

J(E)⊥ = (J(E)
σ
)⊥ = (k(E)

σ
)⊥ = k(E)⊥ ∩ C∗(G)

w∗

⊆ k(E)⊥.

Hence J(E) = k(E), and E is a set of synthesis.

Remark 3.7. The equality J(E)⊥ ∩C∗(G) = k(E)⊥ ∩C∗(G) may hold
even if E is not a set of synthesis. Indeed, let G be the Euclidean group
R3 and E = {x ∈ R3 : ‖x‖ = 1} its unit sphere. A well-known result due
to L. Schwartz [Schw] says that E is not a set of synthesis for the Fourier
algebra A(R3). On the other hand, as proved by Varopoulos [Va, Theorem 2],

J(E)⊥ ∩ C0(R3) = k(E)⊥ ∩ C0(R3). Equivalently, J(E)
σ

= k(E)
σ
. See also

Example 3.14 below for a way of producing sets of nonsynthesis satisfying
J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G).

We do not know of any necessary and sufficient condition on the set E
for the equality J(E)⊥ ∩C∗(G) = k(E)⊥ ∩C∗(G) to hold. Next we present
a sufficient condition in terms of sets of uniqueness.

To every closed subset E of G we associate the set

(15) E0 =
⋃

a∈k(E), f∈J(E)⊥

σ(a.f).

This is a subset of the boundary of E, so if the boundary is a set of uniqueness
then so is E0.

Proposition 3.8. If E0 is a set of uniqueness then J(E)⊥ ∩ C∗(G)
= k(E)⊥ ∩ C∗(G).

Proof. Suppose that E0 is a set of uniqueness. Let a ∈ k(E) and ϕ ∈
J(E)⊥∩C∗(G). Then a.ϕ ∈ J(E0)

⊥∩C∗(G). Since E0 is a set of uniqueness,
we have J(E0)

⊥ ∩ C∗(G) = {0} so that a.ϕ = 0. Hence, since A(G) has a
bounded approximate identity, 〈a, ϕ〉 = 0. This being true for each a ∈ k(E),
we conclude that ϕ ∈ k(E)⊥ ∩ C∗(G) so that J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩
C∗(G).
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Corollary 3.9. Suppose that E is a J-set and its boundary is a set of
uniqueness. Then E is a set of synthesis iff J(E) is σ(A(G), C∗(G))-closed
in A(G).

The next result shows that if J(E)⊥∩C∗(G) 6= k(E)⊥∩C∗(G), then not
onlyE, but alsoEJ cannot be a set of synthesis. Actually, as one can see easily,
no closed set F in between EJ and E can be a set of synthesis in this case.

Proposition 3.10. If EJ is a set of synthesis then J(E)⊥ ∩ C∗(G) =
k(E)⊥ ∩ C∗(G) so that EJ = Ek.

Proof. Since EJ is a set of synthesis, by Theorem 3.6 we have

J(EJ)
σ

= J(EJ) and J(EJ)⊥ ∩ C∗(G) = k(EJ)⊥ ∩ C∗(G).

On the other hand, by (2),

J(EJ) ⊆ J(E)
σ ⊆ k(E)

σ
.

Since EJ ⊆ E, and so k(E) ⊆ k(EJ), we have k(E)
σ ⊆ k(EJ)

σ
. As EJ is a

set of synthesis, Theorem 3.6 yields k(EJ)
σ

= J(EJ)
σ

= J(EJ). Hence

J(EJ) ⊆ J(E)
σ ⊆ k(E)

σ ⊆ J(EJ)

so that J(E)
σ

= k(E)
σ
. By Proposition 2.9, this implies that J(E)⊥ ∩

C∗(G) = k(E)⊥ ∩ C∗(G).

Combining Theorem 3.6 and Proposition 3.10 we get

Corollary 3.11. For any closed subset E of G, the set EJ is a set of
synthesis iff J(EJ) = k(E)

σ
.

For the next characterization of sets of synthesis, we need the following
lemma. Here E is a closed subset of G and the set E0 is as defined in (15).

