representation functions With Different Weights

BY
QUAN-HUI YANG (Nanjing)

Abstract

For any given positive integer k, and any set A of nonnegative integers, let $r_{1, k}(A, n)$ denote the number of solutions of the equation $n=a_{1}+k a_{2}$ with $a_{1}, a_{2} \in A$. We prove that if k, l are multiplicatively independent integers, i.e., $\log k / \log l$ is irrational, then there does not exist any set $A \subseteq \mathbb{N}$ such that both $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ and $r_{1, l}(A, n)=r_{1, l}(\mathbb{N} \backslash A, n)$ hold for all $n \geq n_{0}$. We also pose a conjecture and two problems for further research.

1. Introduction. Let \mathbb{N} be the set of nonnegative integers. For a set $A \subseteq \mathbb{N}$, let $R_{1}(A, n), R_{2}(A, n), R_{3}(A, n)$ denote the number of solutions of $a+a^{\prime}=n, a, a^{\prime} \in A ; a+a^{\prime}=n, a, a^{\prime} \in A, a<a^{\prime}$ and $a+a^{\prime}=n, a, a^{\prime} \in A$, $a \leq a^{\prime}$ respectively. These functions have been extensively studied by many authors (see [D2]-[ESS3], [N1]-[N3]) and are still a fruitful area of research in additive number theory. For $i \in\{1,2,3\}$, Sárközy asked whether there are sets A and B with infinite symmetric difference such that $R_{i}(A, n)=R_{i}(B, n)$ for all sufficiently large integers n. It is known that the answer is negative for $i=1$ (see Dombi [D1]) and positive for $i=2,3$ (see Dombi [D1], Chen and Wang [CW]). In fact, Dombi [D1] for $i=2$ and Chen and Wang [CW] for $i=3$ proved that there exists a set $A \subseteq \mathbb{N}$ such that $R_{i}(A, n)=R_{i}(\mathbb{N} \backslash A, n)$ for all $n \geq n_{0}$. Lev [L] gave a simple common proof of these results. Later, Sándor [S] gave a complete answer by using generating functions, and Tang [T] gave an elementary proof. For related results, one can refer to [C, CT].

For two positive integers k_{1}, k_{2} and any set A of nonnegative integers, let $r_{k_{1}, k_{2}}(A, n)$ denote the number of solutions of the equation $n=k_{1} a_{1}+k_{2} a_{2}$ with $a_{1}, a_{2} \in A$. Recently, the author and Chen [YC2] determined all pairs k_{1}, k_{2} of positive integers for which there exists a set $A \subseteq \mathbb{N}$ such that $r_{k_{1}, k_{2}}(A, n)=r_{k_{1}, k_{2}}(\mathbb{N} \backslash A, n)$ for all $n \geq n_{0}$.

TheOrem A . If k_{1} and k_{2} are two integers with $k_{2}>k_{1} \geq 2$ and $\left(k_{1}, k_{2}\right)=1$, then there does not exist any set $A \subseteq \mathbb{N}$ such that

$$
r_{k_{1}, k_{2}}(A, n)=r_{k_{1}, k_{2}}(\mathbb{N} \backslash A, n)
$$

for all sufficiently large integers n.

[^0]Theorem B. If k is an integer with $k>1$, then there exists a set $A \subseteq \mathbb{N}$ such that $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ for all integers $n \geq 1$.

For the modular version, we may refer to [YC1] and YC3.
Given two natural numbers a, b, we call a and b multiplicatively independent if $\log a / \log b$ is irrational. Clearly, if k and l are multiplicatively independent, then $k, l \geq 2$ and $k \neq l$.

Professor Yong-Gao Chen asks me the following problem:
Problem 1.1. Are there two distinct integers $k \geq 2$ and $l \geq 2$ and a set $A \subseteq \mathbb{N}$ such that both $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ and $r_{1, l}(A, n)=r_{1, l}(\mathbb{N} \backslash A, n)$ hold for all sufficiently large integers n ?

In this paper, we consider Chen's problem and prove the following theorem.

TheOrem 1.2. If two integers k, l are multiplicatively independent, then there does not exist any set $A \subseteq \mathbb{N}$ such that both $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ and $r_{1, l}(A, n)=r_{1, l}(\mathbb{N} \backslash A, n)$ hold for all sufficiently large integers n.

By a famous result of Senge and Straus [SS], the condition in Theorem 1.2 is equivalent to there being at most finitely many positive integers with the property that the sum of the digits in each of the two bases k and l lies below any prescribed bound.

