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Abstract. Given a semiperfect two-sided noetherian ring A, we study two subcat-
egories Ag(A) = {M € mod A | Ext’,(Tr M, A) = 0 (1 < j < k)} and Bi(A) = {N €
mod A | Extf‘(N, A) =0 (1 <j <k)} of the category mod A of finitely generated right
A-modules, where Tr M is Auslander’s transpose of M. In particular, we give another
convenient description of the categories Ay (A) and By (A), and we study category equiv-
alences and stable equivalences between them. Several results proved in [J. Algebra 301
(2006), 748-780] are extended to the case when A is a two-sided noetherian semiperfect
ring.

1. Introduction and preliminaries. Throughout this paper we as-
sume that A is a semiperfect two-sided noetherian ring. We denote by mod A
the category of finitely generated right A-modules. Following [AB1], given
an integer k£ > 1, we study two subcategories

Ap(A) = {M € mod A | Ext’,(Tr M, A) =0 (1 < j < k)},
Bi(A) = {N € mod A | Ext/ (N, 4) =0 (1 < j < k)}

of the category mod A, where Tr M is Auslander’s transpose of M (see [ASS],
[ABr]). Following [T] we also study the category Gproj-A of G-projective
A-modules. We recall that A is semiperfect if every module in mod A admits
a projective cover in mod A. One of the main tools we use is the minimal
approximation technique introduced by Auslander in the 1960s. We recall
it in Sections 2-3 and we prove several preparatory results on approxima-
tions and the category Gproj-A. In particular, we extend several results of
Takahashi [T] from the commutative case to the case when A is a two-sided
noetherian semiperfect ring.

In the second part of the paper (Sections 4-7) we study category equiv-
alences between Ag(A) and Bj(A). In the particular case when k = 1, we
show in Theorem [5.5]that A; (A) and B (A) are stably equivalent. One of the
main results of the second part of the paper is a characterization of Ay (A)
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and By,(A) in Proposition [5.6)and a stable equivalence result in Theorem[5.7]
Moreover we prove that the following are equivalent for M € mod A:

(a) M € Ap(A) N Bi(4);
(b) Ext4(M,A) =0=Exty(Tr M, A) for 1 <i < k;
(¢) M admits a k-subcomplete resolution,

where ‘k-subcomplete resolution’ is defined in Section 6.
The reader is referred to [A]-[AR] and [Y] for details on the minimal
approximation technique and its application. Results of a similar nature on

classical orders, crossed products, and Cohen—Macaulay modules are dis-
cussed in [AM], [B1], [B2], [C], [Dx], [GN], [Si1]-[Si3], [S], and [Y].

2. Approximation and (co)syzygy. Let A be a two-sided noetherian
ring. Further we assume that it is semiperfect (cf. [AEF], [E]). We denote
the category of finitely generated right A-modules by mod A and the one of
finitely generated left A-modules by mod A°P.

2.1. Proj A-approximation. We recall from [T] the notions of ap-
proximation and minimality, and basic facts that are useful for constructing
syzygies.

DEFINITION 2.1. Let M, N €émod A and p: M — N a A-homomorphism.

(1) We say that p is right minimal if any f € End (M) satisfying p = pf
is an automorphism.

(2) We say that p is left minimal if any f € End,(N) satisfying p = gp
is an automorphism.

DEFINITION 2.2. Let X be a subcategory of mod A.

(1) Let X € X and M € mod A, and let ¢ : X — M be a homomor-
phism.

(a) We call ¢ or X a right X-approzimation of M if for any homo-
morphism ¢’ : X’ — M with X’ € X there exists a homomor-
phism f: X’ — X such that ¢/ = ¢f.

(b) We call ¢ or X a minimal right X -approzimation of M if ¢ is a
right A'-approximation and is right minimal.

(2) Let X € X and M € mod A, and let ¢ : M — X be a homomor-
phism.

(a) We call p or X a left X-approzimation of M if for any homomor-
phism ¢’ : M — X’ with X’ € X there exists a homomorphism
f: X — X' such that ¢’ = fo.

(b) We call ¢ or X a minimal left X -approzimation of M if ¢ is a
left X-approximation and is left minimal.
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By definition, it is easy to see that a minimal right or left X'-approxima-
tion is uniquely determined up to isomorphism, if it exists. Supposing that
X is closed under direct summands, a A-module having a right (resp. left)
X-approximation also has a minimal right (resp. left) X-approximation.

2.2. Minimal proj A-approximation. When one studies the noncom-
mutative version of [T}, the following generalization of [T}, Proposition 2.3] is
indispensable. It provides a concrete method of constructing a minimal left
proj A-approximation and cosyzygies, where proj A is the full subcategory
of mod A consisting of all projective A-modules.

For M €mod A, we denote by 8,7 the canonical evaluation map M — M**,

PROPOSITION 2.3. Let A be a semiperfect two-sided noetherian ring and
let M € mod A.

(1) If ¢ : P — M is a A-homomorphism with P € proj A, then the
following two conditions are equivalent:

(a) ¢ is a minimal right proj A-approzimation of M;
(b) ¢ is a projective cover.

(2) If 7 : P — M* is a projective cover of M* with P € proj A°?, and
a =70y : M — P*, then « is a minimal left proj A-approximation
of M.

