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RAREFACTION WAVES IN NONLOCAL
CONVECTION-DIFFUSION EQUATIONS

BY

ANNA PUDEŁKO (Kraków)

Abstract. We consider a nonlocal convection-diffusion equation ut = J ∗ u −
u − uux, where J is a probability density. We supplement this equation with step-like
initial conditions and prove the convergence of the corresponding solutions towards a
rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid
Burgers equation.

1. Introduction. The goal of this work is to study asymptotic proper-
ties of solutions to the Cauchy problem for the nonlocal convection-diffusion
equation

(1.1) ut = Lu− uux, x ∈ R, t > 0,

where the nonlocal operator L is defined by the formula

(1.2) Lu = J ∗ u− u with J ∈ L1(R), J ≥ 0,

and “ * ” denotes convolution with respect to the space variable. We supple-
ment this problem with the step-like initial condition satisfying

(1.3) u(x, 0) = u0(x)→ u± as x→ ±∞,

with some constants u− < u+. The precise meaning of this condition is given
in (2.5) and (2.6) below.

Equation (1.1) with kernel J(x) = 1
2e
−|x| can be obtained from the fol-

lowing system modelling a radiating gas [H]:

(1.4) ut + uux + qx = 0, −qxx + q + ux = 0 for ∈ R, t ≥ 0.

Indeed, the second equation in (1.4) can be formally solved to obtain
q = −J̃ux, with kernel J(x) = 1

2e
−|x|, that is, the fundamental solution of

the operator −d2/dx2+I. Thus, substituting qx = −J̃uxx = u−J ∗u into the
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first equation in (1.4), we obtain an equation which is formally equivalent to
(1.1)–(1.2). The derivation of system (1.4) from the Euler system for a per-
fect compressible fluid coupled with an elliptic equation for the temperature
can be found in [KT].

In this work, we consider more general kernels (see our assumptions (2.4)
below), because the general integral operator Lu = J∗u−umodels long range
interactions and appears in many problems ranging from micro-magnetism
[DGP, DT1, DT2], neural networks [EM], hydrodynamics [R] to ecology
[CMS, Cl, DK, KM, M, SSN]. For example, in some population dynamics
models, such an operator is used to model the dispersal of individuals in
their environment [F1, F2, HMMV]. We also refer the reader to a series of
papers [AB, BFRW, C, CV1, CV2, CD, CDM1] on travelling fronts, and to
[CDM2] on pulsating fronts for the equation ut = J ∗ u− u+ f(x, u).

The equation in (1.1)–(1.2) with the particular kernel J(x) = 1
2e
−|x|

(thus, in the context of modelling radiating gases) with various classes of
initial data has recently been intensively studied. For existence and unique-
ness results, we refer the reader to [KN] and [LM]. In [Ch], Chmaj gave an
answer to an open problem of Serre [S2] concerning existence of travelling
wave solutions to (1.1)–(1.2) with a more general kernel. Here, we refer the
reader to the recent work [CHJ] for generalizations of those results and for
additional references.

The large time behaviour of solutions to (1.1)–(1.2) was considered e.g.
in [KN, S1, L, KT]. In the case of initial data u0 satisfying u0(x) → u± as
x→ ±∞, with u− > u+, Serre [S1] showed the L1-stability of shock profiles.
Asymptotic stability of smooth travelling waves was proved in [KN]. For
initial data u0 ∈ L1(R) ∩ L∞(R), Laurençot [L] showed the convergence
of integrable and bounded weak solutions of (1.1)–(1.2) towards a source-
type solution to the viscous Burgers equation. Here, we also recall recent
works [IR, IISD], where a doubly nonlocal version of (1.1) (namely, with the
Burgers flux replaced by a nonlinear term in convolution form) was studied
with initial conditions from L1(R) ∩ L∞(R).

The large time behaviour of solutions to problem (1.1)–(1.3) when J(x) =
1
2e
−|x| and u− < u+ was studied by Kawashima and Tanaka [KT], where a

specific structure of this model was used to show the convergence of so-
lutions towards rarefaction waves, under suitable smallness conditions on
initial data.

