A CONSTRUCTION OF THE HOM-YETTER-DRINFELD CATEGORY

BY
HAIYING LI and TIANSHUI MA (Xinxiang)

Abstract

In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter-Drinfeld category ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation and ${ }_{H}^{H} \mathbb{Y D}$ is a pre-braided tensor category, where (H, β, S) is a Hom-Hopf algebra. Furthermore, we show that ($A_{\circ}^{\natural} H, \alpha \otimes \beta$) is a Radford biproduct Hom-Hopf algebra if and only if (A, α) is a Hom-Hopf algebra in the category ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Finally, some examples and applications are given.

1. Introduction. The motivation to introduce Hom-type algebras comes from examples related to q-deformations of Witt and Virasoro algebras, which play an important role in physics, mainly in conformal field theory. Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have been intensively investigated in the literature recently: see $2,3,5,8-$ $11,16-19,24-32$. Hom-algebras are generalizations of algebras obtained by a twisting map, which have been introduced for the first time by Makhlouf and Silvestrov 18. Here associativity is replaced by Hom-associativity; Homcoassociativity for a Hom-coalgebra can be considered in a similar way.

Yau 24, 28] introduced and characterized the concept of module Homalgebras as a twisted version of usual module algebras, and the dual version (i.e. comodule Hom-coalgebras) was studied by Zhang [31]. Based on Yau's definition of module Hom-algebras, Ma-Li-Yang [11] constructed smash product Hom-Hopf algebras $(A \sharp H, \alpha \otimes \beta)$ generalizing Molnar's smash product (see $[13]$), gave the cobraided structure (in the sense of Yau's definition in $[27])$ on $(A \curvearrowleft H, \alpha \otimes \beta)$, and also considered the case of twist tensor product Hom-Hopf algebras. Makhlouf and Panaite [16] defined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras and derived the constructions of twistors, pseudotwistors, twisted tensor product and smash product in the Hom-case in (17].

Yetter-Drinfeld modules are known to be at the origin of a very vast family of solutions to the Yang-Baxter equation. Let H be a bialgebra, and

2010 Mathematics Subject Classification: 16T05, 81R50.
Key words and phrases: Hom-smash (co)product, Hom-Yetter-Drinfeld category, Radford biproduct, Hom-Yang-Baxter equation.
A a left H-module algebra and a left H-comodule coalgebra. Radford 20 gave a construction of a bialgebra (called a Radford biproduct bialgebra) by combining the smash product algebra $A \# H$ with the smash coproduct coalgebra $A \times H$. Majid 14,15 made the following conclusion: A is a bialgebra in the Yetter-Drinfeld category ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$ if and only if $A \star H$ is a Radford biproduct. The Radford biproduct plays an important role in the lifting method for the classification of finite-dimensional pointed Hopf algebras (see [1]).

In this paper, we introduce the Hom-Yetter-Drinfeld category ${ }_{H}^{H} \mathbb{Y D}$ via the Radford biproduct Hom-Hopf algebra, and prove that the Hom-YetterDrinfeld modules can provide solutions of the Hom-Yang-Baxter equation. Furthermore, we show that $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta\right)$ is a Radford biproduct Hom-Hopf algebra if and only if (A, α) is a Hom-Hopf algebra in the category ${ }_{H}^{H} \mathbb{Y D}$.

This article is organized as follows. In Section 2, we recall some definitions and results which will be used later. Let (H, β) be a Hom-bialgebra, and (A, α) a left (H, β)-module Hom-algebra and a left (H, β)-comodule Hom-coalgebra. In [11], the smash product Hom-algebra $(A \natural H, \alpha \otimes \beta)$ was constructed. In Section 3, we first define a smash coproduct Hom-coalgebra $(A \diamond H, \alpha \otimes \beta)$ (see Proposition 3.1), then derive necessary and sufficient conditions for $(A \natural H, \alpha \otimes \beta)$ and $(A \diamond H, \alpha \otimes \beta)$ to be a Hom-bialgebra, which is called the Radford biproduct Hom-bialgebra and denoted by $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta\right)$ (see Theorems 3.3, 3.6). In Section 4, we introduce the Hom-Yetter-Drinfeld category ${ }_{H}^{H} \mathbb{Y D}$ (see Definition 4.1,4.2), which is different from the one defined by Makhlouf and Panaite [16], the one defined by Chen and Zhang [5] and the one defined by Liu and Shen [9]. We also prove that Hom-YetterDrinfeld modules can provide solutions of the Hom-Yang-Baxter equation in the sense of Yau's definition in [26, 29, 30] (see Proposition 4.3) and that ${ }_{H}^{H} Y \mathbb{Y D}$ is a pre-braided tensor category (see Theorem 4.7). Furthermore, we deduce that $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta\right)$ is a Radford biproduct Hom-Hopf algebra if and only if (A, α) is a Hom-Hopf algebra in the category ${ }_{H}^{H} \mathbb{Y D}$ (see Theorem 4.8), which generalizes Majid's result [14, 15]. In the last section, some examples and applications are given.

Throughout this paper we freely use the Hopf algebra and coalgebra terminology introduced in $[6,21,23]$.

The authors have been informed by the Editor that paper [4] related to the subject of our paper is accepted for publication.
2. Preliminaries. Throughout this paper, we follow the definitions and terminology of $[7,21,24,26,31]$, with all algebraic systems supposed to be over the field K. Given a K-space M, we write id_{M} for the identity map on M.

We now recall some useful definitions.

Definition 2.1. A Hom-algebra is a quadruple $\left(A, \mu, 1_{A}, \alpha\right)$ (abbr. (A, α)), where A is a K-linear space, $\mu: A \otimes A \rightarrow A$ is a K-linear map, $1_{A} \in A$ and α is an automorphism of A, such that
(HA1) $\alpha\left(a a^{\prime}\right)=\alpha(a) \alpha\left(a^{\prime}\right), \alpha\left(1_{A}\right)=1_{A}$,
(HA2) $\alpha(a)\left(a^{\prime} a^{\prime \prime}\right)=\left(a a^{\prime}\right) \alpha\left(a^{\prime \prime}\right), a 1_{A}=1_{A} a=\alpha(a)$, for all $a, a^{\prime}, a^{\prime \prime} \in A$. Here we use the notation $\mu\left(a \otimes a^{\prime}\right)=a a^{\prime}$.

Let (A, α) and (B, β) be two Hom-algebras. Then $(A \otimes B, \alpha \otimes \beta)$ is a Hom-algebra (called the tensor product Hom-algebra) with multiplication $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}$ and unit $1_{A} \otimes 1_{B}$.

Definition 2.2. A Hom-coalgebra is a quadruple ($C, \Delta, \varepsilon_{C}, \beta$) (abbr. (C, β)), where C is a K-linear space, $\Delta: C \rightarrow C \otimes C, \varepsilon_{C}: C \rightarrow K$ are K-linear maps, and β is an automorphism of C, such that
$(\mathrm{HC} 1) \beta(c)_{1} \otimes \beta(c)_{2}=\beta\left(c_{1}\right) \otimes \beta\left(c_{2}\right), \varepsilon_{C} \circ \beta=\varepsilon_{C}$,
$(\mathrm{HC} 2) \beta\left(c_{1}\right) \otimes c_{21} \otimes c_{22}=c_{11} \otimes c_{12} \otimes \beta\left(c_{2}\right), \varepsilon_{C}\left(c_{1}\right) c_{2}=c_{1} \varepsilon_{C}\left(c_{2}\right)=\beta(c)$,
for all $c \in A$. Here we use the notation $\Delta(c)=c_{1} \otimes c_{2}$ (summation implicitly understood).

Let (C, α) and (D, β) be two Hom-coalgebras. Then $(C \otimes D, \alpha \otimes \beta)$ is a Hom-coalgebra (called the tensor product Hom-coalgebra) with comultiplication $\Delta(c \otimes d)=c_{1} \otimes d_{1} \otimes c_{2} \otimes d_{2}$ and counit $\varepsilon_{C} \otimes \varepsilon_{D}$.

Definition 2.3. A Hom-bialgebra is a sextuple ($H, \mu, 1_{H}, \Delta, \varepsilon, \gamma$) (abbr. (H, γ)), where $\left(H, \mu, 1_{H}, \gamma\right)$ is a Hom-algebra and $(H, \Delta, \varepsilon, \gamma)$ is a Homcoalgebra, such that Δ and ε are morphisms of Hom-algebras, i.e.

$$
\begin{aligned}
\Delta\left(h h^{\prime}\right) & =\Delta(h) \Delta\left(h^{\prime}\right), & \Delta\left(1_{H}\right) & =1_{H} \otimes 1_{H}, \\
\varepsilon\left(h h^{\prime}\right) & =\varepsilon(h) \varepsilon\left(h^{\prime}\right), & \varepsilon\left(1_{H}\right) & =1 .
\end{aligned}
$$

Furthermore, if there exists a linear map $S: H \rightarrow H$ such that

$$
S\left(h_{1}\right) h_{2}=h_{1} S\left(h_{2}\right)=\varepsilon(h) 1_{H} \quad \text { and } \quad S(\gamma(h))=\gamma(S(h)),
$$

then we call $\left(H, \mu, 1_{H}, \Delta, \varepsilon, \gamma, S\right)$ (abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ) and $\left(H^{\prime}, \gamma^{\prime}\right)$ be two Hom-bialgebras. A linear map $f: H \rightarrow H^{\prime}$ is called a Hom-bialgebra map if $f \circ \gamma=\gamma^{\prime} \circ f$ and at the same time f is a bialgebra map in the usual sense.

Definition 2.4 (see [24, 28]). Let (A, β) be a Hom-algebra. A left (A, β) -Hom-module is a triple $(M, \triangleright, \alpha)$, where M is a linear space, $\triangleright: A \otimes M \rightarrow M$ is a linear map, and α is an automorphism of M, such that
$(\mathrm{HM} 1) \alpha(a \triangleright m)=\beta(a) \triangleright \alpha(m)$,
(HM2) $\beta(a) \triangleright\left(a^{\prime} \triangleright m\right)=\left(a a^{\prime}\right) \triangleright \alpha(m), 1_{A} \triangleright m=\alpha(m)$,
for all $a, a^{\prime} \in A$ and $m \in M$.

Let $\left(M, \triangleright_{M}, \alpha_{M}\right)$ and $\left(N, \triangleright_{N}, \alpha_{N}\right)$ be two left (A, β)-Hom-modules. Then a linear morphism $f: M \rightarrow N$ is called a morphism of left (A, β) -Hom-modules if $f\left(h \triangleright_{M} m\right)=h \triangleright_{N} f(m)$ and $\alpha_{M} \circ f=f \circ \alpha_{N}$.

Remarks. (1) It is obvious that (A, μ, β) is a left (A, β)-Hom-module.
(2) When $\beta=\operatorname{id}_{A}$ and $\alpha=\operatorname{id}_{M}$, a left (A, β)-Hom-module is the usual left A-module.

Definition 2.5 (see 24,28$])$. Let (H, β) be a Hom-bialgebra and (A, α) a Hom-algebra. If $(A, \triangleright, \alpha)$ is a left (H, β)-Hom-module and for all $h \in H$ and $a, a^{\prime} \in A$,
$($ HMA1 $) \beta^{2}(h) \triangleright\left(a a^{\prime}\right)=\left(h_{1} \triangleright a\right)\left(h_{2} \triangleright a^{\prime}\right)$,
$(\mathrm{HMA} 2) h \triangleright 1_{A}=\varepsilon_{H}(h) 1_{A}$,
then $(A, \triangleright, \alpha)$ is called an (H, β)-module Hom-algebra.
Remarks. (1) When $\alpha=\operatorname{id}_{A}$ and $\beta=\mathrm{id}_{H}$, an (H, β)-module Homalgebra is the usual H-module algebra.
(2) Similar to the case of Hopf algebras, Yau [24, 28 concluded that (HMA1) is satisfied if and only if μ_{A} is a morphism of H-modules for suitable H-module structures on $A \otimes A$ and A.
(3) The smash product Hom-Hopf algebra $(A \natural H, \alpha \otimes \beta)$ is different from the one defined by Chen, Wang and Zhang [3], since here the construction of $(A \natural B, \alpha \otimes \beta)$ is based on the concept of the module Hom-algebra introduced by Yau [24, 28], while two of conditions [3, (6.1), (6.2)] are the same as in the case of Hopf algebra.