(3) If o : P — M* is a minimal right proj A°P-approzimation of M*
with P € proj A°P, then ©*0x is a minimal left proj A-approzimation
of M.

Proof. (1) (a)=-(b): Suppose ¢ : P — M is a minimal right proj A-
approximation of M and g : Q — M a projective cover of M. By definition,
there is a A-homomorphism f : Q@ — P such that ¢ = ¢f. Thus ¢ is
surjective. By [AF, Lemma 17.17], there exists a decomposition P = P'@ P”
with P’, P” € proj A such that 1) P ~ @, 2) P C Keryp, 3) ¢|pr : P = M
is a projective cover for M. We define a homomorphism g : P — P by
g(z,y) = (x,0), where x € P/ and y€ P”. Let ¢ = 1 ® o with 1 : PP— M
and @9 : P — M. By 2), we have ¢(0,y) = 0. Hence

eg(z,y) = p(z,0) = ¢1(x),
e(z,y) = p1(z) + pa2(y) = w1(x).
Therefore g = ¢, and so g is an automorphism. Hence P” = 0, so that
P = P'. By 3), ¢ is a projective cover.
(1) (b)=(a): By assumption, ¢ is a right proj A-approximation of M. It
is easily shown that ¢ is right minimal if it is a projective cover.
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(2) Since o* = 03,7**, we get the following commutative diagrams:

ok *ok

P** m M*** P** 7T M***
Sl e
M* P—s M*

Hence 7**0p = O+, so that 7** = GM*WGIZI. By the definition of «, we
have o* = 03,7**. Hence o = HLHM*WOE = 7. Take a A-homomorphism
h : P* — P* with @« = ha. Then o* = o*h*, and since o* = 7w, we have
m = wh*. Since P =2 P**  we may think h* : P — P. Consider the short exact
sequence 0 — Kerm — P 5 M* — 0. Tt follows that m(Imh* + Ker7) =
wh*(P) = m(P), so that Imh* + Kerm = P. Since 7 is a projective cover,
we have Im h* = P. Thus h* is an automorphism. Hence h = 9];}]1**9}3* is
also an automorphism. This means that « is left minimal.

We now show that « is a left proj A-approximation of M. Let ) € proj A,
and 8 : M — @ a A-homomorphism. Then there is u : Q* — P** such that
the following is commutative:

*
3 //Q
u lﬂ*

b
P=P* 5 M*—=0
This gives the commutative diagram

-1
OQ

Q™ ——=Q

A
P* * M Om M

Set v = Hélu* : P* = Q. Then va = Gélu*ﬁ*HM = 0@16**9]\4 = (. This
implies that « is a left proj A-approximation of M.

(3) We first show that ¢*0); is left minimal. Take ¢g* : P* — P* with

0 Oy = gp*0as. We can write g = f* for f: P — P. It suffices to show that
f is an automorphism. By assumption, we get the commutative diagram

0* * %k
M* M¥ P Gf P
037" Tf Tf

p<p
Thus 03,0 0pf = 03,0 0p. It is well-known that ¢**0p = 0p+~¢ and
03,0+ = idpr+. Hence 03,0 0p = 03,00+ = . Therefore, pf = ¢. By
assumption, ¢ is right minimal, so that f is an automorphism. Hence, f* = ¢
is an automorphism. Thus ¢*0); is left minimal.
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Under the assumption that ¢ is a minimal right proj A°P-approximation
of M*, we now show that ¢*6; is a left proj A-approximation of M. Consid-
ering (1) for mod A°? and since ¢ is a minimal right proj A°P-approximation
of M*, it follows that ¢ is a projective cover of M*. Hence ¢ is surjec-
tive. For any v : M — Q' with Q" € projA, we will show that there

exists ¢’ : P* — Q' such that ¢ = ¢/'¢*0);. For a technical reason, we

set @ = @Q* with Q € projA°P. Applying (—)* to M LA Q*, we get

2] *
Vg Q = Q™ LS Ve Since ¢ is surjective, there exists h : Q@ — P
such that ph = 1*0q. Applying (—)*, we get 059™" = h*p*. Applying (—)™*
to ) : M — Q*, we see that 0g«1) = ¥**0),. Hence

W = Oe O = 050 O = W0 0.
Set ¢/ = h*. Then ¢ = ¢'©*0), so that ¢*0) is a minimal left proj A-
approximation of M. This proves (3). m

A A-module M is said to be torsionless if the canonical evaluation map
M — M™* is injective. We now state the equivalence of being torsionless and
injectivity of each left proj A-approximation. The proof of a noncommutative
version will also be given.

2.3. Torsionless modules

ProprosiTION 2.4 ([T, Proposition 2,4]). Let M € mod A. Then the
following are equivalent:

(1) M is torsionless;

(2) every left proj A-approximation of M is an injective homomorphism;

(3) there exists a left proj A-approximation ¢ : M — P* of M which is

mjective.

Proof. (1)=(2): Let ¢ : M — P* be a left proj A-approximation, and
suppose 1(m) = 0 for some m € M. Take any f € M*. Then there exists
g : P* — A with f = gip. Hence f(m) = gip(m) = 0. Since f is arbitrary,
it follows that m € ({Ker f' | f' € M*}. In general, Ker 0y, = (N{Ker f’ |
'€ M*}, and hence Kerfy; =0, so m = 0.