Lemma 3.12. For any set of synthesis F ⊆ E, we have E0 ⊆ E \ F .
Proof. If F as above is empty then there is nothing to prove. So we

suppose that F is not empty. Let a ∈ k(E) and f ∈ J(E)⊥. As F is a set of
synthesis, k(F ) = j(F ). So, since a ∈ k(F ), there is a sequence (bn)n≥1 in

j(F ) such that ‖a − bn‖ → 0. As bn ∈ j(F ), we have supp(b̂n) ∩ F = ∅ for
each n ≥ 1. So

σ(bn.f) ⊆ σ(f) ∩ supp(b̂n) ⊆ E \ F.
Hence, since bn.f → a.f in the weak∗ topology of VN(G), we obtain

σ(a.f) ⊆ E \ F .
It follows that ⋃

a∈k(E), f∈J(E)⊥

σ(a.f) ⊆ E \ F .

Hence E0 ⊆ E \ F .
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In the next theorem we assume that G is metrizable with metric d. For
any subset E of G, we denote by δ(E) = sup{d(x, y) : x, y ∈ E} (finite or
not) the diameter of the set E. We note that δ(E) = δ(E). The theorem
presents yet another characterization of sets of synthesis.

Theorem 3.13. A closed subset E of G is a set a synthesis iff for each
ε > 0 there is a set of synthesis F ⊆ E such that δ(E \ F ) < ε.

Proof. If E is a set of synthesis then for Fε we take E itself.
To prove the converse, suppose that for each ε > 0 there is a set of

synthesis Fε ⊆ E such that δ(E \ Fε) < ε. Then, by the preceding lemma,
E0 ⊆ E \ Fε. Hence, since δ(E \ Fε) = δ(E \Fε) < ε, we see that δ(E0) < ε.
As E0 is independent of ε, we conclude that δ(E0) = 0. So either E0 is empty
or it contains only one point. But E0 cannot be a singleton since each set
σ(a.f) is perfect; so E0 must be empty. In this case, by definition of E0, for
any f ∈ J(E)⊥ and a ∈ k(E), a.f = 0 so that 〈a, f〉 = 0, and E is a set of
synthesis.

As another application of Lemma 3.12 we give the following example,
which shows that sets E disobeying synthesis but satisfying the equality
J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G) abundantly exist.

Example 3.14. Let D be a set of uniqueness disobeying synthesis (see
Example 2.5 above) and F a set of synthesis. Then E = D ∪ F need not be
a set of synthesis. Actually if D and F are disjoint, then E is not a set of
synthesis (see [Ka, Theorem 5.2.5]). Since E \ F = D \ F ⊆ D, by Lemma
3.12, E0 ⊆ D so that E0 is a set of uniqueness. Hence, by Proposition 3.8,
J(E)⊥ ∩ C∗(G) = k(E)⊥ ∩ C∗(G).

Let 1G be the unit element of the algebra B(G). If E0 is a set of unique-

ness then, since J(E0)
w∗

= B(G), we have 1G ∈ J(E0)
w∗

. The preceding

example shows that the condition “1G ∈ J(E0)
w∗

” is not sufficient to con-
clude that E is a set of synthesis. The next result shows that if we replace
J(E0) by its closed unit ball then we get a necessary and sufficient condition
for E to be a set of synthesis.

Proposition 3.15. A closed subset E of G is a set of synthesis iff 1G ∈
J(E0)1

w∗
.

Proof. If E is a set of synthesis then E0 = ∅ so that J(E0) = A(G). Since
G is supposed to be amenable, the algebra A(G) has a bounded approxi-
mate identity bounded in norm by 1. This bounded approximate identity

converges in the weak∗ topology of B(G) to 1G so that 1G ∈ J(E0)1
w∗

.

Conversely, suppose that 1G ∈ J(E0)1
w∗

. Since, for each a ∈ k(E) and
f ∈ J(E)⊥, σ(a.f) ⊆ E0, for each b ∈ J(E0) we have 〈b, a.f〉 = 〈ba, f〉 = 0.
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This shows that J(E0)k(E) ⊆ J(E). Now let (ei)i∈I be a net in the unit ball
of J(E0) that weak∗ converges to 1G. Then, for a ∈ k(E)1, the net (aei)i∈I

is in the unit ball of J(E) and weak∗ converges to a, so that k(E)1
w∗

=

J(E)1
w∗

. Hence, by Theorem 3.1 above, E is a set of synthesis.