If $\log k / \log l$ is rational, we suppose that $\log k / \log l=a / b$ with $(a, b)=1$. From the proof, we know that Theorem 1.2 also holds when a, b have different parities. However, the case that both a and b are odd seems to be difficult. We believe that the following conclusion is correct:

Conjecture 1.3. Let $\log k / \log l=a / b$ with $(a, b)=1$. If a, b are both odd, then there does not exist any set $A \subseteq \mathbb{N}$ such that both $r_{1, k}(A, n)=$ $r_{1, k}(\mathbb{N} \backslash A, n)$ and $r_{1, l}(A, n)=r_{1, l}(\mathbb{N} \backslash A, n)$ hold for all sufficiently large integers n.

Remark 1.4. We can only prove that there does not exist such a set A when one of the equalities holds for all $n \geq 1$.

Now we pose two problems which we cannot settle.
Problem 1.5. Let k_{1} and k_{2} be two integers with $k_{2}>k_{1} \geq 2$ and $\left(k_{1}, k_{2}\right)=1$. Do there exist two sets A and B with infinite symmetric difference such that $r_{k_{1}, k_{2}}(A, n)=r_{k_{1}, k_{2}}(B, n)$ for all sufficiently large integers n ?

Problem 1.6. Given two positive integers k, l with $k>l \geq 2$, do there exist two sets A and B with infinite symmetric difference such that both $r_{1, k}(A, n)=r_{1, k}(B, n)$ and $r_{1, l}(A, n)=r_{1, l}(B, n)$ hold for all sufficiently large integers n ?
2. Proofs. We first give a definition. The Farey series \mathfrak{F}_{n} of order n is the ascending series of irreducible fractions between 0 and 1 whose denominators do not exceed n. To prove Theorem 1.2, we need some lemmas.

Lemma 2.1. Let $k>1$ and $n_{0} \geq 1$ be two integers. If $A \subseteq \mathbb{N}$ is such that $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ for all $n \geq n_{0}$, then

$$
n \in A \Leftrightarrow\lfloor n / k\rfloor \notin A, n \geq n_{0}+k .
$$

Lemma 2.1 follows from Corollary 2 in [YC2].
Lemma 2.2 (see [HW, Theorem 28]). If $h_{1} / h_{2}, h_{3} / h_{4}$ are two successive terms of \mathfrak{F}_{n}, then $h_{2} h_{3}-h_{1} h_{4}=1$.

Lemma 2.3 (see [HW, Theorem 30]). If $h_{1} / h_{2}, h_{3} / h_{4}$ are two successive terms of \mathfrak{F}_{n}, then $h_{2}+h_{4}>n$.

Now we shall use Lemmas 2.2 and 2.3 to prove Lemma 2.4 which is similar to Dirichlet's theorem on Diophantine approximation.

Lemma 2.4. If ξ is any irrational number with $0<\xi<1$, and n_{0} a positive integer, then there is an integer $n \geq n_{0}$ and an irreducible fraction h_{1} / h_{2} such that

$$
0<h_{2} \leq n, \quad 2 \nmid h_{1}+h_{2}, \quad\left|\frac{h_{1}}{h_{2}}-\xi\right| \leq \frac{1}{h_{2}(n+1)} .
$$

Proof. Since ξ is irrational, there exist two successive terms $n_{1} / n_{1}^{\prime}, n_{2} / n_{2}^{\prime}$ of $\mathfrak{F}_{n_{0}}$ such that $n_{1} / n_{1}^{\prime}<\xi<n_{2} / n_{2}^{\prime}$, and so ξ falls in one of the intervals

$$
\left(\frac{n_{1}}{n_{1}^{\prime}}, \frac{n_{1}+n_{2}}{n_{1}^{\prime}+n_{2}^{\prime}}\right), \quad\left(\frac{n_{1}+n_{2}}{n_{1}^{\prime}+n_{2}^{\prime}}, \frac{n_{2}}{n_{2}^{\prime}}\right) .
$$