The goal of this work is to generalize the result from [KT] by considering
less regular initial conditions with no smallness assumption and more general
kernels J. To deal with such a problem, we develop methods and tools which
are inspired by those used in [KMX], where the fractal Burgers equation was
studied.
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2. Main result. First, we recall that the explicit function

(2.1) wR(x, t) =


u−, x/t ≤ u−,
x/t, u− ≤ x/t ≤ u+,
u+, x/t ≥ u+,

is called a rarefaction wave, and satisfies the following Riemann problem:

wR
t + wRwR

x = 0,

wR(x, 0) = wR
0 (x) =

{
u−, x < 0,
u+, x > 0,

in the weak (distributional) sense. Moreover, this is the unique entropy so-
lution. Such rarefaction waves appear as asymptotic profiles as t → ∞ of
solutions to the viscous Burgers equation

ut − uxx + uux = 0

supplemented with an initial datum u(x, 0) = u0(x), satisfying u0 − u− ∈
L1((−∞, 0)) and u0−u+ ∈ L1((0,∞)) (cf. [HN, IO] and Lemma 4.3 below).
Below, we use also the regularized problem

wt − wxx + wwx = 0,(2.2)

w(x, 0) = w0(x) =

{
u−, x < 0,
u+, x > 0,

(2.3)

with some constants u− < u+; its solutions are called smooth approximations
of the rarefaction wave (2.1).

The purpose of this paper is to show that weak solutions of the nonlocal
Cauchy problem (1.1)–(1.3) exist for all t ≥ 0 and converge as t→∞ to the
rarefaction wave.

Here, as usual, a function u ∈ L∞(R × [0,∞)) is called a weak solution
to problem (1.1)–(1.3) if for every test function ϕ ∈ C∞c (R× [0,∞)) we have

−
�

R

∞�

0

uϕt dt dx−
�

R

u0(x)ϕ(x, 0) dx =
�

R

∞�

0

uLϕdt dx+
1

2

�

R

∞�

0

u2ϕx dt dx.

In the following, we assume that Lu = J ∗ u− u with

J, |x|2J ∈ L1(R),
�

R

J(x) dx = 1,

J(x) = J(−x) and J(x) ≥ 0 for all x ∈ R.
(2.4)

Moreover, we consider initial conditions satisfying

(2.5) u0 − u− ∈ L1((−∞, 0)) and u0 − u+ ∈ L1((0,∞))

with some constants u− < u+, as well as

(2.6) u0,x ∈ L1(R) and u0,x(x) ≥ 0 a.e. in R.



30 A. PUDEŁKO

Now, we formulate the main result of this work on the rate of convergence
of solutions to problem (1.1)–(1.3) towards the rarefaction wave (2.1).

Theorem 2.1. Assume that the kernel J satisfies (2.4) and the initial
datum u0 has the properties stated in (2.5) and (2.6). Then there exists a
unique weak solution u = u(x, t) of problem (1.1)–(1.3) with the following
property: for every p ∈ [1,∞] there is a constant C > 0 such that

(2.7) ‖u(t)− wR(t)‖p ≤ Ct−(1−1/p)/2[log(2 + t)](1+1/p)/2

for all t > 0.

Remark 2.1. Although the nonlocal operator Lu = J ∗ u − u has no
regularizing properties like e.g. the Laplace operator, we still have global-
in-time continuous solutions, because, for a nondecreasing initial condition,
the nonlinear term in equation (1.1) does not develop shocks in finite time.

The paper is organized as follows. In the next section, we gather re-
sults concerning the equation regularized by the usual viscosity term, and
auxiliary lemmas on the properties of the nonlocal operator L. The main
result on the large time behaviour of solutions to the regularized problem
is proved in Section 4. The convergence of regularized solutions to a weak
solution of the nonlocal problem (1.1)–(1.3) and Theorem 2.1 are proved in
Section 5.

Notation. We denote by ‖ · ‖p the Lp-norm of a function defined on R.
Integrals without integration limits are over R. Several numerical constants
are denoted by C.

3. Regularized problem. In this section, we consider the regularized
problem

ut = εuxx + Lu− uux, x ∈ R, t > 0,(3.1)
u(x, 0) = u0(x),(3.2)

with fixed ε > 0. Our first goal is to show that this initial value problem has
a unique smooth global-in-time solution.