Perhaps it is worth noting here that the condition “1G ∈ J(E)1
w∗

” is
much stronger than Proposition 3.15; it implies that every closed subset of E
is a set of synthesis. To see this it is enough to apply the proposition to each
closed subset of E. This demonstrates, if need be, how much the conditions

“1G ∈ J(E)
w∗

” and “1G ∈ J(E)1
w∗

” are far away from each other. In
contrast with the proposition, we do not know whether the condition “1G ∈
k(E0)1

w∗
” is sufficient to conclude that E is a set of synthesis.

The results of this section suggest that to study sets of synthesis, the class
of J-sets and the class of sets of uniqueness should be considered separately.
For instance, instead of the union problem, the problem of whether the union
of two J-sets which are also sets of synthesis is a set of synthesis seems to be
more tractable. Sets of uniqueness are very elusive and play a role similar to
that of negligible sets in measure theory (see the results in the next section).

4. Sets of uniqueness. In this section we present a series of results
about closed sets of uniqueness. Since our approach is entirely functional-
analytic, we are working with closed sets of uniqueness exclusively. Sets of
uniqueness and notions closely related to them are usually studied for the
Fourier algebra A(T ) of the unit circle group T . In the books [Gr-McG] and
[Ke-Lo] the reader can find ample information about this and closely related
notions.

For noncommutative locally compact groups the only works about sets
of uniqueness and U1-sets that we have been able to find in the literature are
the papers [Bo, Bo-Py] of Bożejko and Pytlik. In [Bo-Py] it is proved that,
for certain discrete groups H, not even finite subsets of H are U1-sets, so
that the situation in noncommutative groups is quite different from that of
commutative ones. On the other hand, the main result of [Bo] implies that,
when H is a nondiscrete locally compact amenable group, every compact
scattered subset E of H is a set of uniqueness. For amenable groups H, such
sets are sets of synthesis for the algebra A(H).

As above, in this section too, G is a fixed amenable locally compact
group. Our aim here is to present some characterizations of sets of uniqueness
in terms of J-sets and to study their properties.

Since we assume that G is amenable, sets of uniqueness abundantly exist.
As mentioned above, compact scattered subsets of G are sets of uniqueness.
If G is connected, every set E ∈ <c(G) is also a set of uniqueness. Indeed, in
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this case, the ideal J(E) = k(E) has a bounded approximate identity, which
necessarily converges in the weak∗ topology of B(G) to the unit element of
B(G). More generally, whether G is connected or not, each F ∈ <c(G) with
empty interior is a set of uniqueness. Further, every closed subset of a set
of uniqueness is a set of uniqueness, as also are their finite unions.

Comparing the definition of sets of uniqueness with the definition of
J-sets we see that the following lemma holds.

Lemma 4.1. A closed subset F of G is a set of uniqueness iff F does
not contain any nonempty J-set.

To study sets of uniqueness, our main tool is the following lemma, which
is of independent interest.

Lemma 4.2.

(a) Let E be a closed subset of G. Then, for any two closed subsets D
and F of E with D ∪ F = E, we have J(E) = J(D)J(F ).

(b) Let E be a closed subset of G that is a set of synthesis. Then, for
any two closed subsets D and F of E with D ∪ F = E, we have
k(E) = k(D)k(F ).

Proof. (a) Let D and F be two closed subsets of E with D∪F = E. Then
since J(E) ⊆ J(D), J(E) ⊆ J(F ) and J(E)2 = J(E), the inclusion J(E) ⊆
J(D)J(F ) is clear. For the reverse inclusion, let a ∈ J(D) and b ∈ J(F ).
Since J(D) = j(D) and J(F ) = j(F ), there exist a sequence (an)n≥0 in j(D)
and a sequence (bn)n≥0 in j(F ) such that ‖a − an‖ → 0 and ‖b − bn‖ → 0
as n → ∞. Since supp(anbn) is compact and disjoint from D ∪ F = E, we
have anbn ∈ j(E) so that ab ∈ J(E). Since J(D)J(F ) is the smallest closed
ideal of A(G) containing all the products ab (a ∈ J(D) and b ∈ J(F )), we
conclude that J(D)J(F ) ⊆ J(E) and hence J(E) = J(D)J(F ).