Definition 2.6 (see 31$)$. Let (C, β) be a Hom-coalgebra. A left (C, β) -Hom-comodule is a triple (M, ρ, α), where M is a linear space, $\rho: M \rightarrow$ $C \otimes M\left(\right.$ write $\left.\rho(m)=m_{-1} \otimes m_{0}, \forall m \in M\right)$ is a linear map, and α is an automorphism of M, such that

$$
\begin{aligned}
& \text { (HCM1) } \alpha(m)_{-1} \otimes \alpha(m)_{0}=\beta\left(m_{-1}\right) \otimes \alpha\left(m_{0}\right) \\
& \text { (HCM2) } \beta\left(m_{-1}\right) \otimes m_{0-1} \otimes m_{00}=m_{-11} \otimes m_{-12} \otimes \alpha\left(m_{0}\right) \\
& \varepsilon_{C}\left(m_{-1}\right) m_{0}=\alpha(m)
\end{aligned}
$$

for all $m \in M$.
Let $\left(M, \rho^{M}, \alpha_{M}\right)$ and $\left(N, \rho^{N}, \alpha_{N}\right)$ be two left (C, β)-Hom-comodules. Then a linear map $f: M \rightarrow N$ is called a map of left (C, β)-Hom-comodules if $f(m)_{-1} \otimes f(m)_{0}=m_{-1} \otimes f\left(m_{0}\right)$ and $\alpha_{M} \circ f=f \circ \alpha_{N}$.

Remarks. (1) It is obvious that $\left(C, \Delta_{C}, \beta\right)$ is a left (C, β)-Hom-comodule.
(2) When $\beta=\operatorname{id}_{A}$ and $\alpha=\operatorname{id}_{M}$, a left (C, β)-Hom-comodule is the usual left C-comodule.

Definition 2.7 (see [31). Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If (C, ρ, α) is a left (H, β)-Hom-comodule and for all $c \in C$,
$(\mathrm{HCMC1}) \beta^{2}\left(c_{-1}\right) \otimes c_{01} \otimes c_{02}=c_{1-1} c_{2-1} \otimes c_{10} \otimes c_{20}$,
(HCMC2) $c_{-1} \varepsilon_{C}\left(c_{0}\right)=1_{H} \varepsilon_{C}(c)$,
then (C, ρ, α) is called an (H, β)-comodule Hom-coalgebra.
Remarks. (1) When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$, an (H, β)-comodule Homcoalgebra is the usual H-comodule coalgebra.
(2) Similar to the case of Hopf algebras, Zhang [31] concluded that (HCMC1) is satisfied if and only if Δ_{C} is a morphism of H-comodules for suitable H-comodule structures on $C \otimes C$ and C.

Definition 2.8 (see (11). Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If $(C, \triangleright, \alpha)$ is a left (H, β)-Hom-module and for all $h \in H$ and $c \in A$,
$(\mathrm{HMC1})(h \triangleright c)_{1} \otimes(h \triangleright c)_{2}=\left(h_{1} \triangleright c_{1}\right) \otimes\left(h_{2} \triangleright c_{2}\right)$,
$(\mathrm{HMC} 2) \varepsilon_{C}(h \triangleright c)=\varepsilon_{H}(h) \varepsilon_{C}(c)$,
then $(C, \triangleright, \alpha)$ is called an (H, β)-module Hom-coalgebra.
Remark. When $\alpha=\operatorname{id}_{C}$ and $\beta=\operatorname{id}_{H}$, an (H, β)-module Hom-coalgebra is the usual H-module coalgebra.

Definition 2.9 (see [25]). Let (H, β) be a Hom-bialgebra and (A, α) a Hom-algebra. If (A, ρ, α) is a left (H, β)-Hom-comodule and for all $a, a^{\prime} \in A$,
(HCMA1) $\rho\left(a a^{\prime}\right)=a_{-1} a_{-1}^{\prime} \otimes a_{0} a_{0}^{\prime}$,
(HCMA2) $\rho\left(1_{A}\right)=1_{H} \otimes 1_{A}$,
then (A, ρ, α) is called an (H, β)-comodule Hom-algebra.
Remark. When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$, an (H, β)-comodule Homalgebra is the usual H-comodule algebra.

Definition 2.10 (see [11]). Let (H, β) be a Hom-bialgebra and $(A, \triangleright, \alpha)$ an (H, β)-module Hom-algebra. Then $(A \natural H, \alpha \otimes \beta)(A \natural H=A \otimes H$ as a linear space) with multiplication

$$
(a \otimes h)\left(a^{\prime} \otimes h^{\prime}\right)=a\left(h_{1} \triangleright \alpha^{-1}\left(a^{\prime}\right)\right) \otimes \beta^{-1}\left(h_{2}\right) h^{\prime},
$$

where $a, a^{\prime} \in A, h, h^{\prime} \in H$, and with unit $1_{A} \otimes 1_{H}$, is a Hom-algebra; we call it a smash product Hom-algebra.

Remark. Here the multiplication of a smash product Hom-algebra is different from the one defined by Makhlouf and Panaite in [17, Theorem 3.1].

Definition 2.11 (see [1, 15, 16|). Let H be a bialgebra and M a linear space which is a left H-module with action $\triangleright: H \otimes M \rightarrow M, h \otimes m \mapsto h \triangleright m$, and a left H-comodule with coaction $\rho: M \rightarrow H \otimes M, \rho(m)=m_{-1} \otimes m_{0}$.

Then M is called a (left-left) Yetter-Drinfeld module over H if the following compatibility condition holds, for all $h \in H$ and $m \in M$:
$(\mathrm{YD}) h_{1} m_{-1} \otimes\left(h_{2} \triangleright m_{0}\right)=\left(h_{1} \triangleright m\right)_{-1} h_{2} \otimes\left(h_{1} \triangleright m\right)_{0}$.
When H is a Hopf algebra, then (YD) is equivalent to
$(\mathrm{YD})^{\prime} h_{1} m_{-1} S_{H}\left(h_{3}\right) \otimes\left(h_{2} \triangleright m_{0}\right)=(h \triangleright m)_{-1} \otimes(h \triangleright m)_{0}$.
3. Radford biproduct Hom-Hopf algebra. In this section, we mainly generalize the Radford biproduct bialgebra of [20, Theorem 1] to the Homsetting.

Dual to Definition 2.10, we have:
Proposition 3.1. Let (H, β) be a Hom-bialgebra and (C, ρ, α) an (H, β) comodule Hom-coalgebra. Then $(C \diamond H, \alpha \otimes \beta)(C \diamond H=C \otimes H$ as a linear space) with comultiplication

$$
\Delta_{C \diamond H}(c \otimes h)=c_{1} \otimes c_{2-1} \beta^{-1}\left(h_{1}\right) \otimes \alpha^{-1}\left(c_{20}\right) \otimes h_{2}
$$

where $c \in C, h \in H$, and with counit $\varepsilon_{C} \otimes \varepsilon_{H}$, is a Hom-coalgebra; we call it a smash coproduct Hom-coalgebra.

In fact, dual to [11, Theorem 3.1], we have
Proposition 3.2. Let $\left(C, \Delta_{C}, \varepsilon_{C}, \alpha\right)$ and $\left(H, \Delta_{H}, \varepsilon_{H}, \beta\right)$ be two Homcoalgebras, and $T: C \otimes H \rightarrow H \otimes C\left(\right.$ write $T(c \otimes h)=h_{T} \otimes c_{T}, \forall c \in C$, $h \in H)$ a linear map such that for all $c \in C$ and $h \in H$,

$$
\alpha(c)_{T} \otimes \beta(h)_{T}=\alpha\left(c_{T}\right) \otimes \beta\left(h_{T}\right)
$$

Then $\left(C \diamond_{T} H, \alpha \otimes \beta\right)\left(C \diamond_{T} H=C \otimes H\right.$ as a linear space $)$ with comultiplication

$$
\Delta_{C \diamond_{T} H}(c \otimes h)=c_{1} \otimes \beta^{-1}\left(h_{1}\right)_{T} \otimes \alpha^{-1}\left(c_{2 T}\right) \otimes h_{2}
$$

and with counit $\varepsilon_{C} \otimes \varepsilon_{H}$, becomes a Hom-coalgebra if and only if the following conditions hold:
$(\mathrm{C} 1) \varepsilon_{H}\left(h_{T}\right) c_{T}=\varepsilon_{H}(h) \alpha(c), h_{T} \varepsilon_{C}\left(c_{T}\right)=\beta(h) \varepsilon_{C}(c)$,
$(\mathrm{C} 2) h_{T 1} \otimes h_{T 2} \otimes \alpha\left(c_{T}\right)=\beta\left(\beta^{-1}\left(h_{1}\right)_{T}\right) \otimes h_{2 t} \otimes c_{T t}$,
(C3) $\beta\left(h_{T}\right) \otimes \alpha(c)_{T 1} \otimes \alpha(c)_{T 2}=h_{T t} \otimes \alpha\left(c_{1}\right)_{t} \otimes \alpha\left(c_{2 T}\right)$,
where $c \in C, h \in H$ and t is a copy of T.
We call this Hom-coalgebra a T-smash coproduct Hom-coalgebra.
Remarks. (1) Letting $T(c \otimes h)=c_{-1} h \otimes c_{0}$ in $C \diamond_{T} H$, we get the smash coproduct Hom-coalgebra $C \diamond H$.
(2) Here the comultiplication of a T-smash coproduct Hom-coalgebra is slightly different from the one defined by Zheng [32]. And the conditions $(\mathrm{C} 1)-(\mathrm{C} 3)$ are simpler than the ones in 32 .

Theorem 3.3. Let (H, β) be a Hom-bialgebra, (A, α) a left (H, β)-module Hom-algebra with module structure $\triangleright: H \otimes A \rightarrow A$ and a left (H, β) comodule Hom-coalgebra with comodule structure $\rho: A \rightarrow H \otimes A$. Then the following are equivalent:

- $\left(A_{\diamond}^{\natural} H, \mu_{A \sharp H}, 1_{A} \otimes 1_{H}, \Delta_{A \diamond H}, \varepsilon_{A} \otimes \varepsilon_{H}, \alpha \otimes \beta\right)$ is a Hom-bialgebra, where $(A \natural H, \alpha \otimes \beta)$ is a smash product Hom-algebra and $(A \diamond H, \alpha \otimes \beta)$ is a smash coproduct Hom-coalgebra.
- The following conditions hold (for all $a, b \in A$ and $h \in H$):
(R1) (A, ρ, α) is an (H, β)-comodule Hom-algebra,
(R2) $(A, \triangleright, \alpha)$ is an (H, β)-module Hom-coalgebra,
$(\mathrm{R} 3) \varepsilon_{A}$ is a Hom-algebra map and $\Delta_{A}\left(1_{A}\right)=1_{A} \otimes 1_{A}$,
$(\mathrm{R} 4) \Delta_{A}(a b)=a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right) \otimes \alpha^{-1}\left(a_{20}\right) b_{2}$,
(R5) $h_{1} \beta\left(a_{-1}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright a_{0}\right)=\left(\beta^{2}\left(h_{1}\right) \triangleright a\right)_{-1} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright a\right)_{0}$.
In this case, we call this Hom-bialgebra a Radford biproduct Hom-bialgebra and denote it by $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta\right)$.