(2)=-(3): This is clear.

(3)=(1): Let ¢ : M — P* be an injective left proj A-approximation.
For m € M, assume that 6j;(m) = 0. Then f(m) = 0p(m)(f) = 0 for
any f € M*. There is an injective ¢ : P* — A™ for some positive integer n.
Let pr : A" — A (1 < k < n) be the projection. Then pgiyy € M*. Hence
prit(m) = 0, so that itp(m) = 0. Since 47 is injective, we see that m = 0.
Thus M is torsionless. m

2.4. Syzygy and cosyzygy. Following [T], we recall the definition of
(co)syzygies.
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DEFINITION 2.5. Let M € modA and w : P — M a minimal right
proj A-approximation of M. The first syzygy 2M = 2'M of M is defined
as Kerm, and the nth syzygy 2"M of M is defined inductively: 2"M =
Q2" M) for n > 2.

We define cosyzygies by dualizing the above.

DEFINITION 2.6. Let A be a semiperfect two-sided noetherian ring and
let M € mod A.

e Take the minimal left proj A-approximation 6 : M — P. Then 2~ 'M
= Coker 0 is called the first cosyzygy of M.

e For n > 2, assume that the (n — 1)th cosyzygy 2~V M is defined.
Then Q"M := 21 (2-"=DM) is called the nth cosyzygy of M.

A module M is called projective free if M has no nonzero projective
summands. The proof of the following fact is similar to that of [T, Proposi-
tion 2.6].

PROPOSITION 2.7. For any A-module M and any positive integer n, the
nth cosyzygy 27 "M is projective free.

2.5. A vanishing property. For a subcategory X of mod A, the sub-
category of mod A consisting of all the modules M with Extl(X, M) =0
(respectively, Exty (M, X) = 0) for all X € X is denoted by X" (respec-
tively, -X'). Usually, the following is deduced from Wakamatsu’s lemma; we
give a proof based on another lemma.

ProposITION 2.8 ([T}, Proposition 3.3(2)]). Any cosyzygy belongs to
“(proj A), that is,

Exth(27'M,A) =0  for any M € mod A.

In the proof of Proposition we need the following two lemmata.

LEMMA 2.9. Let M € mod A. Then there is an exact sequence
(AF) 0 — Ext}(Tr M, A) — M 25 M** — Ext(Tr M, A) — 0
(Auslander formula).

Proof. See [ABrl, Chapter 2, §1, p. 48]. =

LEMMA 2.10. There are isomorphisms of functors on mod A:

TR 'Tr, QTrTro b

Proof. Although the proof might be known, we give it here for the con-
venience of the reader. Let M € modA and let f : P — (Tr M)* be a
projective cover. For a minimal projective resolution P, - Pp — M — 0
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of M, we have an exact sequence P — P % TrM — 0, so 0 — (Tr M)*

EAN P — Bi* is exact. Then we get the commutative diagram

p—" o p Py M 0
PN
(Tr M)* QM

with exact top row and h = ¢g* f. Hence Py M p* - Tr QM — 0 is exact.
Since h* = f*g**, we get the following commutative diagram:

T M — (Tr M) pr

g ok

* Hkok
Pl Pl

It follows from Proposition (2) that f*60 is a minimal left proj A-approxi-
mation of Tr M. Therefore, 2~ Tr M = Coker(f*0) = P*/Im(f*6). By the
above diagram, Im(f*0) = Im(f*0g) = Im(f*¢**) = Im(h*). Hence

Tr 2M = Coker(h*) = P*/Im(h*) = P*/Im(f*0) = 271 Tr M.
Thus we get Tr £2 = 27! Tr on mod A. The other isomorphism is obtained

by applying the functor Tr on the left and on the right to the first isomor-
phism. =

Proof of Proposition [2.8 Let M € mod A. By Lemma we have the
exact sequence
0 — Ext}(Tr 2Tr M, A) — QTr M 227 (0 Ty M)*™
— Ext?(Tr 2Tr M, A) — 0.

Since 2 Tr M is torsionless, O,y as is injective, so Exth (Tr 2Tr M, A) = 0.
Since Lemma yields Ext}(Tr 2 Tr M, A) = Exth(Q 1 TrTr M, A) =
Ext} (271M, A), we get Ext}(27'M,A) =0. =

3. G-projective modules

3.1. G-projective modules and G-dimension. In this section, we

study the basic properties of G-projective modules in the following sense
(cf. [AB1, [C]).

DEFINITION 3.1. A A-module X is called G-projective if the following
three conditions hold:

e The canonical homomorphism 6x : X — X™ is an isomorphism,

e Ext) (X, A) =0 for any i > 0,

o Ext%(X*,A) =0 for any ¢ > 0.
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We denote by Gproj-A the full subcategory of mod A consisting of all
G-projective modules. In relation with [ABr], we introduce the following
definition.

DEFINITION 3.2. Let M € mod A. If for some positive integer n there
exists an exact sequence

0—-X, =X = —=X1—=-Xo—>M—=0

of A-modules with X; € Gproj-A (0 < i < n), then we say that M has
G-dimension at most n and write G-dimq M < n. If such an integer n does
not exist, then we say that M has infinite G-dimension, G-dimy M = oo.