(b) Since E is a set of synthesis, by (a), k(E) = J(E) = J(D)J(F ). Hence
k(E) ⊆ k(D)k(F ). On the other hand, since k(D)k(F ) ⊆ k(D) ∩ k(F ) =
k(E), we conclude that k(E) = k(D)k(F ).

Another result that we shall use repeatedly is the following lemma.

Lemma 4.3. For any two closed subsets D and F of G we have:

(a) J(D)J(F )
σ ⊇ J(D)

σ
J(F )

σ
.

(b) If J(F )
w∗

= B(G) then J(D)J(F )
σ

= J(D)
σ
.

Proof. (a) Let a ∈ J(D)
σ

and b ∈ J(F )
σ
. Then there exist two nets

(ai)i∈I and (bj)j∈J in J(D) and J(F ), respectively, that σ(A(G), C∗(G))-
converge to a and b, respectively. All the products aibj are in J(D)J(F ).
Hence the iterated limit

ab = σ(A(G), C∗(G))-lim
i

lim
j
aibj = σ(A(G), C∗(G))-lim

i
aib
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is in the ideal J(D)J(F )
σ
. It follows that the latter ideal contains the closed

ideal generated by the products ab with a ∈ J(D)
σ

and b ∈ J(F )
σ
. Hence

J(D)J(F )
σ ⊇ J(D)

σ
J(F )

σ
.

(b) If J(F )
w∗

= B(G) then there is a net (ei)i∈I in J(F ) that converges

weak∗ to the unit element of B(G). Hence, for any a ∈ J(D)
σ
, aei → a in

the topology σ(A(G), C∗(G)) of A(G), so that J(D)J(F )
σ ⊇ J(D)

σ
. Since

J(D)J(F ) ⊆ J(D), also J(D)J(F )
σ ⊆ J(D)

σ
, and we get J(D)J(F )

σ
=

J(D)
σ
.

We need yet another lemma, which is of purely topological nature.

Lemma 4.4. Let X be a regular topological space, E a closed subset of
X and U an arbitrary subset of E. If, for every closed set F ⊂ X contained
in U , we have E \ F = E then E \ U = E too.

Proof. Suppose that, for every closed subset F of X contained in U , we
have E \ F = E. To see that E \ U = E, let, if possible, x be a point in E
which is not in E \ U . So, there exists an open neighborhood V of x such
that V ∩ (E \ U) = ∅. That is, V ∩ E ⊆ U . Let F = V ∩ E. Since F is a
closed subset of U , by hypothesis, E \ F = E. So there is a net (xi) in E \F
that converges to x. Since xi /∈ V for all i, V is open and x ∈ V , the net
(xi) cannot converge to x. This proves that E \ U = E.

A subset U of G is said to be a set of interior uniqueness [Ke-Lo, p. 47]
if every closed subset F of U is a set of uniqueness. The next result charac-
terizes sets of interior uniqueness in terms of J-sets.

Theorem 4.5. Let U be an arbitrary subset of G. Then U is a set of
interior uniqueness iff E \ U = E for any J-set E.

Proof. Suppose first that U is a set of interior uniqueness and E is a
J-set. Let F be a closed subset of U . By hypothesis F is a set of uniqueness
so that the ideal J(F ) is weak∗ dense in B(G). Since E = E \ F ∪ F , by
Lemma 4.2(a), we have

(16) J(E) = J(E \ F ∪ F ) = J(E \ F )J(F ).

Now, since J(F )
w∗

= B(G), by Lemma 4.3(b) we get

J(E)
σ

= J(E \ F )
σ
.

Hence, since E is a J-set, by Theorem 2.2 we have J(E)
σ ⊆ k(E), so that

J(E \ F ) ⊆ J(E \ F )
σ

= J(E)
σ ⊆ k(E).