Without loss of generality, we may assume that ξ belongs to the latter interval. By Lemmas 2.2 and 2.3, it follows that $n_{1}^{\prime} n_{2}-n_{1} n_{2}^{\prime}=1$ and

$$
\begin{equation*}
0<\frac{n_{2}}{n_{2}^{\prime}}-\xi \leq \frac{n_{2}}{n_{2}^{\prime}}-\frac{n_{1}+n_{2}}{n_{1}^{\prime}+n_{2}^{\prime}}=\frac{1}{n_{2}^{\prime}\left(n_{1}^{\prime}+n_{2}^{\prime}\right)} \leq \frac{1}{n_{2}^{\prime}\left(n_{0}+1\right)} . \tag{2.1}
\end{equation*}
$$

If $2 \nmid n_{2}+n_{2}^{\prime}$, then we take $n=n_{0}, h_{1}=n_{2}, h_{2}=n_{2}^{\prime}$. By $n_{2}^{\prime} \leq n_{0}$ and the inequality (2.1), Lemma 2.4 is true. Now we suppose that both n_{2} and n_{2}^{\prime} are odd. Let $n_{3}=n_{1}+n_{2}, n_{3}^{\prime}=n_{1}^{\prime}+n_{2}^{\prime}$, and let

$$
n_{s}=n_{2}+n_{s-1}, \quad n_{s}^{\prime}=n_{2}^{\prime}+n_{s-1}^{\prime}
$$

for $s \geq 4$. Then $n_{s} / n_{s}^{\prime}, n_{2} / n_{2}^{\prime}$ are two successive terms of $\mathfrak{F}_{n_{s}^{\prime}}$ for all $s \geq 3$. From Lemma 2.2 it follows that $2 \nmid n_{s}+n_{s}^{\prime}$ for all $s \geq 3$. Since

$$
\lim _{s \rightarrow \infty} \frac{n_{s}}{n_{s}^{\prime}}=\lim _{s \rightarrow \infty} \frac{n_{1}+(s-2) n_{2}}{n_{1}^{\prime}+(s-2) n_{2}^{\prime}}=\frac{n_{2}}{n_{2}^{\prime}}
$$

and n_{s} / n_{s}^{\prime} is strictly increasing, there exists an integer $t \geq 3$ such that

$$
\frac{n_{t}}{n_{t}^{\prime}}<\xi<\frac{n_{t+1}}{n_{t+1}^{\prime}}<\frac{n_{2}}{n_{2}^{\prime}}
$$

Hence, by Lemma 2.2 we have

$$
0<\xi-\frac{n_{t}}{n_{t}^{\prime}}<\frac{n_{t+1}}{n_{t+1}^{\prime}}-\frac{n_{t}}{n_{t}^{\prime}}=\frac{1}{n_{t}^{\prime} n_{t+1}^{\prime}}=\frac{1}{n_{t}^{\prime}\left(n_{2}^{\prime}+n_{t}^{\prime}\right)} \leq \frac{1}{n_{t}^{\prime}\left(n_{t}^{\prime}+1\right)} .
$$

Therefore, if we take $h_{1}=n_{t}$ and $h_{2}=n=n_{t}^{\prime}$, then the conclusion is true.
Proof of Theorem [1.2. Suppose that k, l are multiplicatively independent and, for some integer $n_{0} \geq 1$, both $r_{1, k}(A, n)=r_{1, k}(\mathbb{N} \backslash A, n)$ and $r_{1, l}(A, n)=$ $r_{1, l}(\mathbb{N} \backslash A, n)$ for all $n \geq n_{0}$. By Lemma 2.1, there exists a positive integer n_{1} such that for all $n \geq n_{1}$, the following two conditions hold:
(i) $n \in A \Leftrightarrow k n+s \notin A$ for all s with $0 \leq s<k-1$;
(ii) $n \in A \Leftrightarrow l n+s \notin A$ for all s with $0 \leq s<l-1$.

Without loss of generality, we may assume $k<l$. Let

$$
n_{2}=\frac{\log l}{\log \left(1+1 / n_{1}\right)} .
$$

By Lemma 2.4, there exists an integer $n_{3} \geq n_{2}$ and an irreducible fraction β / α such that

$$
0<\alpha \leq n_{3}, \quad 2 \nmid \alpha+\beta, \quad\left|\frac{\beta}{\alpha}-\frac{\log k}{\log l}\right| \leq \frac{1}{\alpha\left(n_{3}+1\right)}<\frac{1}{\alpha n_{2}} .
$$

Without loss of generality, we assume that α is odd and β is even.
If $\beta / \alpha-\log k / \log l>0$, then we take a real number t such that

$$
\frac{\beta}{\alpha}-\frac{\log k}{\log l}=\frac{\log \left(1+t / n_{1}\right)}{\alpha \log l} .
$$