If M €mod A has G-dimension at most n but does not have G-dimension
at most n—1, then we say that M has G-dimension n, and write G-dim4 M =n.
In [ABr], G-projective modules are called modules of G-dimension zero and
are extensively studied.

For M € mod A, a complex of A-modules

d_ d—
Po=(-2p%pD%p, “Hp, 2.
is called a complete resolution of M if the following conditions are satisfied:

e P, € proj A for any i € Z,
e H;(P,) =0=H((P)*) for any i € Z,
e Imdy =M.

3.2. A characterization of G-projective modules. We give the fol-
lowing characterization

PRrROPOSITION 3.3. Let M € mod A. Then the following are equivalent:

(a) M is G-projective; '

(b) Ext4(M,A) =0= Ext4(Tr M, A) for any i > 0;

(¢) M has a complete resolution.

Proof. The equivalence (a)<(b) is shown in [ABr, Proposition 3.8]. To
prove (b)<(c), we need the following from [ABr, Theorem 2.17].

PROPOSITION 3.4. The following are equivalent for any M € mod A and
n > 0:

e M is n-torsion free, that is, Ext',(Tr M, A) = 0 for any 1 <i < n;

e There exists an eract sequence 0 — M — Py — -+ — P, (P1,..., P,

€ proj A) such that P} — --- — P — M* — 0 is also ezact.

Assume (b) holds. It follows from Proposition that there exists an
exact sequence 0 - M - P_; —---— P_, — --- such that --- =+ P* —
- = P*, - M* — 0 is exact. Having a minimal projective resolution,
o= P, — - —> P — M — 0, we apply (—)*, and get an exact sequence
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0 —+ M"— P — -+ = Py — ---. Then we get a complete resolution:
+— P, — Py — P_; — -+ of M, which implies (c).
Using Proposition we can show (¢)=-(b). m

G-projective modules are invariant under some functors.

PRrOPOSITION 3.5 (cf. [T, Proposition 3.3(2)]). If a module M € mod A
is G-projective, then so are M*, Tr M, 2M, and 27" M.

Proof. Assume that M is G-projective. Then we can easily see that M*
and Tr M are G-projective. We have an exact sequence 0 — 2M — P —
M — 0 (P € proj A). By [ABr, Lemma 3.10], £2M is G-projective.

Finally, we show that £27'M is G-projective. Let ¢ : P — M* be a
projective cover. By Proposition [2.3(1)&(3), ¢*6 is a minimal left proj A-
approximation of M. By definition, 2M* = Ker ¢ and 2~ M = Coker(p*0,).
Applying (—)* to the exact sequence 0 — Q2M* — P £y M* — 0, we have
the following commutative diagram with exact rows:

0 POM_ px QM ——0

oluiz

Therefore, (2M*)* = 271 M, so that 27'M is also G-projective. =

3.3. The category of G-projective modules. Before studying the
properties of the category Gproj-A, we fix some notation.

DEFINITION 3.6. A subcategory X of mod A is called resolving if:

X contains proj 4,

X is closed under direct summands,

X is closed under extensions,

X is closed under kernels of epimorphisms.

Let X be a subcategory of mod A. We will use several subcategories of
mod A connected with X (see [ASS] for more details). We set

L= {M e mod A | Ext,(X, M) =0 for any X € X and i > 0},

LXx = {M € mod A | Ext},(M, X) =0 for any X € X and i > 0},
X = {M € mod A | there exists n > 0 and an exact sequence 0 — X,, —
Xp—1— = X1 = Xo— M — 0 with X; € X for 0 <i <n}.

A subcategory ) of X is called Ext-injective in X if ) is contained in X
A subcategory Y of X is called a cogenerator of X if there exists an exact
sequence 0 - X - Y — X' - 0withY € Y and X' € X for any X € X.
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We recall the following result due to Auslander and Buchweitz [ABul,
Theorem 1.1, Proposition 3.6].

LEMMA 3.7. Let X be a resolving subcategory of mod A with Ext-injective
cogenerator VW. Then:

(1) X is contravariantly finite in X ,
(2) W=x+tnX.

Recall that, for subcategories X C X’ C mod A, X is contravariantly
nite in X’ if any M € X’ has a right X-approximation.
y g pp
Concerning the category Gproj-A, we have

ProposITION 3.8 ([T} Proposition 3.7]). The category Gproj-A is a re-
solving subcategory of mod A with Ext-injective cogenerator proj A.

Proof. An easy calculation shows that Gproj-A is a resolving subcate-
gory of mod A. Since proj A is contained in (Gproj-A)*, it is Ext-injective
in Gproj-A. Take any X € Gproj-A. Then X is torsionless, hence we have
an exact sequence 0 - X — P — 27X — 0 with P € proj A by Proposi-
tion Since 271X € Gproj-A, proj A is a cogenerator for Gproj-A. m

4. Stable categories Ay, By, Gproj-/A. In this section, we study cat-
egories containing Gproj-A. We follow the results in [T}, §7] on stable cat-
egories. For a subcategory C of mod A, we denote by C the stable category
of C, that is, the objects of C are the same as those of C, and for objects
M, N € C, the set of morphisms from M to N is defined by

Hom 4 (M, N) = Hom (M, N)/PB4(M, N),

where B (M, N) is the submodule of Hom (M, N) consisting of all homo-
morphisms from M to N factoring through some projective A-module.