Thus

J(E \ F ) ⊆ k(E).
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The algebra A(G) being regular, this last inclusion implies that E \ F = E.
This being true for each closed subset F of U , by the preceding lemma,
E \ U = E.

Conversely, suppose that, for any J-set E, we have E \ U = E. If U is
not a set of interior uniqueness then, for some closed subset F of U , we
should have J(F )⊥ ∩ C∗(G) 6= {0}. Let ϕ ∈ J(F )⊥ ∩ C∗(G), ϕ 6= 0. Then
E = σ(ϕ) is a J-set and E ⊆ F . As E \ F = ∅, the set E \ F cannot be
dense in E. So neither can be E \ U . This proves that U is a set of interior
uniqueness.

As two immediate corollaries of this theorem, we present the following
results.

Corollary 4.6. A closed subset F of G is a set of uniqueness iff
E \ F = E for any J-set E.

Since one-point sets are sets of uniqueness, we have the following corol-
lary.

Corollary 4.7. Every nonempty J-set E is perfect. More generally,
no nonempty set U of interior uniqueness can be open and closed in any
nonempty J-set E.

A classical result due to N. Bary [Ba, p. 78, Théorème IV] says that the
union of countably many closed sets of uniqueness does not contain any set
of nonuniqueness. Below, as an application of Theorem 4.5, we present a
very short functional-analytic proof of a weaker version of this result. It is
weaker because it only shows that the union does not contain any closed set
of nonuniqueness.

Theorem 4.8. Let (Fn)n≥1 be a sequence of closed sets of uniqueness
(Fn ⊆ G). Then

⋃
n≥1 Fn does not contain any nonempty J-set.

Proof. For a contradiction, suppose that this union contains a nonempty
J-set E. Let On = E \ Fn = E \ (E ∩ Fn). The set On is open in E.
The set E, being a closed subset of the locally compact space G, is locally
compact under its relative topology, hence it is a Baire space. Since, by
Corollary 4.6, the open set On is dense in E, by the Baire Theorem, so is
the intersection

⋂
n≥1On. Since E ⊆

⋃
n≥1 Fn, this is not possible unless

E = ∅. Hence
⋃
n≥1 Fn does not contain any nonempty J-set.

The next theorem shows that closed subsets of G can be decomposed
into a disjoint union of a J-set and a set of interior uniqueness.

Theorem 4.9. Every closed subset of G decomposes in a unique way as
the union of a J-set and a set of interior uniqueness. If G is metrizable then
the second component is an Fσ-set.
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Proof. Let E be a closed subset of G. If E is a set of uniqueness then
there is nothing to prove. So assume that E is not a set of uniqueness. Then

EJ =
⋃

ϕ∈J(E)⊥∩C∗(G)

σ(ϕ)

is a nonempty J-set, and it is the largest J-set contained in E. It follows
from Proposition 2.6 that U = E \EJ does not contain any nonempty J-set,
so that every closed subset of U is a set of uniqueness. Hence U is a set of
interior uniqueness. Thus E = EJ ∪ U , and the sets EJ and U are disjoint.

To prove the uniqueness of such a decomposition, let E = F ∪ H be
another disjoint decomposition of E into a J-set F and a set H of interior
uniqueness. Since EJ is the largest J-set contained in E, we have F ⊆ EJ
so that U ⊆ H. From the equalities

E = EJ ∪ U = F ∪H
we deduce that, since U ⊆ H,

F = E \H = (EJ \H) ∪ (U \H) = EJ \H.
As H is a set of interior uniqueness, Theorem 4.5 yields EJ \H = EJ so
that EJ = F and H = U . This proves the desired uniqueness.

In the case where G is metrizable, every open subset of G is an Fσ-set.
So, if O = G \ EJ =

⋃
n≥0 Fn, where each Fn is closed, then

U = E \ EJ = E ∩
⋃
Fn≥0 =

⋃
n≥0

(E ∩ Fn)

is an Fσ-set.

The next result is a partial analogue of Corollary 4.6 for U1-sets.

Proposition 4.10. If E is a k-set then for any U1-set F we have
E \ F = E.