Theorem 3.1 (Existence of solutions). If u0 ∈ L∞(R) and Lu =
J ∗ u − u, where the kernel J satisfies (2.4), then the regularized problem
(3.1)–(3.2) has a solution uε ∈ L∞(R× [0,∞]). Moreover, this solution sat-
isfies:

(i) u ∈ C∞(R×(0,∞)) and all its derivatives are bounded on R×(t0,∞)
for all t0 > 0,

(ii) for all (x, t) ∈ R× [0,∞),

(3.3) ess inf
x∈R

u0 ≤ uε(x, t) ≤ ess sup
x∈R

u0,
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(iii) u satisfies equation (3.1) in the classical sense,
(iv) u(t) → u0 as t → 0, in L∞(R) weak-∗ and in Lp

loc(R) for all
p ∈ [1,∞).

This is a unique solution of problem (3.1)–(3.2) in the sense of the integral
formulation (3.6) below.

In the following theorem we collect other properties of solutions to the
regularized problem.

Theorem 3.2. Assume that the kernel J satisfies (2.4). Let uε be the
solution of the regularized problem corresponding to an initial condition u0
satisfying (2.5). If u0,x ∈ L1(R) then

(3.4)
�
uεx(x, t) dx =

�
u0,x(x) dx.

If u0,x ≥ 0 then

uεx(x, t) ≥ 0 for all x ∈ R and t ≥ 0.

Moreover, for two initial conditions u0, ū0 satisfying (2.5)–(2.6), the corre-
sponding solutions uε, ūε satisfy

(3.5) ‖uε(t)− ūε(t)‖1 ≤ ‖u0 − ū0‖1.

Proof of Theorem 3.1. Following the usual procedure based on the Du-
hamel principle, we rewrite problem (3.1)–(3.2) in the integral form

uε(x, t) = (Gε(·, t) ∗ uε0)(x) +

t�

0

(Gε(·, t− s) ∗ Luε(·, s))(x) ds(3.6)

−
t�

0

(Gε(·, t− s) ∗ uε(·, s)uεx(·, s))(x) ds,

where Gε(x, t) = (4πεt)−1/2e−|x|
2/4εt is the fundamental solution of the heat

equation ut = εuxx. It is a completely standard reasoning (details can be
found for example in [DGV, Section 5]), based on the Banach contraction
principle, that the integral equation (3.6) has a unique local-in-time regular
solution on [0, T ] with properties stated in (i), (iii) and (iv). Here, one should
notice that the second term on the right hand side of (3.6) does not pose any
problem in adapting the arguments from [DGV, Section 5]. This is due to
the fact that the convolution operator L is bounded on L∞(R). Hence, we
skip these details. This solution is global-in-time because of estimates (3.3)
which we are going to prove below.

In the proof of the comparison principle expressed by inequalities (3.3)
we adapt ideas described in [K]. This argument is based on the following
auxiliary results.
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Lemma 3.1. Let ϕ ∈ C3
b (R). If a sequence {xn} ⊂ R satisfies ϕ(xn) →

supx∈R ϕ(x), then

(i) limn→∞ ϕ
′(xn) = 0,

(ii) lim supn→∞ ϕ
′′(xn) ≤ 0,

(iii) lim supn→∞ Lϕ(xn) ≤ 0.

Proof. Since ϕ′′ is bounded, there exists C > 0 such that

(3.7) sup
x∈R

ϕ(x) ≥ ϕ(xn − z) ≥ ϕ(xn)− ϕ′(xn)z − Cz2

for every z ∈ R. Since the sequence {ϕ′(xn)} is bounded, passing to a subse-
quence we can assume that ϕ′(xn) → p. Consequently, passing to the limit
in (3.7) we obtain

0 ≥ −pz − Cz2 for every z ∈ R,
which immediately implies p = 0.

To prove (ii), we use an analogous argument involving the inequality

(3.8) sup
x∈R

ϕ(x) ≥ ϕ(xn − z) ≥ ϕ(xn)− ϕ′(xn)z +
1

2
ϕ′′(xn)z2 − Cz3

for all z > 0, where C = 1
6‖ϕ

′′′‖∞. Passing to the upper limit in (3.8),
denoting q = lim supn→∞ ϕ

′′(xn) and using (i) we obtain

0 ≥ 1

2
qz − Cz3 for all z > 0.

Choosing z > 0 arbitrarily small we deduce that q ≤ 0, which completes the
proof of (ii).

Now, we prove that lim supn→∞ Lϕ(xn) ≤ 0. Note first that by the defi-
nition of {xn} we have

ϕ(xn − z)− ϕ(xn) ≤ sup
x∈R

ϕ(x)− ϕ(xn)→ 0 as n→∞.