Proof. (\Leftarrow) It is easy to prove that $\varepsilon_{A_{\diamond}^{\natural} H}=\varepsilon_{A} \otimes \varepsilon_{H}$ is a morphism of Hom-algebras. Next we check $\Delta_{A_{\triangleright}^{\natural} H}=\Delta_{A \diamond H}$ is a morphism of Hom-algebras as follows. For all $a, b \in A$ and $h, g \in H$, we have

$$
\begin{aligned}
\Delta_{A_{\diamond}^{\natural} H}((a \otimes h) & (b \otimes g)) \\
= & \left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{1} \otimes\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{2-1} \beta^{-1}\left(\left(\beta^{-1}\left(h_{2}\right) g\right)_{1}\right) \\
& \otimes \alpha^{-1}\left(\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{20}\right) \otimes\left(\beta^{-1}\left(h_{2}\right) g\right)_{2} \\
(\stackrel{\text { HA1),(HC1) }}{=} & \left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{1} \otimes\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{2-1}\left(\beta^{-2}\left(h_{21}\right) \beta^{-1}\left(g_{1}\right)\right) \\
& \otimes \alpha^{-1}\left(\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{20}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2} \\
\stackrel{(\text { RA })}{=} & a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{1}\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a_{20}\right)\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{2}\right)_{-1}\left(\beta^{-2}\left(h_{21}\right) \beta^{-1}\left(g_{1}\right)\right) \\
& \otimes \alpha^{-1}\left(\left(\alpha^{-1}\left(a_{20}\right)\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{2}\right)_{0}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2} \\
\stackrel{\text { (HCA1) }}{=} & a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{1}\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a_{20}\right)-1\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{2-1}\right)\left(\beta^{-2}\left(h_{21}\right) \beta^{-1}\left(g_{1}\right)\right) \\
& \otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\left(h_{1} \triangleright \alpha^{-1}(b)\right)_{20}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2} \\
\text { (HMC1) } & a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(h_{11} \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a_{20}\right)-1\left(h_{12} \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{-1}\right)\left(\beta^{-2}\left(h_{21}\right) \beta^{-1}\left(g_{1}\right)\right) \\
& \otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\left(h_{12} \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{0}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2} \\
\stackrel{\text { (HA2) }}{=} & a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(h_{11} \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right) \\
& \otimes\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(\left(h_{12} \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{-1}\left(\beta^{-2}\left(h_{21}\right)\right)\right) g_{1}\right. \\
& \otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\left(h_{12} \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{0}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}
\end{aligned}
$$

```
    \(\stackrel{(\mathrm{HCC} 2)}{=} \quad a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(\left(\beta^{-1}\left(h_{211}\right) \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{-1} \beta^{-3}\left(h_{212}\right)\right)\right) g_{1}\)
    \(\otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\left(\beta^{-1}\left(h_{211}\right) \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{0}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
    \(\stackrel{(\mathrm{HCl} 1)}{=}\)
    \(a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(\left(\beta^{2}\left(\beta^{-3}\left(h_{21}\right)_{1}\right) \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{-1} \beta^{-3}\left(h_{21}\right)_{2}\right)\right) g_{1}\)
    \(\otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\left(\beta^{2}\left(\beta^{-3}\left(h_{21}\right)_{1}\right) \triangleright \alpha^{-1}\left(b_{2}\right)\right)_{0}\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
    \(\stackrel{(\text { R5 })}{=} \quad a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\left.\otimes\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(\beta^{-3}\left(h_{21}\right)_{1}\right) \beta\left(\alpha^{-1}\left(b_{2}\right)_{-1}\right)\right)\right) g_{1}\)
    \(\otimes \alpha^{-1}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right) \alpha^{-1}\left(\beta^{3}\left(\beta^{-3}\left(h_{21}\right)_{2}\right) \triangleright \alpha^{-1}\left(b_{2}\right)_{0}\right)\)
\(\stackrel{(\mathrm{HCM} 1),(\mathrm{HC1})}{=} a_{1}\left(\beta^{2}\left(a_{2-1}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{20-1}\right) \beta^{-1}\left(\beta^{-3}\left(h_{211}\right) b_{2-1}\right)\right) g_{1}\)
    \(\otimes \alpha^{-2}\left(a_{200}\right) \alpha^{-1}\left(h_{212} \triangleright \alpha^{-1}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
\(\stackrel{(\mathrm{HCM} 2)}{=} \quad a_{1}\left(\beta\left(a_{2-11}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-1}\left(\beta^{-3}\left(h_{211}\right) b_{2-1}\right)\right) g_{1}\)
    \(\otimes \alpha^{-1}\left(a_{20}\right) \alpha^{-1}\left(h_{212} \triangleright \alpha^{-1}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
    \(\stackrel{(\text { HA2 })}{=} \quad a_{1}\left(\beta\left(a_{2-11}\right) \triangleright \alpha^{-1}\left(\beta\left(h_{1}\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-3}\left(h_{211}\right)\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right)\)
    \(\otimes \alpha^{-1}\left(a_{20}\right) \alpha^{-1}\left(h_{212} \triangleright \alpha^{-1}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
\(\stackrel{(\mathrm{HC} 2)}{=} \quad a_{1}\left(\beta\left(a_{2-11}\right) \triangleright \alpha^{-1}\left(h_{11} \triangleright \alpha^{-1}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-2}\left(h_{12}\right)\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right)\)
    \(\otimes \alpha^{-1}\left(a_{20}\right) \alpha^{-1}\left(\beta\left(h_{21}\right) \triangleright \alpha^{-1}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
\(\stackrel{(\text { HM1 })}{=} a_{1}\left(\beta\left(a_{2-11}\right) \triangleright\left(\beta^{-1}\left(h_{11}\right) \triangleright \alpha^{-2}\left(b_{1}\right)\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-2}\left(h_{12}\right)\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right)\)
    \(\otimes \alpha^{-1}\left(a_{20}\right)\left(h_{21} \triangleright \alpha^{-2}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
\(\stackrel{(\mathrm{HM} 2)}{=} \quad a_{1}\left(\left(a_{2-11} \beta^{-1}\left(h_{11}\right)\right) \triangleright \alpha^{-1}\left(b_{1}\right)\right)\)
    \(\otimes\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-2}\left(h_{12}\right)\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right)\)
    \(\otimes \alpha^{-1}\left(a_{20}\right)\left(h_{21} \triangleright \alpha^{-2}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
\(\stackrel{(\text { HA1) }}{=} a_{1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{1} \triangleright \alpha^{-1}\left(b_{1}\right)\right)\)
    \(\otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{2}\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right)\)
    \(\otimes \alpha^{-1}\left(a_{20}\right)\left(h_{21} \triangleright \alpha^{-2}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2}\)
    \(=\quad\left(a_{1} \otimes a_{2-1} \beta^{-1}\left(h_{1}\right) \otimes \alpha^{-1}\left(a_{20}\right) \otimes h_{2}\right)\)
    \(\times\left(b_{1} \otimes b_{2-1} \beta^{-1}\left(h_{1}\right) \otimes \alpha^{-1}\left(b_{20}\right) \otimes h_{2}\right)\)
    \(=\quad \Delta_{A_{\diamond}^{\natural} H}(a \otimes h) \Delta_{A_{\curvearrowright}^{\natural} H}(b \otimes g)\),
```

and $\Delta_{A_{\rho}^{\natural} H}\left(1_{A} \otimes 1_{H}\right)=1_{A} \otimes 1_{H} \otimes 1_{A} \otimes 1_{H}$ can be proved directly.
(\Rightarrow) We only verify that conditions (R4) and (R5) hold; the others hold similarly. As $\Delta_{A_{\circ}^{\natural} H}=\Delta_{A \diamond H}$ is a morphism of Hom-algebras, for all $a, b \in A$ and $h, g \in H$ we have

$$
\begin{aligned}
& a_{1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{1} \triangleright \alpha^{-1}\left(b_{1}\right)\right) \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{2}\right)\left(b_{2-1} \beta^{-1}\left(g_{1}\right)\right) \\
& \otimes \alpha^{-1}\left(a_{20}\right)\left(h_{21} \triangleright \alpha^{-2}\left(b_{20}\right)\right) \otimes \beta^{-1}\left(h_{22}\right) g_{2} \\
&=\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{1} \otimes\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{2-1} \beta^{-1}\left(\left(\beta^{-1}\left(h_{2}\right) g\right)_{1}\right) \\
& \otimes \alpha^{-1}\left(\left(a\left(h_{1} \triangleright \alpha^{-1}(b)\right)\right)_{20}\right) \otimes\left(\beta^{-1}\left(h_{2}\right) g\right)_{2} .
\end{aligned}
$$

Applying $\operatorname{id}_{A} \otimes \varepsilon_{H} \otimes \mathrm{id}_{A} \otimes \varepsilon_{H}$ to the above equation and setting $h=g=1_{H}$ we get (HB). (HYD) can be obtained by applying $\varepsilon_{A} \otimes \operatorname{id}_{H} \otimes \operatorname{id}_{A} \otimes \varepsilon_{H}$ to the above equation and setting $a=1_{A}$ and $g=1_{H}$.

Remarks. If $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$, then we get the well-known Radford biproduct bialgebra of [20, Theorem 1].
(2) Theorem 3.3 is different from the one defined by Liu and Shen [9], because the Hom-smash product there is based on the concept of module Hom-algebra in (3) and ours is based on Yau's 24, 28.

Corollary 3.4 (see [11]). Let $(A, \alpha),(H, \beta)$ be two Hom-bialgebras, and $(A, \triangleright, \alpha)$ an (H, β)-module Hom-algebra. Then the smash product Homalgebra $(A$ Ł $H, \alpha \otimes \beta)$ endowed with the tensor product Hom-coalgebra structure becomes a Hom-bialgebra if and only if $(A, \triangleright, \alpha)$ is an (H, β)-module Hom-coalgebra and

$$
h_{1} \otimes h_{2} \triangleright a=h_{2} \otimes h_{1} \triangleright a .
$$

Proof. Let the comodule action ρ be trivial, i.e. $\rho(a)=1_{H} \otimes \alpha(a)$ in Theorem 3.3.

Corollary 3.5. Let $(C, \alpha),(H, \beta)$ be two Hom-bialgebras, and (C, ρ, α) an (H, β)-comodule Hom-coalgebra. Then the smash coproduct Hom-coalgebra ($C \diamond H, \alpha \otimes \beta$) endowed with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if (C, ρ, α) is an (H, β)-comodule Hom-algebra and

$$
h c_{-1} \otimes c_{0}=c_{-1} h \otimes c_{0} .
$$

Proof. Let the module action \triangleright be trivial, i.e. $h \triangleright c=\varepsilon_{H}(h) \alpha(c)$ in Theorem 3.3.

Theorem 3.6. Let $\left(H, \beta, S_{H}\right)$ be a Hom-Hopf algebra, and (A, α) be a Hom-algebra and a Hom-coalgebra. Assume that $\left(A_{\circ}^{\natural} H, \alpha \otimes \beta\right)$ is a Radford biproduct Hom-bialgebra defined as above, and $S_{A}: A \rightarrow A$ is a linear map such that $S_{A}\left(a_{1}\right) a_{2}=a_{1} S_{A}\left(a_{2}\right)=\varepsilon_{A}(a) 1_{A}$ and $\alpha \circ S_{A}=S_{A} \circ \alpha$. Then $\left(A_{8}^{\natural} H, \alpha \otimes \beta, S_{A_{8}^{\natural} H}\right)$ is a Hom-Hopf algebra, where

$$
S_{A_{8}^{\natural} H}(a \otimes h)=\left(S_{H}\left(a_{-1} \beta^{-1}(h)\right)_{1} \triangleright S_{A}\left(\alpha^{-2}\left(a_{0}\right)\right)\right) \otimes \beta^{-1}\left(S_{H}\left(a_{-1} \beta^{-1}(h)\right)_{2}\right) .
$$