Proof. Let F be a U1-set and E a k-set. Then k(F )⊥ ∩ C∗(G) = {0}
and, by Theorem 2.2(b), we have k(E)

σ
= k(E). Recall that, by Theorem

2.7, E \ F is also a k-set. As

k(E) ⊇ k(E \ F )k(F )

and F is a U1-set, so that k(F ) is weak∗ dense in B(G), we have k(E)
σ ⊇

k(E \ F )
σ
. Since both E and E \ F are k-sets, we have k(E)

σ
= k(E) and

k(E \ F )
σ

= k(E \ F ). This implies that k(E \ F ) ⊆ k(E), which is only
possible if E \ F = E.

The following is the analogue of Theorem 4.8 for U1-sets.

Corollary 4.11. Let (Fn)n≥1 be a sequence of U1-sets. Then
⋃
n≥1 Fn

does not contain any nonempty k-set.
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Proof. Suppose that
⋃
n≥1 Fn contains a k-set E. Then, by the preceding

proposition, each On = E\Fn is open and dense in E. Hence, as in the proof
of Theorem 4.8, by the Baire Theorem,

⋂
n≥1On is dense in E, which is not

possible since E ⊆
⋃
n≥1 Fn. From this we conclude that E is empty.

We finish this paper with a series of questions.

Question 1. Let ϕ ∈ C∗(G) and E = σ(ϕ). Then J(E) ⊆ Jϕ, where
Jϕ = {a ∈ A(G) : a.ϕ = 0}. For which ϕ’s in C∗(G), do we have J(E) = Jϕ?

Question 2. Let E0 be as in (15) and F be a closed set with E0 ⊆ F
⊆ E. If F is a Ditkin set then, as one can see easily, E is a set of synthesis.
Is E a set of synthesis if F is a set of synthesis?

Question 3. Let E be a closed subset of G. What is a necessary con-
dition for the equality J(E)

σ
= k(E)

σ
to hold?

Question 4. How are the synthesis properties of the sets E, EJ and
Ek related to each other?

Question 5. If E is a k-set, E◦ 6= ∅ and E is a set of synthesis, do we
have Ek = E◦?

Question 6. For any closed set E, as seen in Section 2, J(EJ) ⊆ J(E)
σ
.

When does equality hold?

Question 7. For any closed set E, we know that k(E)
σ ⊆ k(Ek). When

does equality hold?

Question 8. Let E0 be as in (15). We always have J(E0)k(E) =
J(E) (see the proof of Proposition 3.15). For which sets E, do we have
k(E0)k(E) = J(E)?

Question 9. If J(E)
σ

= J(E) and E0 is a set of uniqueness then E
is a set of synthesis (Theorem 3.6 and Proposition 3.8). Is the condition

J(E)
σ

= J(E) alone sufficient for E to be a set of synthesis?

Finally, in connection with Question 2, we make the following conjecture.

Conjecture. If there is a set F of synthesis with E0 ⊆ F ⊆ E then E
is a set of synthesis.

If this conjecture turns out to be true then the answer to the union
problem is also positive.

If this conjecture turns out to be wrong then the answer to the Ditkin
set vs. set of synthesis problem is also negative.

Remark 4.12. As suggested by the referee, working, instead of the
spaces B(G), C∗(G), with the reduced Fourier–Stieltjes algebra Br(G) and
its predual C∗r (G), one could drop the amenability hypothesis on G. Given
that the problems studied in this paper (understanding sets of synthesis and
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sets of uniqueness) are not really fully understood even in the case where G
is the unit circle group, for uniformity of hypotheses, we preferred to work
with amenable groups. For the algebras Br(G), C∗r (G) and some results re-
lated to sets of synthesis in this context, we refer the reader to the paper
[La-Lo], and in particular to Lemma 7.3 and Proposition 7.4 of that paper.

Acknowledgments. The author expresses his thanks to the referee for
his suggestions.
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[Bo-Py] M. Bożejko and T. Pytlik, Weak uniqueness sets for discrete groups, Trans.
Amer. Math. Soc. 241 (1978), 273–282.
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[Kö] Th. W. Körner, A pseudofunction on a Helson set, I, II, Astérisque 5 (1973),
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