Hence, lim supn→∞(ϕ(xn − z)− ϕ(xn)) ≤ 0. Applying the Fatou lemma to

Lϕ(xn) =
�
(ϕ(xn − z)− u(xn))J(z) dz

ends the proof of (iii).

We are now in a position to prove the comparison principle for equations
with the nonlocal operator L.

Proposition 3.1. Assume that u ∈ Cb(R× [0, T ]) ∩C3
b (R× [ε, T ]) is a

solution of the equation

(3.9) ut = uxx + Lu− b(x, t)ux,
where L is the nonlocal convolution operator given by (1.2) and b = b(x, t)
is a given and sufficiently regular real-valued function. Then

u(x, 0) ≤ 0 implies u(x, t) ≤ 0 for all x ∈ R, t ∈ [0, T ].
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Proof. The function Φ(t) = supx∈R u(x, t) is well-defined and continu-
ous. Our goal is to show that Φ is locally Lipschitz and Φ′(t) ≤ 0 almost
everywhere. To show the Lipschitz continuity of Φ, for every ε > 0 we choose
xε such that

sup
x∈R

u(x, t) = u(xε, t) + ε.

Now, we fix t, s ∈ I, where I ⊂ (0, T ) is a closed bounded interval and we
suppose (without loss of generality) that Φ(t) ≥ Φ(s). Using the definition
of Φ and regularity of u we obtain

0 ≤ Φ(t)− Φ(s) = sup
x∈R

u(x, t)− sup
x∈R

u(x, s)

≤ ε+ u(xε, t)− u(xε, s)

≤ ε+ sup
x∈R
|u(x, t)− u(x, s)|

≤ ε+ |t− s| sup
x∈R, t∈I

|ut(x, t)|.

Since ε > 0 and t, s ∈ I are arbitrary, we immediately see that Φ is locally
Lipschitz, hence, by the Rademacher theorem, differentiable almost every-
where.

Now, let us differentiate Φ(t) = supx∈R u(x, t) with respect to t > 0. By
the Taylor expansion, for 0 < s < t, we have

u(x, t) = u(x, t− s) + sut(x, t) + Cs2.

Hence, using (3.9), we obtain

(3.10) u(x, t)≤ sup
x∈R

u(x, t−s)+s
(
uxx(x, t)+Lu(x, t)−b(x, t)ux(x, t)

)
+Cs2.

Substituting in (3.10) x = xn, where u(xn, t) → supx∈R u(x, t) as n → ∞,
and passing to the limit using Lemma 3.1, we obtain

sup
x∈R

u(x, t) ≤ sup
x∈R

u(x, t− s) + Cs2,

which can be transformed into
Φ(t)− Φ(t− s)

s
≤ Cs.

For s↘ 0, we obtain Φ′(t) ≤ 0 for those t at which Φ is differentiable.

Proof of (3.3). Let m = ess supx∈R u0. Then, since Lm = 0, the function
vε(x, t) = uε(x, t)−m satisfies

vεt = vεxx + Lvε − (vε +m)vεx.

Now, we use Proposition 3.1 with b(x, t) = vε(x, t) + m to conclude that
vε(x, t) ≤ 0, so uε(x, t) ≤ m for all x ∈ R and t ∈ [0, T ], for arbitrary
T > 0. The proof of ess infx∈R u0 ≤ uε(x, t) is completely analogous, hence
we skip it.
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Proof of Theorem 3.2. In order to show (3.4), we differentiate the Duha-
mel formula (3.6) to obtain

uεx(x, t) = (Gε(·, t) ∗ uε0,x)(x) +

t�

0

(Gε(·, t− s) ∗ Luεx(·, s))(x) ds(3.11)

−
t�

0

(Gε
x(·, t− s) ∗ uε(·, s)uεx(·, s))(x) ds.

Then, integrating (3.11) over R, we have

(3.12)
�
uεx(x, t) dx

=
�
(Gε(·, t) ∗ uε0,x)(x) dx+

t�

0

�
(Gε(·, t− s) ∗ Luεx(·, s))(x) dx ds

−
t�

0

�
(Gε

x(·, t− s) ∗ uε(·, s)uεx(·, s))(x)) dx ds.

Since
	
Gε(x, t) dx = 1, the second term on the right hand side of (3.12) is

zero by (4.3). Now, the equality
	
Gε

x(x, t) dx = 0 implies that the last term
on the right hand side of (3.12) is zero, and that ends the proof of (3.4).