Proof. We can compute that $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta, S_{A_{\diamond}^{\natural} H}\right)$ is a Hom-Hopf algebra as follows. For all $a \in A$ and $h \in H$, we have

$$
\begin{aligned}
& \left(S_{A_{\circ}^{\natural} H} * \operatorname{id}_{A_{\circ}^{\natural} H}\right)(a \otimes h) \\
& =\quad\left(S_{H}\left(a_{1-1} \beta^{-1}\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)\right)_{1} \triangleright S_{A}\left(\alpha^{-2}\left(a_{10}\right)\right)\right) \\
& \times\left(\beta^{-1}\left(S_{H}\left(a_{1-1} \beta^{-1}\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)\right)_{2}\right)_{1} \triangleright \alpha^{-2}\left(a_{20}\right)\right) \\
& \otimes \beta^{-1}\left(\beta^{-1}\left(S_{H}\left(a_{1-1} \beta^{-1}\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)\right)_{2}\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HA} 1),(\mathrm{HA} 2)}{=}\left(S_{H}\left(\beta^{-1}\left(a_{1-1} a_{2-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{1} \triangleright S_{A}\left(\alpha^{-2}\left(a_{10}\right)\right)\right) \\
& \times\left(\beta^{-1}\left(S_{H}\left(\beta^{-1}\left(a_{1-1} a_{2-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right)_{1} \triangleright \alpha^{-2}\left(a_{20}\right)\right) \\
& \otimes \beta^{-1}\left(\beta^{-1}\left(S_{H}\left(\beta^{-1}\left(a_{1-1} a_{2-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HCMC1})}{=} \quad\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{1} \triangleright S_{A}\left(\alpha^{-2}\left(a_{01}\right)\right)\right) \\
& \times\left(\beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right)_{1} \triangleright \alpha^{-2}\left(a_{02}\right)\right) \\
& \otimes \beta^{-1}\left(\beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HC} 1),(\mathrm{HC} 2)}{=}\left(\beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{11}\right) \triangleright S_{A}\left(\alpha^{-2}\left(a_{01}\right)\right)\right) \\
& \times\left(\beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{12}\right) \triangleright \alpha^{-2}\left(a_{02}\right)\right) \\
& \otimes \beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HC1}),(\mathrm{HMA1)}}{=}\left(\beta\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{1}\right) \triangleright\left(S_{A}\left(\alpha^{-2}\left(a_{01}\right)\right) \alpha^{-2}\left(a_{02}\right)\right)\right. \\
& \otimes \beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right) h_{2} \\
& \stackrel{\left(\text { HA1 }^{\prime}\right.}{=} \quad\left(\beta\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{1}\right) \triangleright 1_{A} \varepsilon_{A}\left(a_{0}\right)\right) \\
& \otimes \beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) \beta^{-1}\left(h_{1}\right)\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HCMC} 2)}{=} \quad\left(\beta\left(S_{H}\left(h_{1}\right)_{1}\right) \triangleright 1_{A} \varepsilon_{A}(a)\right) \otimes \beta^{-1}\left(S_{H}\left(h_{1}\right)_{2}\right) h_{2} \\
& \stackrel{(\mathrm{HMA2)}}{=} \quad 1_{A} \varepsilon_{A}(a) \otimes S_{H}\left(h_{1}\right) h_{2}=\left(1_{A} \otimes 1_{H}\right) \varepsilon_{A}(a) \varepsilon_{H}(h)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\mathrm{id}_{A_{\circ}^{\natural} H} * S_{A_{\circ}^{\natural} H}\right)(a \otimes h) \\
&=\quad a_{1}\left((a _ { 2 - 1 } \beta ^ { - 1 } (h _ { 1 })) _ { 1 } \triangleright \alpha ^ { - 1 } \left(S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{1}\right.\right. \\
&\left.\left.\triangleright S_{A}\left(\alpha^{-2}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right)\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{2}\right) \beta^{-1}\left(S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{2}\right) \\
& \stackrel{(\text { HM1 })}{=} \quad a_{1}\left((a _ { 2 - 1 } \beta ^ { - 1 } (h _ { 1 })) _ { 1 } \triangleright \left(\beta^{-1}\left(S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{1}\right)\right.\right. \\
&\left.\left.\triangleright S_{A}\left(\alpha^{-3}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right)\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{2}\right) \beta^{-1}\left(S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{2}\right) \\
& \stackrel{(\text { HM2),(HA1) })}{=} a_{1}\left(\beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{1} S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{1}\right)\right. \\
&\left.\triangleright S_{A}\left(\alpha^{-2}\left(\alpha^{-1}\left(a_{20}\right)_{0}\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right)_{2} S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{(\mathrm{HC1} 1)}{=} & a_{1}\left(\beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)\right)_{1}\right. \\
& \left.\left.\triangleright S_{A}\left(\alpha^{-2}\left(\alpha^{-1}\left(a_{20}\right)\right)_{0}\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\alpha^{-1}\left(a_{20}\right)_{-1} \beta^{-1}\left(h_{2}\right)\right)\right)_{2} \\
\stackrel{(\mathrm{HCM1)}}{=} & a_{1}\left(\beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\beta^{-1}\left(a_{20-1}\right) \beta^{-1}\left(h_{2}\right)\right)\right)_{1} \triangleright S_{A}\left(\alpha^{-3}\left(a_{200}\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(a_{2-1} \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\beta^{-1}\left(a_{20-1}\right) \beta^{-1}\left(h_{2}\right)\right)\right)_{2} \\
\stackrel{\text { (HCM2) }}{=} & a_{1}\left(\beta^{-1}\left(\left(\beta^{-1}\left(a_{2-11}\right) \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-1}\left(h_{2}\right)\right)\right)_{1}\right. \\
& \left.\triangleright S_{A}\left(\alpha^{-2}\left(a_{20}\right)\right)\right) \\
& \otimes \beta^{-1}\left(\left(\beta^{-1}\left(a_{2-11}\right) \beta^{-1}\left(h_{1}\right)\right) S_{H}\left(\beta^{-1}\left(a_{2-12}\right) \beta^{-1}\left(h_{2}\right)\right)\right)_{2} \\
\stackrel{\text { (HC1) }}{=} & a_{1}\left(\left(1_{H} \triangleright S_{A}\left(\alpha^{-2}\left(a_{20}\right)\right)\right) \varepsilon_{H}\left(a_{2-1}\right) \otimes 1_{H} \varepsilon_{H}(h)\right. \\
\stackrel{\text { (HCM2) }}{=} & a_{1}\left(1_{H} \triangleright S_{A}\left(\alpha^{-1}\left(a_{2}\right)\right)\right) \otimes 1_{H} \varepsilon_{H}(h) \\
\stackrel{\text { (HM2) }}{=} & a_{1} S_{A}\left(a_{2}\right) \otimes 1_{H} \varepsilon_{H}(h) \\
= & \left(1_{A} \otimes 1_{H}\right) \varepsilon_{A}(a) \varepsilon_{H}(h),
\end{aligned}
$$

while

$$
\begin{aligned}
& S_{A_{\diamond}^{\natural} H}(\alpha(a) \otimes\beta(h)) \\
&=\left(S_{H}\left(\alpha(a)_{-1} h\right)_{1} \triangleright S_{A}\left(\alpha^{-2}\left(\alpha(a)_{0}\right)\right)\right) \otimes \beta^{-1}\left(S_{H}\left(\alpha(a)_{-1} h\right)_{2}\right) \\
& \stackrel{(\text { HCM1) }}{=}\left(S_{H}\left(\beta\left(a_{-1}\right) h\right)_{1} \triangleright S_{A}\left(\alpha^{-1}\left(a_{0}\right)\right)\right) \otimes \beta^{-1}\left(S_{H}\left(\beta\left(a_{-1}\right) h\right)_{2}\right) \\
&=(\alpha \otimes \beta)\left(S_{A_{\diamond}^{\natural} H}(a \otimes h)\right),
\end{aligned}
$$

finishing the proof.
Corollary 3.7 (see 11]). Let $\left(A, \alpha, S_{A}\right),\left(H, \beta, S_{H}\right)$ be two Hom-Hopf algebras, and $(A\llcorner H, \alpha \otimes \beta)$ a smash product Hom-bialgebra. Then $(A \bigsqcup H$, $\left.\alpha \otimes \beta, S_{A \natural H}\right)$ is a Hom-Hopf algebra, where

$$
S_{A \emptyset H}(a \otimes h)=\left(S_{H}(h)_{1} \triangleright \alpha^{-1}\left(S_{A}(a)\right)\right) \otimes \beta^{-1}\left(S_{H}(h)_{2}\right) .
$$

Proof. Let the comodule action ρ be trivial, i.e. $\rho(a)=1_{H} \otimes \alpha(a)$ in Theorem 3.6.

Corollary 3.8. Let $\left(C, \alpha, S_{C}\right),\left(H, \beta, S_{H}\right)$ be two Hom-Hopf algebras, and $(C \diamond H, \alpha \otimes \beta)$ a smash coproduct Hom-bialgebra. Then $(C \diamond H, \alpha \otimes \beta$, $\left.S_{C \diamond H}\right)$ is a Hom-Hopf algebra, where

$$
S_{C \diamond H}(c \otimes h)=S_{C}\left(\alpha^{-1}\left(c_{(0)}\right)\right) \otimes S_{H}\left(c_{(-1)} \beta^{-1}(h)\right)
$$

Proof. Let the module action \triangleright be trivial, i.e. $h \triangleright c=\varepsilon_{H}(h) \alpha(c)$ in Theorem 3.6.
4. Hom-Yetter-Drinfeld category. In this section, we give the definition of a Hom-Yetter-Drinfeld module and also prove that the category
${ }_{H}^{H} Y \mathbb{D}$ of Hom-Yetter-Drinfeld modules is a pre-braided tensor category. Furthermore, we show that $\left(A_{\diamond}^{\natural} H, \alpha \otimes \beta\right)$ is a Radford biproduct Hom-bialgebra if and only if (A, α) is a Hom-bialgebra in the category ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

Definition 4.1. Let (H, β) be a Hom-bialgebra, $\left(M, \triangleright_{M}, \alpha_{M}\right)$ a left (H, β)-module with action $\triangleright_{M}: H \otimes M \rightarrow M, h \otimes m \mapsto h \triangleright_{M} m$, and $\left(M, \rho^{M}, \alpha_{M}\right)$ a left (H, β)-comodule with coaction $\rho^{M}: M \rightarrow H \otimes M, m \mapsto$ $m_{-1} \otimes m_{0}$. Then we call $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$ a (left-left) Hom-Yetter-Drinfeld module over (H, β) if
$(\mathrm{HYD}) h_{1} \beta\left(m_{-1}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright_{M} m_{0}\right)=\left(\beta^{2}\left(h_{1}\right) \triangleright_{M} m\right)_{-1} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright_{M} m\right)_{0}$ for all $h \in H$ and $m \in M$.

Remarks. (1) The compatibility condition (HYD) is different from condition (2.1) in [16, Definition 2.1], condition (3.1) in [5, Definition 3.1] and condition (4.1) in [9, Definition 4.1].
(2) When $\beta=\mathrm{id}_{H}$, condition (HYD) is exactly condition (YD).
(3) Let (H, β) be a Hom-bialgebra and K a field. Then $\left(K, \mathrm{id}_{K}\right)$ is a (left-left) Hom-Yetter-Drinfeld module over (H, β) with the module and comodule actions defined as follows: $H \otimes K \rightarrow K, h \otimes k \mapsto \varepsilon(h) k$ and $K \rightarrow H \otimes K, k \mapsto 1_{H} \otimes k$.
(4) When $\left(H, \beta, S_{H}\right)$ is a Hom-Hopf algebra, then the condition (HYD) is equivalent to
$(\mathrm{HYD})^{\prime}\left(\beta^{4}(h) \triangleright_{M} m\right)_{-1} \otimes\left(\beta^{4}(h) \triangleright_{M} m\right)_{0}$

$$
=\beta^{-2}\left(h_{11} \beta\left(m_{-1}\right)\right) S_{H}\left(h_{2}\right) \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright_{M} m_{0}\right)
$$

Proof. (\Rightarrow) We have
$\beta^{-2}\left(h_{11} \beta\left(m_{-1}\right)\right) S\left(h_{2}\right) \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright m_{0}\right)$
$\stackrel{(\mathrm{HYD})}{=} \quad \beta^{-2}\left(\left(\beta^{2}\left(h_{11} \triangleright m\right)\right)_{-1} h_{12}\right) S\left(h_{2}\right) \otimes\left(\beta^{2}\left(h_{11} \triangleright m\right)\right)_{0}$
$\stackrel{(\mathrm{HA} 1),(\mathrm{HA} 2)}{=} \beta^{-1}\left(\left(\beta^{2}\left(h_{11} \triangleright m\right)\right)_{-1}\right)\left(\beta^{-2}\left(h_{12}\right) \beta^{-1}\left(S\left(h_{2}\right)\right)\right) \otimes\left(\beta^{2}\left(h_{11} \triangleright m\right)\right)_{0}$
$\stackrel{(\mathrm{HC} 2)}{=} \quad \beta^{-1}\left(\left(\beta^{2}\left(h_{1} \triangleright m\right)\right)_{-1}\right)\left(\beta^{-2}\left(h_{21}\right) \beta^{-2}\left(S\left(h_{22}\right)\right)\right) \otimes\left(\beta^{2}\left(h_{1} \triangleright m\right)\right)_{0}$
$\stackrel{(\text { HA1 })}{=} \beta^{-1}\left(\left(\beta^{2}\left(h_{1} \triangleright m\right)\right)_{-1}\right)\left(\beta^{-2}\left(h_{21} S\left(h_{22}\right)\right)\right) \otimes\left(\beta^{2}\left(h_{1} \triangleright m\right)\right)_{0}$
$\stackrel{(\mathrm{HA} 2),(\mathrm{HC} 2)}{=}\left(\beta^{4}(h) \triangleright m\right)_{-1} \otimes\left(\beta^{4}(h) \triangleright m\right)_{0}$.
(\Leftarrow) We have
$\left(\beta^{2}\left(h_{1}\right) \triangleright m\right)_{-1} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright m\right)_{0}$