4.1. Preliminaries. We record some elementary results for projective
covers and syzygies. Let M € mod A. Suppose that an exact sequence 0 —
K'Y P % M = 0 with P' € proj A is given. Let 0 — K % P M — 0
be a projective cover of M. Then it follows from [AF, 17.17] that there
exist « : P — P’ and m : P’ — P such that ¢ = pm, ma = idp, and
P =Kerm@®Ima with Ima = P. We set P = Kern € proj A and identify
K = (K), respectively, K’ = //(K"). Then the following holds.

LEMMA 4.1. We have K' = o(K) & P, consequently K' = QM & P”.

4.2. On syzygy functors. The functors 2 and 2! are well-behaved
on Gproj-A.
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ProprosiTION 4.2 ([T, Proposition 7.1]). For M, N € Gproj-A, the ho-
momorphisms

Hom ,(M, N) — Hom 4, (2M, 2N),
Hom , (M, N) — Hom 4(2-'M, 27'N)
defined by £2 and 271 are isomorphisms.

Proof. The first isomorphism follows from [ABr, Proposition 2.43]. To
prove the second, we show that for M € mod A there is an exact sequence

(1) 0 — BExti(Tr M, A) = M - Q"Moo P -0

with some P € proj A.

Let 7 : P — M* be a projective cover of M*. Set f = n*0y : M — P*.
It follows from Proposition 2.3]that f is a minimal left proj A-approximation
of M, so that 27 'M = Coker f. Hence, M i> P* 2 07IM — 0 is exact.
Since Im 0y = Im f = Ker g, we get an exact sequence 0 — Im 6y — P* g,
7'M — 0. Since P* is projective, Imfy; = 2027 'M & P with P € proj A
by Lemma From (AF), we have an exact sequence 0 — Ext!(Tr M, A) —
M = M**, which provides an exact sequence (1).

Let M, N € Gproj-A. Then M = Q02 'M @ P and N = 207 'N @ Q,
P,Q € projA. Since 27'M, 27N € Gproj-A by Proposition we can
apply the first isomorphism:

(2) Hom /(27 'M,27'N)=Hom, (202 'M, 2027 'N)=Hom,(M,N). u

REMARK 4.3. The assumption in Proposition that M, N € Gproj-A
is too strong. The conditions which we will find have wider applications.

4.3. Categories A, and Bj. In what follows, we write A, = Ag(A)
and By = Bj(A), for short. Note that, by Proposition Ao N By =
Gproj-A. Following [AB1], we call modules in Ay k-torsion free modules.
The first isomorphism of Proposition is valid if Exty(M,A) = 0, i.e.,
M € By, due to [ABr, Proposition 2.43]. If M € A;, then M = Q0 'M & P
for P € projA by (1) in the proof of Proposition Due to Proposition
we have 271 M € By. Assume further N € A;; then applying the first
isomorphism to 27'M and 27'N, we get (2) above.

Thus, we have shown that if M € A; N B; and N € A; then the two
homomorphisms of Proposition [4.2| are isomorphisms.

Similarly, we can ease the assumption of [T}, Lemma 7.2].

LEMMA 4.4. Let M € mod A and X € Ay NB1. Then
Hom (X, M) = Ext} (X, QM) = Ext} (271X, M).

Proof. X € By implies Hom (X, M) = Ext}(X,2M), and X € A
implies Hom , (X, M) = Ext} (271X, M). =
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5. Category equivalence between A; and Bj. In the previous sec-
tion, we have introduced the categories Ay and By for £ > 1 and considered
some facts on Gproj-/A using these categories. In this section, we prove the
category equivalence Ay and Bi. We expect that these equivalences can
be used to generalize the category Gproj-A. For M, N € mod A, we write
M ~ N whenever M and N are stably isomorphic. Thus M ~ N if and
onlyif M @ P=Z N & Q for P,Q € proj A.

5.1. Category A;

THEOREM 5.1. The following are equivalent for M € mod A:

(1) M € Ay,
(2) M is torsionless;
(3) M ~ Q0 'M.

Proof. We show the following lemma.

LEMMA 5.2.
(1) For any M € mod A, we have 27'M € By.
(2) For any M € mod A, we have 2M € A;.

Proof. (1) This is nothing but Proposition
(2) Ext!(Tr 2M, A)=Ext} (271 Tr M, A)=0 by Lemma and (1). m

Proof of Theorem/[5.1 (1)<»(2): This is an easy consequence of the def-
initions.
(1)=(3): In the proof of Proposition we have provided the exact
sequence
0 — BExty(Tr M, A) = M — QQ Mo P -0,

with some P € proj A. Hence (1)=-(3) holds.

(3)=(1): Suppose that M ~ 20271 M. Then M@ P = 202~ MaQ for all
P,Q € proj A. By Lemma Q07'M € Ay, so Extl(Tr(20271M), A) = 0.
Therefore, Ext!(Tr M, A) = 0. Thus M € A;. =

5.2. Category B;. We will show that the category B is the counterpart
of .Al .

THEOREM 5.3. The following are equivalent for M € mod A:

(1) M € By;
(2) M~ Q710M.