To prove nonnegativity of uεx, we first differentiate (3.1) with respect to x
to obtain

(3.13) (uεx)t = ε(uεxx)x + Luεx − (uεuεx)x, x ∈ R, t > 0.

Next, we multiply (3.13) by (uεx)− = max{−uεx, 0}, and we integrate the
resulting equation over R, to obtain�

(uεx)t(u
ε
x)− dx = ε

�
(uεxx)x(uεx)− dx(3.14)

+
�
(uεx)−Luεx dx−

�
(uεuεx)x(uεx)− dx.

Now, the left hand side of (3.14) is equal to 1
2

d
dt

	
uε
x≤0

[(uεx)−]2 dx. Straightfor-
ward calculations, based on integration by parts in the first and third terms
of the right hand side of (3.14), lead to

1

2

d

dt

�

uε
x≤0

[(uεx)−]2 dx = −
�

uε
x≤0

[(uεx)−]2 dx+
�

uε
x≤0

(uεx)−Luεx dx

− 1

2

�

uε
x≤0

[(uεx)−]3 dx.

By Lemmas 4.2 and 4.1,
	
uε
x≤0

(uεx)−Luεx dx ≤ 0. As a consequence,

1

2

d

dt

�

uε
x≤0

[(uεx)−]2 dx ≤ 0,
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which immediately implies
�

uε
x≤0

[(uεx)−]2 dx ≤
�

uε
x≤0

[(u0,x)−]2 dx.

By nonnegativity of u0,x imposed in (2.6) we have (uεx)− = 0 on {uεx ≤ 0},
and thus uεx(x, t) ≥ 0 for all x ∈ R and t > 0.

To prove the L1-contraction property (3.5) it is sufficient to repeat the
reasoning from Lemma 4.4 below, hence we do not reproduce it here.

4. Convergence of regularized solutions to a rarefaction wave.
Now, we show that a solution to the regularized problem satisfies certain
decay estimates and converges to a rarefaction wave with all estimates inde-
pendent of ε > 0. The main result of this section reads as follows.

Theorem 4.1. Let u = uε(x, t) be the solution of the regularized prob-
lem (3.1)–(3.2), with the kernel J satisfying (2.4) and the initial data u0
satisfying (2.5)–(2.6), from Theorem 3.1. For every p ∈ [1,∞] there exists
C = C(p) > 0 independent of t and of ε > 0 such that

(4.1) ‖uεx(t)‖p ≤ t−1+1/p‖u0,x‖1/p1

and

(4.2) ‖uε(t)− wR(t)‖p ≤ Ct−(1−1/p)/2[log(2 + t)](1+1/p)/2

for all t > 0, where wR = wR(x, t) is the rarefaction wave (2.1).

Before proving this theorem, we establish preliminary inequalities involv-
ing the nonlocal operator L.

Lemma 4.1. For every ϕ ∈ L1(R) we have Lϕ ∈ L1(R). Moreover,
�
Lϕdx = 0,(4.3)

�
Lϕ sgnϕdx ≤ 0.(4.4)

Proof. The function Lϕ is integrable by the Young inequality and the
calculation

‖Lϕ‖1 ≤ ‖ϕ‖1 + ‖J ∗ ϕ‖1 ≤ ‖ϕ‖1(1 + ‖J‖1).

Since
	
J(x) dx = 1, we obtain (4.3) immediately by applying the Fubini

theorem. Since Lϕ = J ∗ ϕ − ϕ, to prove (4.4) it is sufficient to use the
estimates∣∣∣ � J ∗ ϕ · sgnϕdx

∣∣∣ ≤ � �
J(y)|ϕ(x− y)| dx dy =

�
|ϕ(x)| dx

by the Fubini theorem and assumptions (2.4).
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Lemma 4.2. Let ϕ ∈ L1(R) and let g ∈ C2(R) be a convex function.
Then

(4.5) Lg(ϕ) ≥ g′(ϕ)Lϕ a.e.

Proof. The convexity of g leads to the inequality

g(ϕ(x− y))− g(ϕ(x)) ≥ g′(ϕ(x))[ϕ(x− y)− ϕ(x)].

Multiplying it by J(y) and integrating with respect to y over R we ob-
tain (4.5).

For simplicity of exposition, we first formulate some auxiliary lemmas. We
start with known results concerning the initial value problem for the viscous
Burgers equation (2.2)–(2.3). The following estimates can be deduced from
the explicit formula for solutions to problem (2.2)–(2.3). We refer the reader
to [HN] for detailed calculations, and for additional improvements to [KT].