$$
\begin{array}{cl}
\stackrel{(\mathrm{HYD})^{\prime}}{=} & \left(\beta^{-2}\left(\beta^{-2}\left(h_{1}\right)_{11} \beta\left(m_{-1}\right)\right) S\left(\beta^{-2}\left(h_{1}\right)_{2}\right)\right) h_{2} \otimes\left(\beta^{3}\left(\beta^{-2}\left(h_{1}\right)_{12}\right) \triangleright m_{0}\right) \\
\stackrel{(\mathrm{HC1})}{=} & \left(\beta^{-2}\left(\beta^{-2}\left(h_{111}\right) \beta\left(m_{-1}\right)\right) S\left(\beta^{-2}\left(h_{12}\right)\right)\right) h_{2} \otimes\left(\beta\left(h_{112}\right) \triangleright m_{0}\right) \\
\stackrel{(\mathrm{HC} 2),(\mathrm{HC1)}}{=} & \left(\beta^{-2}\left(\beta^{-1}\left(h_{11}\right) \beta\left(m_{-1}\right)\right) S\left(\beta^{-2}\left(h_{21}\right)\right)\right) \beta^{-1}\left(h_{22}\right) \otimes\left(\beta^{2}\left(h_{12}\right) \triangleright m_{0}\right)
\end{array}
$$

$$
\begin{array}{cl}
\stackrel{(\text { HA } 2),(\text { HA1 })}{=} & \left(\beta^{-1}\left(\beta^{-1}\left(h_{11}\right) \beta\left(m_{-1}\right)\right)\left(\beta^{-2} S\left(h_{21}\right) h_{22}\right) \otimes\left(\beta^{2}\left(h_{12}\right) \triangleright m_{0}\right)\right. \\
= & \left(\beta^{-1}\left(\beta^{-1}\left(h_{11}\right) \beta\left(m_{-1}\right)\right) 1_{H} \varepsilon_{H}\left(h_{2}\right) \otimes\left(\beta^{2}\left(h_{12}\right) \triangleright m_{0}\right)\right. \\
(\text { HC1),(HC2),(HA1) } & h_{1} \beta\left(m_{-1}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright m_{0}\right) .
\end{array}
$$

Here we use \triangleright, S instead of $\triangleright_{M}, S_{H}$, respectively.
Definition 4.2. Let (H, β) be a Hom-bialgebra. We denote by ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$ the category whose objects are all Hom-Yetter-Drinfeld modules $\left(M, \triangleright_{M}\right.$, $\left.\rho^{M}, \alpha_{M}\right)$ over (H, β); the morphisms are morphisms of left (H, β)-modules and left (H, β)-comodules.

In the following, we give a solution of the Hom-Yang-Baxter equation introduced and studied by Yau [26, 29, 30].

Proposition 4.3. Let (H, β) be a Hom-bialgebra and $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$, $\left(N, \triangleright_{N}, \rho^{N}, \alpha_{N}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Define the linear map

$$
\tau_{M, N}: M \otimes N \rightarrow N \otimes M, \quad m \otimes n \mapsto \beta^{3}\left(m_{-1}\right) \triangleright_{N} n \otimes m_{0}
$$

for $m \in M$ and $n \in N$. Then $\tau_{M, N} \circ\left(\alpha_{M} \otimes \alpha_{N}\right)=\left(\alpha_{N} \otimes \alpha_{M}\right) \circ \tau_{M, N}$, and if $\left(P, \triangleright_{P}, \rho^{P}, \alpha_{P}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$, the maps $\tau_{-,}$, satisfy the Hom-Yang-Baxter equation

$$
\begin{aligned}
\left(\alpha_{P} \otimes \tau_{M, N}\right) \circ\left(\tau_{M, P} \otimes \alpha_{N}\right) & \circ\left(\alpha_{M} \otimes \tau_{N, P}\right) \\
& =\left(\tau_{N, P} \otimes \alpha_{M}\right) \circ\left(\alpha_{N} \otimes \tau_{M, P}\right) \circ\left(\tau_{M, N} \otimes \alpha_{P}\right)
\end{aligned}
$$

Proof. We only check the second equality; the first one is easy. For all $m \in M, n \in N$ and $p \in P$, we have

$$
\begin{aligned}
&\left(\alpha_{P} \otimes \tau_{M, N}\right) \circ\left(\tau_{M, P} \otimes \alpha_{N}\right) \circ\left(\alpha_{M} \otimes \tau_{N, P}\right)(m \otimes n \otimes p) \\
&=\left(\beta^{3}\left(\alpha_{M}(m)_{-1}\right) \triangleright_{P}\left(\beta^{3}\left(n_{-1}\right) \triangleright_{P} p\right)\right) \otimes \beta^{3}\left(\alpha_{M}(m)_{0-1}\right) \triangleright_{N} \alpha_{N}\left(n_{0}\right) \\
& \otimes \alpha_{M}(m)_{00} \\
& \stackrel{\text { (HM1) }}{=}\left(\beta^{4}\left(\alpha_{M}(m)_{-1}\right) \triangleright_{P}\left(\beta^{4}\left(n_{-1}\right) \triangleright_{P} \alpha_{P}(p)\right)\right) \\
& \otimes \beta^{3}\left(\alpha_{M}(m)_{0-1}\right) \triangleright_{N} \alpha_{N}\left(n_{0}\right) \otimes \alpha_{M}(m)_{00} \\
& \stackrel{\text { (HCM1) }}{=}\left(\beta^{5}\left(m_{-1}\right) \triangleright_{P}\left(\beta^{4}\left(n_{-1}\right) \triangleright_{P} \alpha_{P}(p)\right)\right) \otimes \beta^{4}\left(m_{0-1}\right) \triangleright_{N} \alpha_{N}\left(n_{0}\right) \\
& \otimes \alpha_{M}\left(m_{00}\right) \\
& \stackrel{\text { (HCM2) }}{=}\left(\beta^{4}\left(m_{-11}\right) \triangleright_{P}\left(\beta^{4}\left(n_{-1}\right) \triangleright_{P} \alpha_{P}(p)\right)\right) \otimes \beta^{4}\left(m_{-12}\right) \triangleright_{N} \alpha_{N}\left(n_{0}\right) \\
& \otimes \alpha_{M}^{2}\left(m_{0}\right) \\
& \stackrel{\text { (HM2) }}{=}\left(\left(\beta^{3}\left(m_{-11}\right) \beta^{4}\left(n_{-1}\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right) \otimes \beta^{4}\left(m_{-12}\right) \triangleright_{N} \alpha_{N}\left(n_{0}\right) \otimes \alpha_{M}^{2}\left(m_{0}\right) \\
& \stackrel{\text { (HCM1) }}{=}\left(\left(\beta^{3}\left(m_{-11} \alpha_{N}(n)_{-1}\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right) \otimes \beta^{4}\left(m_{-12}\right) \triangleright_{N} \alpha_{N}(n)_{0} \otimes \alpha_{M}^{2}\left(m_{0}\right) \\
& \stackrel{\text { (HA1) }}{=}\left.\left(\beta^{2}\left(\beta\left(m_{-11}\right) \beta\left(\alpha_{N}(n)_{-1}\right)\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right) \otimes \beta^{3}\left(\beta\left(m_{-12}\right)\right) \triangleright_{N} \alpha_{N}(n)_{0} \\
& \otimes \alpha_{M}^{2}\left(m_{0}\right)
\end{aligned}
$$

```
    \(\left.\stackrel{(\mathrm{HC1})}{=}\left(\beta^{2}\left(\beta\left(m_{-1}\right)_{1} \beta\left(\alpha_{N}(n)_{-1}\right)\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right) \otimes \beta^{3}\left(\beta\left(m_{-1}\right)_{2}\right) \triangleright_{N} \alpha_{N}(n)_{0}\)
        \(\otimes \alpha_{M}^{2}\left(m_{0}\right)\)
    \(\stackrel{(\text { HYD })}{=}\left(\beta^{2}\left(\left(\beta^{2}\left(\beta\left(m_{-1}\right)_{1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{-1} \beta\left(m_{-1}\right)_{2}\right) \triangleright_{P} \alpha_{P}^{2}(p)\right)\)
        \(\left.\otimes \beta^{2}\left(\beta\left(m_{-1}\right)_{1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{0} \otimes \alpha_{M}^{2}\left(m_{0}\right)\)
\(\stackrel{(\mathrm{HA1}),(\mathrm{HCl})}{=}\left(\left(\beta^{2}\left(\left(\beta^{3}\left(m_{-11}\right) \triangleright_{N} \alpha_{N}(n)\right)_{-1}\right) \beta^{3}\left(m_{-12}\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right)\)
        \(\otimes\left(\beta^{3}\left(m_{-11}\right) \triangleright_{N} \alpha_{N}(n)\right)_{0} \otimes \alpha_{M}^{2}\left(m_{0}\right)\)
    \(\stackrel{(\mathrm{HCM} 2)}{=} \quad\left(\left(\beta^{2}\left(\left(\beta^{4}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{-1}\right) \beta^{3}\left(m_{0-1}\right)\right) \triangleright_{P} \alpha_{P}^{2}(p)\right)\)
        \(\otimes\left(\beta^{4}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{0} \otimes \alpha_{M}\left(m_{00}\right)\)
    \(\stackrel{\left(\mathrm{HM}^{2}\right)}{=} \quad\left(\beta^{3}\left(\left(\beta^{4}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{-1}\right) \triangleright_{P}\left(\beta^{3}\left(m_{0-1}\right) \triangleright_{P} \alpha_{P}(p)\right)\right)\)
        \(\otimes\left(\beta^{4}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}(n)\right)_{0} \otimes \alpha_{M}\left(m_{00}\right)\)
    \(\stackrel{(\text { нм1 }}{=} \quad\left(\beta^{3}\left(\alpha_{N}\left(\beta^{3}\left(m_{-1}\right) \triangleright_{N} n\right)_{-1}\right) \triangleright_{P}\left(\beta^{3}\left(m_{0-1}\right) \triangleright_{P} \alpha_{P}(p)\right)\right)\)
        \(\otimes \alpha_{N}\left(\beta^{3}\left(m_{-1}\right) \triangleright_{N} n\right)_{0} \otimes \alpha_{M}\left(m_{00}\right)\)
        \(=\left(\tau_{N, P} \otimes \alpha_{M}\right) \circ\left(\alpha_{N} \otimes \tau_{M, P}\right) \circ\left(\tau_{M, N} \otimes \alpha_{P}\right)(m \otimes n \otimes p)\).
```

Lemma 4.4. Let (H, β) be a Hom-bialgebra and $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$, $\left(N, \triangleright_{N}, \rho^{N}, \alpha_{N}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Define the linear maps
$\triangleright_{M \otimes N}: H \otimes M \otimes N \rightarrow M \otimes N, \quad h \otimes m \otimes n \mapsto\left(h_{1} \triangleright_{M} m\right) \otimes\left(h_{2} \triangleright_{N} n\right)$, and
$\rho^{M \otimes N}: M \otimes N \rightarrow H \otimes M \otimes N, \quad m \otimes n \mapsto \beta^{-2}\left(m_{-1} n_{-1}\right) \otimes m_{0} \otimes n_{0}$,
for $h \in H, m \in M$ and $n \in N$. Then $\left(M \otimes N, \triangleright_{M \otimes N}, \rho^{M \otimes N}, \alpha_{M} \otimes \alpha_{N}\right)$ is a Hom-Yetter-Drinfeld module.