Proof. (1)=(2): Let 0 — 2M % P(M) — M — 0 be a projective cover
of M. Applying (—)*, we get an exact sequence 0 — M* — P(M)* £

(2M)* = 0. Let 0 - K — P & (Q2M)* — 0 be a projective cover of
(2M)*. By a standard argument |ASS| 17.17], we get the diagram
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*

P(M)* 2~
“ =
PoP ——

where P(M)* = P ® P’ with 7 : P(M)* — P such that pr = ¢* and 7’ :
P(M)* — P' by 7'(z) = vy, since any x € P(M)* is uniquely represented as
x = (ug,v;) with uy, € P, v, € P'. Let A= (m,7') : P(M)* — P& P'. Then
A is an isomorphism. Let (p,0) : P& P’ — (£2M)* be (p,0)(u,v) = p(u) for
u € P,v e P'. Take x € P(M)*. Then
(p,0) o (m,7")(z) = (p, 0) o (m, 7')(ua, va) = (p, 0) © (w(ua), 7' (v2))

= pr(uz) = ¢" (ua)

= 0" (ug,vz) (vy € PP = Kerm C Ker ")

= ¢*(x).
Hence ¢* = (p,0)(m,7") = pA, where u = (p,0). Applying (—)* to the

bottom row of the diagram (x), we get the following commutative diagram
with exact rows:

0—— (M) o (P o P
(%) oo
0 OM 07 (p oy Py Coker(u*0n) —— 0
Note that
P @ P* = (PP 25 P(M)™ o P(M).
By calculation, we find that
(%) QIS(IM))\*M*GQM = QE(IM)QO**Q_QM = 01_3(1M)‘9P(M)(P = .

Since p*Opopr is a minimal left proj A-approximation of 2M, we see that
Coker(u*0on) = Coker(p*foy) @ P* = 2710QM & P™*. From the exact

sequence 0 — QM % P(M) — M — 0 and the bottom row of (%*), we get
the following diagram with exact rows:

0 QM 202 pr gy pre Q1M @ P 0
lep(lM) A*
0 QM —*— P(M) M 0

By (#%x), the left square of this diagram commutes. Since GE(IM))\* is an

isomorphism, we have 27 1QM @ P™* = M. Thus 27 QM ~ M.
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(2)=(1): This follows from Lemma[5.2)(1). =

COROLLARY 5.4. Let M € Ay. Then there is an isomorphism of functors
Hom ,(27*M, —) = Hom 4(M, £2(—)) on mod A.

Proof. By assumption, we have Hom ,(M, 22N) = Hom ,(£202 1M, 2N).
By Proposition we can apply [ABr, Proposition 2.43] to obtain
Hom 4 (271 M, N) = Hom (20271 M, 2N). Combining these isomorphisms,
we get Hom 4(£271M, N) = Hom 4(M, 2N). =

5.3. A stable equivalence for k£ = 1. We summarize the above in

THEOREM 5.5. The functors 271 : Ay — By and 2 : By — Ay give a
category equivalence between A; and By .

Proof. Take M € B;. Since 2M € A;, by Lemma we see that
Hom ,(2M, 2N) = Hom (2 12M, N) = Hom ,(M, N)

for any N € B; by Corollary Thus (2 is fully faithful. It is dense by
Theorem 5.1 =

We denote by modp A the full subcategory consisting of all M € mod A
without projective direct summands. Note that, for M, N € modp A, we
have M ~ N if and only if M = N.

5.4. A characterization of A4; and Bj;. We give the following char-
acterization:

PROPOSITION 5.6. Let k > 1.

(1) The following are equivalent for M € modp A:

(1.1) M € Ap;
(1.2) 7'M e Ay for0<i<k—1;
(1.3) there is an exact sequence

0>M-—>Pi—-—>P 0% M0
with P_j € proj A (1 < j < k) such that
PYW—- =P > M —0
18 exact.
(2) The following are equivalent for N € modp A:

(2.1) N € By;

(2.2) 'N € By for0<i<k-—1;

(2.3) for the projective resolution --- — P; — Py — N — 0 of N,
the dual

0N =Pl — - =P — (2°N)* =0

18 exact.



STABLE EQUIVALENCES 21

Proof. (1) We have the following equivalences:
Mc A, & Extfy(2'TrM,A)=0,0<i<k—1
& Bxti(Tr27'M,A)=0,0<i<k-1
& M eA,0<i<k-1.

Hence (1.1)<(1.2) holds. The equivalence (1.1)<(1.3) is proved in [ABi]
Chapter II, §3, Theorem (2.17)].
(2) We have the following equivalences:

N e B & Exth(2'M,A)=0,0<i<k—1
s PMeB,0<i<k-—1.
Hence (2.1)<(2.2) holds. Dualizing a projective resolution of N

sl P p g N S,

we get a complex

Ii_ ;
0—>N*—>P§—>---—>P§_2L>Pk,1f—’“>P,j—>~-.