Lemma 4.3. Problem (2.2)–(2.3) with u− < u+ has a unique solution
w(x, t) satisfying u− < w(t, x) < u+ and wx(t, x) > 0 for all (x, t) ∈
R × (0,∞). Moreover, for every p ∈ [1, ∞], there is a constant C =
C(p, u−, u+) > 0 such that

‖wx(t)‖p ≤ Ct−1+1/p, ‖wxx(t)‖p ≤ Ct−3/2+1/(2p)

and
‖w(t)− wR(t)‖p ≤ Ct−(1−1/p)/2,

for all t > 0, where wR(x, t) is the rarefaction wave (2.1).

Our goal is to estimate ‖uε(t)− w(t)‖p where uε = uε(x, t) is a solution
of the regularized problem (3.1)–(3.2) and w = w(x, t) is a smooth approxi-
mation of the rarefaction wave wR. First, we deal with the L1-norm.

Lemma 4.4. Assume that uε = uε(x, t) is the solution of problem
(3.1)–(3.2) from Theorem 3.1. Let w = w(x, t) be a smooth approximation of
a rarefaction wave. Then there exists a constant C > 0 independent of t and
of ε > 0 such that

‖uε(t)− w(t)‖1 ≤ C log(2 + t) for all t > 0.

Proof. The function vε(x, t) = uε(x, t)− w(x, t) satisfies the equation

vεt − Lvε +

(
(vε)2

2
+ vεw

)
x

= Lw − wxx.

We multiply it by sgn vε and integrate over R to obtain

(4.6)
d

dt

�
|vε| dx−

�
Lvε sgn vε dx+

1

2

�
((vε)2 + 2vεw)x sgn vε dx

=
�
(Lw − wxx) sgn vε dx.
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By Lemma 4.1, the second term on the left hand side of (4.6) is nonnega-
tive. For the third term, we approximate the sgn function by a smooth and
nondecreasing function ϕ = ϕ(x). Thus, we obtain

�
[(vε)2 + 2vεw]xϕ(vε) dx = −

�
((vε)2 + 2vεw)ϕ′(vε)vεx dx

= −
�
Ψ(vε)x dx+

�
wxΦ(vε) dx,

where Ψ(s) =
	s
0 z

2ϕ′(z) dz and Φ(s) =
	s
0 2zϕ′(z) dz. Here, the first term on

the right hand side equals zero and the second one is nonnegative because
wx ≥ 0 and Φ(s) ≥ 0 for all s ∈ R. Hence, an approximation argument gives	

[(vε)2 + 2vεw]x sgn vε dx ≥ 0.
Now, we estimate the right hand side of (4.6). First, we notice that using

the Taylor formula, we have

Lw(x, s) = (J ∗ w − w)(x, s) =
�
J(y)[w(x− y, s)− w(x, s)] dy

=
�
J(y)ywx(x, s) dy +

�
J(y)

y2

2
wxx(x+ θy, s) dy,

where
	
J(y)ywx(x, s) dy = wx(x, s)

	
J(y)y dy = 0 by the symmetry assump-

tion from (2.4). Therefore, by assumption (2.5),∣∣∣ � (Lw − wxx) sgn vε dx
∣∣∣ ≤ �

J(y)
y2

2

�
|wxx(x+ θy, s)| dx dy + ‖wxx‖1

≤ C‖wxx‖1.

Applying these estimates to (4.6) we obtain

(4.7)
d

dt
‖vε(t)‖1 ≤ C‖wxx(t)‖1.

Now, by Lemma 4.3, we have ‖wxx(t)‖1 ≤ Ct−1 for all t > 0, which combined
with (4.7) and integration completes the proof of Lemma 4.4.

Now, we are in a position to prove the convergence of regularized solutions
to a rarefaction wave.

Proof of Theorem 4.1. Part I. Decay estimates. In the case p = 1, we use
the equality (3.4) from Theorem 3.2. Since uεx ≥ 0, we have

(4.8) ‖∂xuε(t)‖1 = ‖∂xu0‖1 for all t ≥ 0.