Proof. It is easy to check that $\left(M \otimes N, \triangleright_{M \otimes N}, \alpha_{M} \otimes \alpha_{N}\right)$ is an (H, β) -Hom-module and ($M \otimes N, \rho^{M \otimes N}, \alpha_{M} \otimes \alpha_{N}$) is an (H, β)-Hom-comodule. Since for $h \in H, m \in M$ and $n \in N$, we have

$$
\begin{aligned}
&\left(\beta^{2}\left(h_{1}\right) \triangleright_{M \otimes N}(m \otimes n)\right)_{-1} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright_{M \otimes N}(m \otimes n)\right)_{0} \\
&=\left(\left(\beta^{2}\left(h_{1}\right)_{1} \triangleright_{M} m\right) \otimes\left(\beta^{2}\left(h_{1}\right)_{2} \triangleright_{N} n\right)\right)_{-1} h_{2} \\
&= \otimes\left(\left(\beta^{2}\left(h_{1}\right)_{1} \triangleright_{M} m\right) \otimes\left(\beta^{2}\left(h_{1}\right)_{2} \triangleright_{N} n\right)\right)_{0} \\
&= \beta^{-2}\left(\left(\left(\beta^{2}\left(h_{1}\right)_{1} \triangleright_{M} m\right)_{-1}\left(\beta^{2}\left(h_{1}\right)_{2} \triangleright_{N} n\right)_{-1}\right) \beta^{2}\left(h_{2}\right)\right) \\
& \otimes\left(\beta^{2}\left(h_{1}\right)_{1} \triangleright_{M} m\right)_{0} \otimes\left(\beta^{2}\left(h_{1}\right)_{2} \triangleright_{N} n\right)_{0} \\
& \stackrel{(\mathrm{HAl})(\text { HA } 2)}{=} \beta^{-2}\left(\beta\left(\left(\beta^{2}\left(h_{11}\right) \triangleright_{M} m\right)_{-1}\right)\left(\left(\beta^{2}\left(h_{12}\right) \triangleright_{N} n\right)_{-1} \beta\left(h_{2}\right)\right)\right) \\
& \otimes\left(\beta^{2}\left(h_{11}\right) \triangleright_{M} m\right)_{0} \otimes\left(\beta^{2}\left(h_{12}\right) \triangleright_{N} n\right)_{0} \\
& \stackrel{(\text { HC2 })}{=} \beta^{-2}\left(\beta\left(\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{-1}\right)\left(\left(\beta^{2}\left(h_{21}\right) \triangleright_{N} n\right)_{-1} h_{22}\right)\right) \\
& \otimes\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{0} \otimes\left(\beta^{2}\left(h_{21}\right) \triangleright_{N} n\right)_{0}
\end{aligned}
$$

$$
\begin{array}{cl}
\stackrel{\text { (HYD) }}{=} & \beta^{-2}\left(\beta\left(\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{-1}\right)\left(h_{21} \beta\left(n_{-1}\right)\right)\right) \\
& \otimes\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{0} \otimes\left(\beta^{3}\left(h_{22}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{(\text { HA } 2)}{=} & \beta^{-2}\left(\left(\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{-1} h_{21}\right) \beta^{2}\left(n_{-1}\right)\right) \otimes\left(\beta^{3}\left(h_{1}\right) \triangleright_{M} m\right)_{0} \\
& \otimes\left(\beta^{3}\left(h_{22}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{(\text { HC2 }}{=} & \beta^{-2}\left(\left(\left(\beta^{2}\left(h_{11}\right) \triangleright_{M} m\right)_{-1} h_{12}\right) \beta^{2}\left(n_{-1}\right)\right) \\
& \otimes\left(\beta^{2}\left(h_{11}\right) \triangleright_{M} m\right)_{0} \otimes\left(\beta^{4}\left(h_{2}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{\text { (HYD) }}{=} & \beta^{-2}\left(\left(h_{11} \beta\left(m_{-1}\right)\right) \beta^{2}\left(n_{-1}\right)\right) \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright_{M} m_{0}\right) \otimes\left(\beta^{4}\left(h_{2}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{\text { (HA1) }}{=} & \left(\beta^{-2}\left(h_{11}\right) \beta^{-1}\left(m_{-1}\right)\right) n_{-1} \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright_{M} m_{0}\right) \otimes\left(\beta^{4}\left(h_{2}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{\text { (HA2) }}{=} & \beta^{-1}\left(h_{11}\right)\left(\beta^{-1}\left(m_{-1}\right) \beta^{-1}\left(n_{-1}\right)\right) \otimes\left(\beta^{3}\left(h_{12}\right) \triangleright_{M} m_{0}\right) \\
& \otimes\left(\beta^{4}\left(h_{2}\right) \triangleright_{N} n_{0}\right) \\
\stackrel{\text { (HC2) }}{=} & h_{1}\left(\beta^{-1}\left(m_{-1}\right) \beta^{-1}\left(n_{-1}\right)\right) \otimes\left(\beta^{3}\left(h_{21}\right) \triangleright_{M} m_{0}\right) \otimes\left(\beta^{3}\left(h_{22}\right) \triangleright_{N} n_{0}\right) \\
(\text { (HC1),(HA1) } & h_{1} \beta\left(\beta^{-2}\left(m_{-1} n_{-1}\right)\right) \otimes\left(\beta^{3}\left(h_{2}\right)_{1} \triangleright_{M} m_{0}\right) \otimes\left(\beta^{3}\left(h_{2}\right)_{2} \triangleright_{N} n_{0}\right) \\
= & h_{1} \beta\left((m \otimes n)_{-1}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright_{M} \otimes N(m \otimes n)_{0}\right),
\end{array}
$$

condition (HYD) holds. Therefore $\left(M \otimes N, \triangleright_{M \otimes N}, \rho^{M \otimes N}, \alpha_{M} \otimes \alpha_{N}\right)$ is a Hom-Yetter-Drinfeld module.

Lemma 4.5. Let (H, β) be a Hom-bialgebra and $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$, $\left(N, \triangleright_{N}, \rho^{N}, \alpha_{N}\right),\left(P, \triangleright_{P}, \rho^{P}, \alpha_{P}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$. With notation as above, define the linear map

$$
\begin{gathered}
a_{M, N, P}:(M \otimes N) \otimes P \rightarrow M \otimes(N \otimes P), \\
(m \otimes n) \otimes p \mapsto \alpha_{M}^{-1}(m) \otimes\left(n \otimes \alpha_{P}(p)\right),
\end{gathered}
$$

for $m \in M, n \in N$ and $p \in P$. Then $a_{M, N, P}$ is an isomorphism of left (H, β)-Hom-modules and left (H, β)-Hom-comodules.

Proof. Same as the proof of [16, Proposition 3.2].
Lemma 4.6. Let (H, β) be a Hom-bialgebra and $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right)$, $\left(N, \triangleright_{N}, \rho^{N}, \alpha_{N}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Define the linear map
$c_{M, N}: M \otimes N \rightarrow N \otimes M, \quad m \otimes n \mapsto\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes \alpha_{M}^{-1}\left(m_{0}\right)$, where $m \in M$ and $n \in N$. Then $c_{M, N}$ is a morphism of left (H, β)-Hommodules and left (H, β)-Hom-comodules.

Proof. For all $h \in H, m \in M$ and $n \in N$, firstly,

$$
\begin{aligned}
&\left(\alpha_{N} \otimes \alpha_{M}\right) \circ c_{M, N}(m \otimes n) \\
&=\alpha_{N}\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes m_{0} \\
& \stackrel{(\mathrm{HM} 1)}{=}\left(\beta^{3}\left(m_{-1}\right) \triangleright_{N} n\right) \otimes m_{0} \\
&\left({ }^{\text {HCM1) }}=\right. \\
&= \beta^{2}\left(\alpha_{M}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}\left(\alpha_{N}(n)\right) \otimes \alpha_{M}^{-1}\left(\alpha_{M}(m)_{0}\right)\right. \\
&=c_{M, N} \circ\left(\alpha_{M} \otimes \alpha_{N}\right)(m \otimes n)
\end{aligned}
$$

secondly,

$$
\begin{aligned}
& c_{M, N}\left(h \triangleright_{M \otimes N}(m \otimes n)\right)=c_{M, N}\left(\left(h_{1} \triangleright_{M} m\right) \otimes\left(h_{2} \triangleright_{N} n\right)\right) \\
& \quad=\left(\beta^{2}\left(\left(h_{1} \triangleright_{M} m\right)_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}\left(h_{2} \triangleright_{N} n\right)\right) \otimes \alpha_{M}^{-1}\left(\left(h_{1} \triangleright_{M} m\right)_{0}\right) \\
& \quad \stackrel{\text { (HM1) }}{=}\left(\beta^{2}\left(\left(h_{1} \triangleright_{M} m\right)_{-1}\right) \triangleright_{N}\left(\beta^{-1}\left(h_{2}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)\right) \otimes \alpha_{M}^{-1}\left(\left(h_{1} \triangleright_{M} m\right)_{0}\right) \\
& \quad \stackrel{\text { (HM2) }}{=}\left(\left(\beta\left(\left(h_{1} \triangleright_{M} m\right)_{-1}\right) \beta^{-1}\left(h_{2}\right)\right) \triangleright_{N} n\right) \otimes \alpha_{M}^{-1}\left(\left(h_{1} \triangleright_{M} m\right)_{0}\right) \\
& \quad \stackrel{\text { (HA1) }}{=}\left(\beta\left(\left(h_{1} \triangleright_{M} m\right)_{-1} \beta^{-2}\left(h_{2}\right)\right) \triangleright_{N} n\right) \otimes \alpha_{M}^{-1}\left(\left(h_{1} \triangleright_{M} m\right)_{0}\right) \\
& \quad \stackrel{\text { (HYD) }}{=}\left(\beta\left(\beta^{-2}(h)_{1} \beta\left(m_{-1}\right)\right) \triangleright_{N} n\right) \otimes \alpha_{M}^{-1}\left(\beta^{3}\left(\beta^{-2}(h)_{2}\right) \triangleright_{M} m_{0}\right) \\
& \quad \stackrel{\text { (HC1) }}{=}\left(\beta\left(\beta^{-2}\left(h_{1}\right) \beta\left(m_{-1}\right)\right) \triangleright_{N} n\right) \otimes \alpha_{M}^{-1}\left(\beta^{3}\left(\beta^{-2}\left(h_{2}\right)\right) \triangleright_{M} m_{0}\right) \\
& \quad=\left(\left(\beta^{-1}\left(h_{1}\right) \beta^{2}\left(m_{-1}\right)\right) \triangleright_{N} n\right) \otimes \alpha_{M}^{-1}\left(\beta\left(h_{2}\right) \triangleright_{M} m_{0}\right) \\
& \quad \stackrel{\text { (HM1) }}{=}\left(\left(\beta^{-1}\left(h_{1}\right) \beta^{2}\left(m_{-1}\right)\right) \triangleright_{N} n\right) \otimes\left(h_{2} \triangleright_{M} \alpha_{M}^{-1}\left(m_{0}\right)\right) \\
& \quad \stackrel{\text { HM2) }}{=}\left(h_{1} \triangleright_{N}\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)\right) \otimes\left(h_{2} \triangleright_{M} \alpha_{M}^{-1}\left(m_{0}\right)\right) \\
& \quad=h \triangleright_{N \otimes M}\left(\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes \alpha_{M}^{-1}\left(m_{0}\right)\right) \\
& =h \triangleright_{N \otimes M} c_{M, N}(m \otimes n) ;
\end{aligned}
$$

finally,

$$
\begin{aligned}
&\left.\left(\rho^{N \otimes M} \circ c_{M, N}\right)\left(m^{\prime} \otimes n\right)\right) \\
&= \beta^{-2}\left(\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{-1} \alpha_{M}^{-1}\left(m_{0}\right)_{-1}\right) \\
& \otimes\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{0} \otimes \alpha_{M}^{-1}\left(m_{0}\right)_{0} \\
& \stackrel{(\text { HCM1) }}{=} \beta^{-2}\left(\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{-1} \beta^{-1}\left(m_{0-1}\right)\right) \\
& \otimes\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{0} \otimes \alpha_{M}^{-1}\left(m_{00}\right) \\
& \stackrel{\text { (HCM2) }}{=} \beta^{-2}\left(\left(\beta\left(m_{-11}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{-1} \beta^{-1}\left(m_{-12}\right)\right) \\
& \otimes\left(\beta\left(m_{-11}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{0} \otimes m_{0} \\
& \stackrel{\text { (HC1) }}{=} \beta^{-2}\left(\left(\beta^{2}\left(\beta^{-1}\left(m_{-1}\right)_{1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{-1} \beta^{-1}\left(m_{-1}\right)_{2}\right) \\
& \otimes\left(\beta^{2}\left(\beta^{-1}\left(m_{-1}\right)_{1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right)_{0} \otimes m_{0} \\
& \stackrel{\text { (HYD) }}{=} \beta^{-2}\left(\beta^{-1}\left(m_{-1}\right)_{1} \beta\left(\alpha_{N}^{-1}(n)_{-1}\right)\right) \otimes\left(\beta^{3}\left(\beta^{-1}\left(m_{-1}\right)_{2}\right) \triangleright_{N} \alpha_{N}^{-1}(n)_{0}\right) \otimes m_{0} \\
& \text { (HC1),(HA1) } \\
&= \beta^{-3}\left(m_{-11}\right) \beta^{-1}\left(\alpha_{N}^{-1}(n)_{-1}\right) \otimes\left(\beta^{-2}\left(m_{-12}\right) \triangleright_{N} \alpha_{N}^{-1}(n)_{0}\right) \otimes m_{0} \\
& \text { (HCM1) } \beta^{-3}\left(m_{-11}\right) \beta^{-2}\left(n_{-1}\right) \otimes\left(\beta^{-2}\left(m_{-12}\right) \triangleright_{N} \alpha_{N}^{-1}\left(n_{0}\right)\right) \otimes m_{0} \\
&\left(\begin{array}{l}
\text { (HCM2) }
\end{array}=\right. \beta^{-2}\left(m_{-1}\right) \beta^{-2}\left(n_{-1}\right) \otimes\left(\beta^{-2}\left(m_{0-1}\right) \triangleright_{N} \alpha_{N}^{-1}\left(n_{0}\right)\right) \otimes \alpha_{M}^{-1}\left(m_{00}\right) \\
& \stackrel{\text { (HA1) }}{=} \beta^{-2}\left(m_{-1} n_{-1}\right) \otimes\left(\beta^{-2}\left(m_{0-1}\right) \triangleright_{N} \alpha_{N}^{-1}\left(n_{0}\right)\right) \otimes \alpha_{M}^{-1}\left(m_{00}\right) \\
&=\left(\mathrm{id} \otimes c_{M, N}\right)\left(\beta^{-2}\left(m_{-1} n_{-1}\right) \otimes m_{0} \otimes n_{0}\right) \\
&=\left(\mathrm{id} \otimes c_{M, N}\right) \circ \rho^{M \otimes N}\left(m_{0} \otimes n\right) .
\end{aligned}
$$