Dualizing the two exact sequences
P OFN 50 and 0— 2N L P, - QFIN 0,
we get the exact sequences
0— (2°N)* 25 pr
and
() 0= (QFIN) = Pr D (QFN)* — Extly (281N, A) 0.
Since f; = h*g*, there exists a commutative diagram

L, f;
Pk—l

(%) g*l /

(FN)* —— Exth (N, A) —=0

(2.1)=(2.3): By assumption, Ext%,(N,4) = 0 (1 < i < k), and hence
Extf (N, A) = 0 and g* is surjective. Since

Im f;;_; = Ker f;; = Kerh*g* = Kerg",

the sequence 0 - N* — P} — - -- fk—_1> P4 AN (2FN)* — 0 is exact.

(2.3)=(2.1): By assumption, Ext’{(N,A) =0 (1 <i < k —2). We also
get Ext¥ (N, A) = 0, by assumption and (x). By (%), we have Im =
Ker g* = Ker f}/, so that Ext’fl_l(N, A) = 0. Therefore, (2.1) holds. =
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5.5. A stable equivalence for k£ > 1. Now, we show that the functors
2% and 27% define a category equivalence of Aj to By, for k > 1.

THEOREM 5.7. Let k > 1.

(a) If M € Ay, then 27*M € By and 2°Q27%M ~ M.

(b) If N € By, then kN € A and Q7FQEN ~ N.

(c) 2F and 27F define equivalences between the categories A and By,
tnverse to each other.

Proof. (a) Let M € Ay. Then 27""'M € Ay (1 <4 <k), so that
Qi—lQ—kMN Q’i—?(\QQ—l)Q—(k—l)MN Qi—QQ—(k—l)M ~ e U .Q—(k_i+1)M,
For 1 <i <k, we have

Ext’y (27FM, A) = Ext} (2771 027% M, A) = Extl(2-*=+Y 1, 4) = 0,
because —(k—i+1) < 0. Thus 27*M € By. Since 27F1M € A; (1 <i<k),
we have

QZQ*’LM — Qi71(9971)97i+1M ~ (27;71‘(2171']\47
by Theorem [5.1] Continuing this process, we get
Q'027'M ~ Q0Q27'M ~ M.

(b) Let X € mod A. Then Exth(Tr2X,A) = 0 by Lemma Hence
Ext}(Tr 27X, A) = 0 for j > 1. Let N € By. Then 2'N € By for 0 < i <
k — 1, by Proposition [5.6(2).

We now show Q210N ~ QFHLIN Set i = k — 1; then 271N € By,
SO QQk_lNEé. Thus 21202 IN ~ 2FIN, by Theorem Therefore,

QTHIPN = TP )M IN
~ Q—i-‘r?gk—lN ~ e U Q—i+k+1N‘
For 1 <i <k, we have
Ext! (Tr 28N, A) = Ext} (2171 Tr 28N, A) = Ext}(Tr 277 L0QFN, A)
>~ BExtl (Tr 28N, A) = 0,
since k — 7+ 1 > 1. Hence QkNE&. Since QjNeﬁforogj <k-1,
we can prove Q72PN ~ 271N for 0 < i < k. Indeed, we have 2N ~
Q1IN ~ Q74P+ N by Theorem [5.3l Thus 27N ~ Q712N for
1 <4 < k. This holds for ¢ = 0 too.

Thus Q7N ~ Q7HYQLPN) ~ Q7 QIIN v TIOIN A N
for 0 < i < k. Therefore 2 *Q2¥N ~ N. Since (c) is a consequence of (a)
and (b), the proof is complete. =
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6. The properties of a module in A N B;. We finish the paper
by some observations on the categories Ay N By. Following [T], we study
k-subcomplete resolutions of A-modules.

DEFINITION 6.1. Let M € mod A and k£ > 1. A complex

P~:(Pk—>Pk—1—>---—>P1—>P0d—O>P71_>..._>p_k)
is said to be a k-subcomplete resolution of M if:

(a) P; € projA for —k <i <k,
(b) H;(P,) = 0=H!((P)*) for —k <i <k,
(C) Imd(] =M.

The following ‘k-subcomplete version’ of Proposition [3.3] holds.
PROPOSITION 6.2. The following are equivalent for M € mod A:

(a) M € A N By; ‘
(b) Ext%(M,A) =0=Ext\(Tr M, A) for 1 <i<k;

(¢) M admits a k-subcomplete resolution.
Proof. Apply the arguments used in the proof of Proposition "

We now observe the behavior of A, N By, under the action of some func-
tors.

LEMMA 6.3. Let M € A, N\ By. Then Tr M € A, N By.

Proof. Since Ext’(Tr(Tr M), A) = Ext’ (M, A) = 0, we have Tr M € Ay;
and Tr M € By, is obvious. =

LEMMA 6.4.

(a) 2(Ak N By) = Agq1 N B-1.
(b) Q_I(Ak_H N Bk—l) = A, N B.