In order to show (4.1) for p ∈ (1,∞), we multiply (3.13) by (uεx)p−1 and
integrate the resulting equation over R to obtain

1

p

d

dt

�
(uεx)p dx = ε

�
uεxx(uεx)p−1 dx+

�
(uεx)p−1Luεx dx(4.9)

−
�
((uεx)2 + uεuεx)(uεx)p−1 dx.
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The first integral on the right-hand side of (4.9) is equal to (ε/p)
	

[(uεx)p]x dx.
Thus, since uεx ∈ L1(R), this term equals zero. The second integral on the
right-hand side of (4.9) is nonpositive by (4.5) and (4.3) as well as by the
assumptions (2.4) on the kernel of L. Thus, since uεx is integrable and non-
negative, integrating by parts in the third integral of the right-hand side
of (4.9),

�
((uεx)2 + uεuεx)(uεx)p−1 dx =

�
(uεx)p+1 dx+

�
uε
(

(uεx)p

p

)
x

dx

=

(
1− 1

p

) �
(uεx)p+1,

we arrive at

(4.10)
1

p

d

dt
‖uεx(t)‖pp ≤ −

(
1− 1

p

)
‖uεx(t)‖p+1

p+1.

Combining this with the interpolation inequality

‖uεx(t)‖p2/(p−1)p ≤ ‖uεx(t)‖p+1
p+1‖u

ε
x(t)‖1/(p−1)1

and with the conservation of L1-norm in (4.8) we obtain the differential
inequality

(4.11)
d

dt
‖uεx(t)‖pp ≤ −(p− 1)(‖uεx(t)‖pp)p/(p−1)‖u0,x(t)‖−1/(p−1)1 .

Now the decay estimate (4.1) results from (4.11) by standard calculations.
The case p =∞ of (4.1) follows by letting p→∞.

Part II. Convergence towards a rarefaction wave. First, we recall that by
Lemma 4.3 the large time asymptotics of w(t) is described in Lp(R) by the
rarefaction wave wR(t), and the rate of this convergence is t−1/2(1−1/p). Thus,
it is enough to estimate the Lp-norm of the difference of the solution uε of
problem (3.1)–(3.2) and of the smooth approximation of the rarefaction wave
satisfying (2.2)–(2.3). To this end, using the Gagliardo–Nirenberg–Sobolev
inequality

‖v‖p ≤ C‖vx‖a∞‖v‖1−a1 ,

valid for every 1 < p ≤ ∞ and for a = 1
2(1 − 1/p), together with (4.1) and

Lemma 4.3, we have

‖uε(t)− w(t)‖p ≤ C(‖uεx(t)‖∞ + ‖wx(t)‖∞)a‖uε(t)− w(t)‖1−a1

≤ Ct−a‖uε(t)− w(t)‖1−a1 .

Finally, the logarithmic estimate of the L1-norm from Lemma 4.4 completes
the proof.
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5. Passage to the limit ε → 0. Here, we prove a result on the con-
vergence as ε → 0 of solutions uε for the regularized problem (3.1)–(3.2)
towards a weak solution to problem (1.1)–(1.3).

Theorem 5.1. Let the assumptions on the initial data u0 and the ker-
nel J from (2.4)–(2.6) hold true, and let uε = uε(x, t) be a solution to prob-
lem (3.1)–(3.2) with ε > 0. Then there exists a sequence εn → 0 such that
uεn → u in C([t1, t2], L

1
loc(R)) for every t2 > t1 > 0, as well as uεn → u a.e.

in R× (0,∞), where u is a weak solution of problem (1.1)–(1.3).

In the proof of this theorem, the following version of the Aubin–Lions–
Simon compactness theorem will be used.

Theorem 5.2. Let T > 0, 1 < p ≤ ∞, and 1 ≤ q ≤ ∞. Assume that
Y ⊂ X ⊂ Z are Banach spaces such that Y is compactly embedded in X, and
X is continuously embedded in Z. If A is a bounded subset of W 1,p([0, T ], Z)
and of Lq([0, T ], Y ), then A is relatively compact in Lq([0, T ], X), and also
in C([0, T ], X) if q =∞.

The proof of Theorem 5.2 can be found in [S].

Proof of Theorem 5.1. First, we show the relative compactness of the
family F = {uε : ε ∈ (0, 1]} in the space C((0,∞), L1

loc(R)), and next we
pass to the limit ε→ 0, using the Lebesgue dominated convergence theorem.