Thus $c_{M, N}$ is a morphism of left (H, β)-Hom-modules and left (H, β)-Homcomodules.

Remark. The pre-braiding $\left(c_{M, N}\right)$ differs from the one in 16, Proposition 3.3].

Theorem 4.7. Let (H, β) be a Hom-bialgebra. Then the Hom-YetterDrinfeld category ${ }_{H}^{H} Y \mathbb{D}$ is a pre-braided tensor category, with tensor product, associativity constraints, and pre-braiding defined in Lemmas 4.4, 4.5 and 4.6, respectively, and with the unit $I=\left(K, \mathrm{id}_{K}\right)$.

Proof. The proof of the pentagon axiom for $a_{M, N, P}$ coincides with the proof of [16, Theorem 3.4]. Next we prove the hexagonal relation for $c_{M, N}$. Let $\left(M, \triangleright_{M}, \rho^{M}, \alpha_{M}\right),\left(N, \triangleright_{N}, \rho^{N}, \alpha_{N}\right),\left(P, \triangleright_{P}, \rho^{P}, \alpha_{P}\right) \in{ }_{H}^{H} \mathbb{Y} \mathbb{D}$. Then for all $m \in M, n \in N$ and $p \in P$, we have

$$
\begin{aligned}
&\left(\left(\mathrm{id}_{N} \otimes c_{M, P}\right) \circ\left(a_{N, M, P}\right) \circ\left(c_{M, N} \otimes \mathrm{id}_{P}\right)\right)((m \otimes n) \otimes p) \\
&= \alpha_{N}^{-1}\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes\left(\left(\beta^{2}\left(\alpha_{M}^{-1}\left(m_{0}\right)_{-1}\right) \triangleright_{P} p\right)\right. \\
&\left.\otimes \alpha_{M}^{-1}\left(\alpha_{M}^{-1}\left(m_{0}\right)_{0}\right)\right) \\
& \stackrel{(\mathrm{HCM1)}}{=} \alpha_{N}^{-1}\left(\beta^{2}\left(m_{-1}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes\left(\left(\beta\left(m_{0-1}\right) \triangleright_{P} p\right) \otimes \alpha_{M}^{-2}\left(m_{00}\right)\right) \\
& \stackrel{(\mathrm{HCM} 2)}{=} \alpha_{N}^{-1}\left(\beta\left(m_{-11}\right) \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes\left(\left(\beta\left(m_{-12}\right) \triangleright_{P} p\right) \otimes \alpha_{M}^{-1}\left(m_{0}\right)\right) \\
& \stackrel{(\text { HC1) }}{=} \alpha_{N}^{-1}\left(\beta\left(m_{-1}\right)_{1} \triangleright_{N} \alpha_{N}^{-1}(n)\right) \otimes\left(\left(\beta\left(m_{-1}\right)_{2} \triangleright_{P} p\right) \otimes \alpha_{M}^{-1}\left(m_{0}\right)\right) \\
& \stackrel{\text { (HCM1) }}{=} \alpha_{N}^{-1}\left(\beta^{2}\left(\alpha_{M}^{-1}(m)_{-1}\right)_{1} \triangleright_{N} \alpha_{N}^{-1}(n)\right) \\
& \otimes\left(\left(\beta^{2}\left(\alpha_{M}^{-1}(m)_{-1}\right)_{2} \triangleright_{P} p\right) \otimes \alpha_{M}^{-1}(m)_{0}\right) \\
&=\left(a_{N, P, M} \circ c_{M, N \otimes P} \circ a_{M, N, P}\right)((m \otimes n) \otimes p),
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\left(c_{M, P} \otimes \operatorname{id}_{N}\right) \circ\left(a_{N, M, P}^{-1}\right) \circ\left(\operatorname{id}_{M} \otimes c_{N, P}\right)\right)(m \otimes(n \otimes p)) \\
&=\left(\left(\beta^{2}\left(\alpha_{M}(m)_{-1}\right) \triangleright_{P} \alpha_{P}^{-1}\left(\beta^{2}\left(n_{-1}\right) \triangleright_{P} \alpha_{P}^{-1}(p)\right)\right) \otimes \alpha_{M}^{-1}\left(\alpha_{M}(m)_{0}\right)\right) \\
& \otimes \alpha_{N}^{-2}\left(n_{0}\right) \\
& \stackrel{(\text { HM1 })}{=}\left(\left(\beta^{2}\left(\alpha_{M}(m)_{-1}\right) \triangleright_{P}\left(\beta\left(n_{-1}\right) \triangleright_{P} \alpha_{P}^{-2}(p)\right)\right) \otimes \alpha_{M}^{-1}\left(\alpha_{M}(m)_{0}\right)\right) \\
& \otimes \alpha_{N}^{-2}\left(n_{0}\right) \\
& \stackrel{(\text { HM } 2)}{=}\left(\left(\left(\beta\left(\alpha_{M}(m)_{-1}\right) \beta\left(n_{-1}\right)\right) \triangleright_{P} \alpha_{P}^{-1}(p)\right) \otimes \alpha_{M}^{-1}\left(\alpha_{M}(m)_{0}\right)\right) \otimes \alpha_{N}^{-2}\left(n_{0}\right) \\
&(\text { (HM1),(HA1) }\left.\left(\alpha_{P}\left(\left(\alpha_{M}(m)_{-1} n_{-1}\right)\right) \triangleright_{P} \alpha_{P}^{-2}(p)\right) \otimes \alpha_{M}^{-1}\left(\alpha_{M}(m)_{0}\right)\right) \otimes \alpha_{N}^{-2}\left(n_{0}\right) \\
&=\left(a_{P, M, N}^{-1} \circ c_{M \otimes N, P} \circ a_{M, N, P}^{-1}\right)(m \otimes(n \otimes p)),
\end{aligned}
$$

finishing the proof.
By Theorems 3.3, 3.6 and 4.7, we can get the main result in this paper.

Theorem 4.8. Let (H, β) be a Hom-bialgebra, (A, α) a left (H, β)-module Hom-algebra and a left (H, β)-comodule Hom-coalgebra. Then $\left(A_{\diamond}^{\natural} H, \mu_{A \downharpoonright H}\right.$, $\left.1_{A} \otimes 1_{H}, \Delta_{A \diamond H}, \varepsilon_{A} \otimes \varepsilon_{H}, \alpha \otimes \beta\right)$ is a Radford biproduct Hom-bialgebra if and only if (A, α) is a Hom-bialgebra in the Hom-Yetter-Drinfeld category ${ }_{H}^{H} \mathbb{Y} \mathbb{D}$.

Proof. This is obvious if we compare conditions (R4) and (R5) in Theorem 3.3 with condition (HYD) in Definition 4.1 and the definition of the pre-braiding $c_{M, N}$ in Lemma 4.6, respectively.

Remarks. (1) If $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$ in Theorem 4.8, then we get Majid's conclusion about the usual Radford biproduct and Yetter-Drinfeld category.
(2) $\left(A_{\diamond}^{\natural} H, \mu_{A \sharp H}, 1_{A} \otimes 1_{H}, \Delta_{A \diamond H}, \varepsilon_{A} \otimes \varepsilon_{H}, \alpha \otimes \beta, S_{A_{\diamond}^{\natural} H}\right)$ is a Radford biproduct Hom-Hopf algebra if and only if $\left(A, \alpha, S_{A}\right)$ is a Hom-Hopf algebra in the Hom-Yetter-Drinfeld category ${ }_{H}^{H} Y \mathbb{D}$.
5. Applications. In this section, we give some applications of the above results.

Example 5.1. Let $K \mathbb{Z}_{2}=K\{1, a\}$ be a Hopf group algebra (see 23). Then $\left(K \mathbb{Z}_{2}, \mathrm{id}_{K \mathbb{Z}_{2}}\right)$ is a Hom-Hopf algebra.

Let $T_{2,-1}=K\left\{1, g, x, y \mid g^{2}=1, x^{2}=0, y=g x, g y=-g y=x\right\}$ be Taft's Hopf algebra (see 13]). Its coalgebra structure and antipode are given by

$$
\begin{gathered}
\Delta(g)=g \otimes g, \quad \Delta(x)=x \otimes g+1 \otimes x, \quad \Delta(y)=y \otimes 1+g \otimes y, \\
\varepsilon(g)=1, \quad \varepsilon(x)=0, \quad \varepsilon(y)=0
\end{gathered}
$$

and

$$
S(g)=g, \quad S(x)=y, \quad S(y)=-x
$$

Define a linear map $\alpha: T_{2,-1} \rightarrow T_{2,-1}$ by

$$
\alpha(1)=1, \quad \alpha(g)=g, \quad \alpha(x)=k x, \quad \alpha(y)=k y
$$

where $0 \neq k \in K$. Then α is an automorphism of Hopf algebras.
So we get a Hom-Hopf algebra $H_{\alpha}=\left(T_{2,-1}, \alpha \circ \mu_{T_{2,-1}}, 1_{T_{2,-1}}, \Delta_{T_{2,-1}} \circ \alpha\right.$, $\varepsilon_{T_{2,-1}}, \alpha$) (see [19]). By a direct computation we get:

LEMmA 5.1.1. With the notations above, define a module action \triangleright : $K \mathbb{Z}_{2} \otimes H_{\alpha} \rightarrow H_{\alpha}$ by

$$
\begin{aligned}
& 1_{K \mathbb{Z}_{2}} \triangleright 1_{H_{\alpha}}=1_{H_{\alpha}}, \quad 1_{K \mathbb{Z}_{2}} \triangleright g=g, \\
& 1_{K \mathbb{Z}_{2}} \triangleright x=k x, \quad 1_{K \mathbb{Z}_{2}} \triangleright y=k y, \\
& a \triangleright 1_{H_{\alpha}}=1_{H_{\alpha}}, \quad a \triangleright g=g, \\
& a \triangleright x=k x, \quad a \triangleright y=k y,
\end{aligned}
$$

Then $\left(H_{\alpha}, \triangleright, \alpha\right)$ is a $\left(K_{2}, \mathrm{id}_{K \mathbb{Z}_{2}}\right)$-module Hom-algebra. Therefore, $\left(H_{\alpha} \natural K \mathbb{Z}_{2}\right.$, $\left.\alpha \otimes \operatorname{id}_{K \mathbb{Z}_{2}}\right)$ is a smash product Hom-algebra.