Proof. Take any M € A N Bi. We will show QM € Agyq1 N Bi—1.
Since M € Ay, we have an exact sequence 0 — M — P — Q7'M — 0
with P € proj A. The long exact sequence obtained from this short exact
sequence by applying (—)* provides the isomorphism

Exty (271 M, A) =2 Ext’ '(M,A) fori>2.
Then
Ext’y (Tr M, A) = Ext’y (27 Tr M, A) = Ext’; ' (Tr M, A) =0

for 2 <i < k4 1. For i = 1, we obtain Ext}(Tr £2M, A) = 0, by Lemma,
and Proposition Thus 2M € Ayy1; and showing QM € Bj,_; is easy.
To prove the converse, take N € Ag11 N Br_1. For 1 <i < k, we obtain

Ext’y (Tr 271N, A) = Ext’, (2 Tr N, A) = Ext'{1(Tr N, A).
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Since N € Agi1, we get Extfl(TrN,A) =0for1 < j < k+ 1. Thus
Extfj‘l(Tr N,A) = 0 for 1 <i+1 < k+1, and hence in particular for
1 <4 < k. Thus Ext}(Tr 271N, A) =0 for 1 < i < k. Hence 27N € A;.
To show that 27'N € By, we note that

(%) Ext) (27N, A) = Ext'{ 1 (2027'N, A) = Ext’ (N, A).

Also, N € Aj1 C A;. By assumption, N € Bi_1, so we obtain Ext? (N, A4)=0
for 1 < j <k — 1. Hence, in (), Ext’; '(N,A) =0 for 1 <i—1<k—1,
i.e., for 2 <i < k. Hence Extil(Q_lN, A)=0for2<i<k. Proposition
yields Ext! (271N, A) = 0, and therefore Ext’ (27N, A) =0 for 1 <i < k.
Thus 2-'N € By,. This finishes the proof of (a). Since (b) is a consequence
of (a), the proof is complete. =

Now, we prove some other properties of the category Ax N B.

PROPOSITION 6.5. Let M € A, N By, and

Po=(Py =Py —- =P =P P ... 5Py

be a k-subcomplete resolution of M. Let a: Py — M be the surjective homo-
morphism induced by dy, and B : M — P_;1 be the inclusion map. Then «
(respectively, B) is a right (respectively, left) proj A-approximation of M.

Proof. 1t is clear that « is a right proj A-approximation. To show that 3
is a left proj A-approximation, take a projective A-module P. Then we have
the commutative diagram

Hom(dp,P) Hom(d1,P)

-+ —> Hom, (P-4, P) Homx (P, P)

Hom(ﬁ’P)l /
Hom(a, P)

Hom (M, P)

Homy (P, P) — - --

with exact top row. Take f € Hom, (M, P). Since ad; = 0, we have
0 = Hom(ady, P)(f) = Hom(d, P) o Hom(a, P)(f).
Hence
Hom(a, P)(f) € Ker Hom(d;, P) = Im Hom(dp, P).

Therefore there exists ¢ € Homy(P-1,P) such that Hom(do, P)(g) =
Hom(a, P)(f). We have fa = gdy = gBa because dy = fa. Since « is
surjective, one has f = gf. Thus Hom(3, P) is surjective, which means that
5 is a left proj A-approximation of M. =

PROPOSITION 6.6. Let k> 1. Then:

(a) Ag N By contains proj A and Gproj-A,

(b) Ay N By, is closed under finite direct sums,
(¢) Ap N By is closed under direct summands.
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Proof. (a) This is an easy consequence of the definitions.

(b) Let M,N € mod Abe in AxNBy. Since Ext’ (M ®N, A) = Ext! (M, A)®
ExtY (N, A) for all i, and by definition of By, we have Exty, (M &N, A) = 0 for
1 < < k. Similarly, Ext’(Tr(M ® N), A) = ExtY (Tr M, A) © ExtY (Tr N, A)
for all ¢, and we get M & N € A N Bg.

(c) Let M, N €mod A with M & N € A, N By. Since 0 = Ext’, (M & N, A)
=~ Exty (M, A) @ Exty(N,A) for 1 < i < k, we have M € By. Similarly,
0 = Ext,(Tr(M @ N), A) = Exty(Tr M, A) @ Ext’(Tr N, A) for 1 <i < k.
Thus, we have M € Aj, and hence M € A, N Bj. m

7. Gorenstein dimension of a module in A; or B;. We show that
a module M in A is G-projective whenever G-dim M < k, and N € By is
G-projective whenever G-dim N < k.

ProproSITION 7.1. Let 0 < k < oo. The following conditions are equiv-
alent for M € Ayg:

(a) G-dimTr M < k;
(b) G-dimTr M = 0.

Proof. Tt is sufficient to prove that (a) implies (b), because the converse
is obvious. By (a), we have G-dim 2F(Tr M) = 0. Since Gproj-A is closed
under 271, we get G-dim 27%02F(Tr M) = 0. By Lemma we have
Q7FQF(Te M)=Tr Q8 Q7FM. Since M € Ay, it follows that 2FQ2=FM ~ M,
by Theorem Hence G-dimTr M = G-dim Tr 2¥Q*M = 0. =

PROPOSITION 7.2. Let 0 <k <oo. The following are equivalent for N € By:

(a) G-dim N < k;

(b) G-dim N = 0.

Proof. (a)=(b): Since G-dim 2¥N = 0, we see G-dim 27*Q2F¥N = 0. By
assumption, we have 27*Q2FN ~ N, so that G-dim N = 0. =

Note added in proof. Our Theorems 5.1, 5.3, 5.5, 5.7 are consequences of
Proposition 1.1.1 of O. Iyama, Higher-dimensional Auslander—Reiten theory
on mazimal orthogonal subcategories, Adv. Math. 210 (2007), 22-50. For the
convenience of the readers, we gave independent direct proofs.
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