It follows that $0<t<1$ and

$$
n_{1} 1^{\beta}=n_{1} k^{\alpha}+s, \quad \text { where } \quad s=k^{\alpha} t<k^{\alpha} .
$$

Now we express the integer s in the scale of k as
$s=b_{\alpha-1} k^{\alpha-1}+b_{\alpha-2} k^{\alpha-2}+\cdots+b_{1} k+b_{0}$, where $0 \leq b_{0}, b_{1}, \ldots, b_{\alpha-1} \leq k-1$.
By (i), since β is even, we have

$$
n_{1} l^{\beta} \in A \Leftrightarrow n_{1} l^{\beta-1} \notin A \Leftrightarrow \cdots \Leftrightarrow n_{1} \in A .
$$

On the other hand, by (ii), since α is odd, we have

$$
n_{1} k^{\alpha}+s \in A \Leftrightarrow n_{1} k^{\alpha-1}+b_{\alpha-1} k^{\alpha-2}+\cdots+b_{1} \notin A \Leftrightarrow \cdots \Leftrightarrow n_{1} \notin A .
$$

This is a contradiction.
If $\beta / \alpha-\log k / \log l<0$, then we take a number t such that

$$
\frac{\log k}{\log l}-\frac{\beta}{\alpha}=\frac{\log \left(1+t / n_{1}\right)}{\alpha \log l} .
$$

As before, we reach a contradiction. We leave the details to the reader.
This completes the proof of Theorem 1.2 .

Acknowledgements. I would like to thank my supervisor Professor Yong-Gao Chen for posing the problem that I study in this paper, and also for his valuable suggestions and useful discussions. This research was supported by the National Natural Science Foundation of China, Grant No. 11371195, and the Project of Graduate Education Innovation of Jiangsu Province (CXZZ12-0381).

REFERENCES

[C] Y.-G. Chen, On the values of representation functions, Sci. China Math. 54 (2011), 1317-1331.
[CT] Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 2689-2695.
[CW] Y.-G. Chen and B. Wang, On additive properties of two special sequences, Acta Arith. 110 (2003), 299-303.
[D1] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137-146.
[D2] A. Dubickas, A basis of finite and infinite sets with small representation function, Electron. J. Combin. 19 (2012), P6.
[ES1] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific J. Math. 118 (1985), 347-357.
[ES2] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, II, Acta Math. Hungar. 48 (1986), 201-211.
[ESS1] P. Erdős, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, III, Studia Sci. Math. Hungar. 22 (1987), 53-63.
[ESS2] P. Erdős, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, IV, in: Number Theory (Ootacamund, 1984), Lecture Notes in Math. 1122, Springer, Berlin, 1985, 85-104.
[ESS3] P. Erdős, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, V, Monatsh. Math. 102 (1986), 183-197.
[HW] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford Univ. Press, Oxford, 2008.
[L] V. F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), R78.
[N1] M. B. Nathanson, Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc. 72 (1978), 16-20.
[N2] M. B. Nathanson, Every function is the representation function of an additive basis for the integers, Portugal. Math. (N.S.) 62 (2005), 55-72.
[N3] M. B. Nathanson, Inverse problems for representation functions in additive number theory, in: Surveys in Number Theory, Dev. Math. 17, Springer, New York, 2008, 89-117.
[S] C. Sándor, Partitions of natural numbers and their representation functions, Integers 4 (2004), A18.
[SS] H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Period. Math. Hungar. 3 (1973), 93-100.
[T] M. Tang, Partitions of the set of natural numbers and their representation functions, Discrete Math. 308 (2008), 2614-2616.
[YC1] Q.-H. Yang and F.-J. Chen, Partitions of \mathbb{Z}_{m} with the same representation functions, Australasian J. Combin. 53 (2012), 257-262.
[YC2] Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted representation functions, J. Number Theory 132 (2012), 3047-3055.
[YC3] Q.-H. Yang and Y.-G. Chen, Weighted representation functions on \mathbb{Z}_{m}, Taiwanese J. Math. 17 (2013), 1311-1319.

Quan-Hui Yang

School of Mathematics and Statistics
Nanjing University of Information Science and Technology
Nanjing 210044, China
E-mail: yangquanhui01@163.com

[^0]: 2010 Mathematics Subject Classification: Primary 11B34; Secondary 05A17. Key words and phrases: partitions, representation functions, Sárközy problem.