Step 1. We check the assumptions of the Aubin–Lions–Simon theorem
in the case p = q = ∞, Y = W 1,1(K), A = 1K×[t1,t2]F , X = L1(K)

and Z = (C2
K)∗, with arbitrary t2 > t1 > 0, where K ⊂ R is a compact

set and (C2
K)∗ is the topological dual to the space of C2 functions with

compact support inK (with its natural norm). First, we notice that L1(K) is
obviously continuously embedded in (C2

K)∗, and by the Rellich–Kondrashov
theorem, W 1,1(K) is compactly embedded in L1(K). By (3.3),∣∣∣ �

K

uε(t)ϕdx
∣∣∣ ≤ ‖ϕ‖C2

K
‖u0‖∞|K|

for every ϕ ∈ C∞c (R). Hence, the family F is bounded in L∞([t1, t2], (C
2
K)∗).

Now, we check that {uεt} is bounded in L∞([t1, t2], (C
2
K)∗). To this end,

we multiply (3.1) by ϕ ∈ C∞c (R) and integrate over R. Integration by parts
yields

(5.1)
∣∣∣ �
K

uεt (t)ϕdx
∣∣∣ ≤ ‖ϕ‖C2

K

(
ε
�

K

|uε| dx+
�

K

|Luε| dx+
�

K

(uε)2 dx
)
.

By assumption on J in (2.4), the Young inequality, and (3.3), the right-hand
side of (5.1) can be estimated by ‖ϕ‖C2

K
‖u0‖∞|K|

(
‖J‖1 + 1 + ε+ 1

2‖u0‖∞
)
.

Now, again by (3.3) we have
	
K |u

ε(t)| dx ≤ ‖u0‖∞|K|. Moreover, from
the decay estimate (4.1) for p = ∞ we obtain

	
K |u

ε
x(t)| dx ≤ (1/t1)|K|.
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All these estimates imply that F is bounded in L∞([t1, t2],W
1,1(K)). Thus,

the Aubin–Lions–Simon theorem ensures that F is relatively compact in
C([t1, t2], L

1(K)) for all t2 > t1 > 0 and all compact sets K ⊂ R.

Step 2. We deduce from Step 1 and from the Cantor diagonal argument
that there exists a sequence εn → 0 and a function u ∈ C((0,∞), L1

loc(R))

such that uεn converges as n→∞ to u in C([t1, t2], L
1(K)) for all t2 > t1 > 0

and all compact K ⊂ R. Up to another subsequence, we can also assume
that uεn → u a.e. on R×(0,∞). This convergence and inequality (3.3) imply
that u ∈ L∞(R× (0,∞)).

Now, we prove that u is a weak solution of problem (1.1)–(1.3). To this
end, we multiply (1.1) by ϕ ∈ C∞c (R× [0,∞)), and integrating the resulting
equation over R× [0,∞) and integrating by parts we obtain

(5.2) −
�

R

∞�

0

uεnϕt dt dx−
�

R

u0(x)ϕ(x, 0) dx

= ε
�

R

∞�

0

uεnϕxx dt dx+
�

R

∞�

0

uεnLϕdt dx+
1

2

�

R

∞�

0

(uεn)2ϕx dt dx.

Thus, since uεn → u a.e. as n → ∞, since the sequence {uεn} is bounded
in L∞-norm by ‖u0‖∞, and since Lϕ is integrable, the Lebesgue dominated
convergence theorem allows us to pass to the limit in (5.2). This completes
the proof of Theorem 5.1.

Proof of Theorem 2.1. Denote by uεn the solution of the regularized
problem (3.1)–(3.2) and by u a weak solution of problem (1.1)–(1.3). By
Theorem 5.1, we know that uεn → u a.e. on R × (0,∞) for a sequence
εn → 0. Therefore, by the Fatou lemma and Theorem 4.1, for each R > 0
and p ∈ [1,∞] and for all t > 0 we have

‖u(t)− wR(t)‖Lp(−R,R) ≤ lim inf
εn→0

‖uεn(t)− wR(t)‖Lp(−R,R)

≤ Ct−(1−1/p)/2[log(2 + t)](1+1/p)/2.

Since R > 0 is arbitrary and the right-hand side does not depend on R, we
complete the proof of (2.7) by letting R→∞.

Since solutions of the regularized problem have the L1-contraction prop-
erty stated in Theorem 3.2, by an analogous passage to the limit εn → 0 as
described above, we obtain an L1-contraction inequality for weak solutions
to the nonlocal problem (1.1)–(1.3). Hence the weak solution to (1.1)–(1.3)
is unique.
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