Lemma 5.1.2. With the notations above, define a comodule action ρ : $H_{\alpha} \rightarrow K \mathbb{Z}_{2} \otimes H_{\alpha}$ by

$$
1_{H_{\alpha}} \mapsto 1_{K \mathbb{Z}_{2}} \otimes 1_{H_{\alpha}}, \quad g \mapsto 1_{K \mathbb{Z}_{2}} \otimes g, \quad x \mapsto k a \otimes x, \quad y \mapsto k a \otimes y .
$$

Then $\left(H_{\alpha}, \rho, \alpha\right)$ is a left $\left(K_{2}, \mathrm{id}_{K \mathbb{Z}_{2}}\right)$-comodule Hom-coalgebra. Therefore, ($H_{\alpha} \bigsqcup K \mathbb{Z}_{2}, \alpha \otimes \mathrm{id}_{K \mathbb{Z}_{2}}$) is a smash coproduct Hom-coalgebra.

From the above two lemmas and a direct computation, we have
Theorem 5.1.3. With the notations above, ($H_{\alpha}{ }_{\diamond}^{\natural} K \mathbb{Z}_{2}, \mu_{H_{\alpha} \nmid K \mathbb{Z}_{2}}, 1_{H_{\alpha}} \otimes$ $1_{K \mathbb{Z}_{2}}, \Delta_{H_{\alpha} \diamond K \mathbb{Z}_{2}}, \varepsilon_{H_{\alpha}} \otimes \varepsilon_{K \mathbb{Z}_{2}}, \alpha \otimes \mathrm{id}_{K \mathbb{Z}_{2}}$) is a Radford biproduct Hom-bialgebra. Furthermore, ($H_{\alpha}^{\natural} K \mathbb{Z}_{2}, \alpha \otimes \mathrm{id}_{K \mathbb{Z}_{2}}, S_{H_{\alpha}{ }_{\circ}^{\natural} K \mathbb{Z}_{2}}$) is a Hom-Hopf algebra, where $S_{H_{\alpha}{ }_{8}^{\ell} K \mathbb{Z}_{2}}$ is defined by

$$
\begin{aligned}
& S_{H_{\alpha}{ }^{\natural} K \mathbb{Z}_{2}}\left(1_{H_{\alpha}} \otimes 1_{K \mathbb{Z}_{2}}\right)=1_{H_{\alpha}} \otimes 1_{K \mathbb{Z}_{2}}, \quad S_{H_{\alpha}{ }_{\delta}^{\natural} K \mathbb{Z}_{2}}\left(1_{H_{\alpha}} \otimes a\right)=1_{H_{\alpha}} \otimes a, \\
& S_{H_{\alpha}{ }_{8}^{\natural} K \mathbb{Z}_{2}}\left(g \otimes 1_{K \mathbb{Z}_{2}}\right)=g \otimes 1_{K \mathbb{Z}_{2}}, \quad S_{H_{\alpha}{ }_{8}^{\natural} K \mathbb{Z}_{2}}(g \otimes a)=g \otimes a, \\
& S_{H_{\alpha}{ }_{8}^{\ell} K \mathbb{Z}_{2}}\left(x \otimes 1_{K \mathbb{Z}_{2}}\right)=y \otimes a, \quad S_{H_{\alpha}{ }_{8}^{\natural} K \mathbb{Z}_{2}}(x \otimes a)=y \otimes 1_{K \mathbb{Z}_{2}}, \\
& S_{H_{\alpha}^{\natural} K \mathbb{Z}_{2}}\left(y \otimes 1_{K \mathbb{Z}_{2}}\right)=-x \otimes a, \quad S_{H_{\alpha}{ }_{8}^{\natural} K \mathbb{Z}_{2}}(y \otimes a)=-x \otimes 1_{K \mathbb{Z}_{2}} .
\end{aligned}
$$

Example 5.2. Let $K \mathbb{Z}_{2}=K\{1, a\}$ be a Hopf group algebra as in Example 5.1.

Let $A=K\{1, z\}$ be a vector space. Define the multiplication μ_{A} by

$$
1 z=z 1=l z, \quad z^{2}=0,
$$

and the automorphism $\beta: A \rightarrow A$ by

$$
\beta(1)=1, \quad \beta(z)=l z,
$$

for some $0 \neq l \in K$. Then (A, β) is a Hom-algebra.
Define the comultiplication Δ_{A} by
$\Delta_{A}(1)=1 \otimes 1, \quad \Delta_{A}(z)=l z \otimes 1+l 1 \otimes z, \quad$ and $\quad \varepsilon_{A}(1)=1, \quad \varepsilon_{A}(z)=0$. Then (A, β) is a Hom-coalgebra. By a direct computation we get:

Lemma 5.2.1. With the notations above, define a module action \unrhd : $K \mathbb{Z}_{2} \otimes A \rightarrow A$ by

$$
\begin{array}{rlr}
1_{K \mathbb{Z}_{2}} \unrhd 1_{A}=1_{A}, & 1_{K \mathbb{Z}_{2}} \unrhd z=l z, \\
a \unrhd 1_{A} & =1_{A}, & a \unrhd z=-l z .
\end{array}
$$

Then (A, \unrhd, β) is a $\left(K_{2}, \operatorname{id}_{K \mathbb{Z}_{2}}\right)$-module Hom-algebra. Therefore, $\left(A \natural K \mathbb{Z}_{2}\right.$, $\beta \otimes \mathrm{id}_{K \mathbb{Z}_{2}}$) is a smash product Hom-algebra.

LEMmA 5.2.2. With the notations above, define a comodule action ψ : $A \rightarrow K \mathbb{Z}_{2} \otimes A$ by

$$
1_{A} \mapsto 1_{K \mathbb{Z}_{2}} \otimes 1_{A}, \quad z \mapsto l a \otimes z
$$

Then (A, ψ, β) is a left $\left(K \mathbb{Z}_{2}, \mathrm{id}_{K \mathbb{Z}_{2}}\right)$-comodule Hom-coalgebra. Therefore, $\left(A \natural K \mathbb{Z}_{2}, \beta \otimes \mathrm{id}_{K \mathbb{Z}_{2}}\right)$ is a smash coproduct Hom-coalgebra.

By the above two lemmas and a direct computation, we have
Theorem 5.2.3. With the notations above, $\left(A_{\diamond}^{\natural} K \mathbb{Z}_{2}, \mu_{A \emptyset K \mathbb{Z}_{2}}, 1_{A} \otimes 1_{K \mathbb{Z}_{2}}\right.$, $\Delta_{A \diamond K \mathbb{Z}_{2}}, \varepsilon_{A} \otimes \varepsilon_{K \mathbb{Z}_{2}}, \beta \otimes \mathrm{id}_{K \mathbb{Z}_{2}}$) is a Radford biproduct Hom-bialgebra. Furthermore, $\left(A_{\diamond}^{\natural} K \mathbb{Z}_{2}, \beta \otimes \operatorname{id}_{K \mathbb{Z}_{2}}, S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}\right)$ is a Hom-Hopf algebra, where $S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}$ is defined by

$$
\begin{aligned}
S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}\left(1_{A} \otimes 1_{K \mathbb{Z}_{2}}\right) & =1_{A} \otimes 1_{K \mathbb{Z}_{2}}, & S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}\left(1_{A} \otimes a\right) & =1_{A} \otimes a, \\
S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}\left(z \otimes 1_{K \mathbb{Z}_{2}}\right) & =z \otimes a, & S_{A_{\diamond}^{\natural} K \mathbb{Z}_{2}}(z \otimes a) & =-z \otimes 1_{K \mathbb{Z}_{2}} .
\end{aligned}
$$

REmARK. If $\beta=\operatorname{id}_{A}$, i.e., $l=1$, then Example 5.2 coincides with the biproduct $B \star H$ (which is isomorphic to Sweedler's Hopf algebra $T_{2, \omega}$) of [12, Example 4.3].

In the following, let us recall the definition of a quasitriangular Hom-Hopf algebra from [26] or [10].

A quasitriangular Hom-Hopf algebra is an octuple $\left(H, \mu, 1_{H}, \Delta, \varepsilon, S, \beta, R\right)$ (abbr. (H, β, R)) in which $\left(H, \mu, 1_{H}, \Delta, \varepsilon, S, \beta\right)$ is a Hom-Hopf algebra and $R=R^{1} \otimes R^{2} \in H \otimes H$, satisfying the following axioms (for all $h \in H$ and $R=r):$
(QHA1) $\varepsilon\left(R^{1}\right) R^{2}=R^{1} \varepsilon\left(R^{2}\right)=1$,
(QHA2) $R^{1}{ }_{1} \otimes R^{1}{ }_{2} \otimes \beta\left(R^{2}\right)=\beta\left(R^{1}\right) \otimes \beta\left(r^{1}\right) \otimes R^{2} r^{2}$,
(QHA3) $\beta\left(R^{1}\right) \otimes R^{2}{ }_{1} \otimes R^{2}{ }_{2}=R^{1} r^{1} \otimes \beta\left(r^{2}\right) \otimes \beta\left(R^{2}\right)$,
(QHA4) $h_{2} R^{1} \otimes h_{1} R^{2}=R^{1} h_{1} \otimes R^{2} h_{2}$,
(QHA5) $\beta\left(R^{1}\right) \otimes \beta\left(R^{2}\right)=R^{1} \otimes R^{2}$.
Let (H, β, S) be a Hom-Hopf algebra and $R=R^{1} \otimes R^{2} \in H \otimes H$. Define

$$
\rho^{H}: H \rightarrow H \otimes H, \quad h \mapsto h_{-1} \otimes h_{0}=\beta^{-3}\left(R^{2}\right) \otimes R^{1} h .
$$

Proposition 5.3. Let (H, β, R) be a quasitriangular Hom-Hopf algebra. Then $\left(H, \beta, \rho^{H}\right)$ is a left (H, β)-comodule Hom-coalgebra and $\left(H, \mu_{H}, \rho^{H}, \beta\right)$ is a Hom-Yetter-Drinfeld module.

Proof. We compute as follows:

$$
\begin{aligned}
& \beta\left(h_{-1}\right) \otimes \beta\left(h_{0}\right) \stackrel{=}{=} \beta\left(\beta^{-3}\left(R^{2}\right)\right) \otimes \beta\left(R^{1} h\right) \\
& \stackrel{\text { (HA1) }}{=} \beta\left(\beta^{-3}\left(R^{2}\right)\right) \otimes \beta\left(R^{1}\right) \beta(h) \\
& \stackrel{\text { (QA5) }}{=} \beta^{-3}\left(R^{2}\right) \otimes R^{1} \beta(h)=\beta(h)_{-1} \otimes \beta(h)_{0},
\end{aligned}
$$

so (HCM1) holds. Now,

$$
\begin{aligned}
& h_{-11} \otimes h_{-12} \beta\left(h_{0}\right) \quad=\quad \beta^{-3}\left(R^{2}\right)_{1} \otimes \beta^{-3}\left(R^{2}\right)_{2} \otimes \beta\left(R^{1} h\right) \\
& \stackrel{(\mathrm{HCl}),(\text { (НА1) }}{=} \beta^{-3}\left(R^{2}{ }_{1}\right) \otimes \beta^{-3}\left(R^{2}{ }_{2}\right) \otimes \beta\left(R^{1}\right) \beta(h) \\
& \stackrel{(Q \mathrm{HA} 3)}{=} \quad \beta^{-2}\left(R^{2}\right) \otimes \beta^{-2}\left(r^{2}\right) \otimes\left(r^{1} R^{1}\right) \beta(h) \\
& \stackrel{(\text { HA } 2)}{=} \quad \beta^{-2}\left(R^{2}\right) \otimes \beta^{-2}\left(r^{2}\right) \otimes \beta\left(r^{1}\right)\left(R^{1} h\right) \\
& \stackrel{(\text { QHA5) }}{=} \quad \beta^{-2}\left(R^{2}\right) \otimes \beta^{-3}\left(r^{2}\right) \otimes r^{1}\left(R^{1} h\right) \\
& =\beta\left(h_{-1}\right) \otimes h_{0-1} \otimes h_{00},
\end{aligned}
$$

thus we get (HCM2). Next,

$$
\begin{aligned}
& \beta^{2}\left(h_{-1}\right) \otimes h_{01} \otimes h_{02} \quad=\quad \beta^{-1}\left(R^{2}\right) \otimes\left(R^{1} h\right)_{1} \otimes\left(R^{1} h\right)_{2} \\
& =\quad \beta^{-1}\left(R^{2}\right) \otimes R^{1}{ }_{1} h_{1} \otimes R^{1}{ }_{2} h_{2} \\
& \stackrel{(Q \mathrm{HA} 2)}{=} \quad \beta^{-2}\left(R^{2} r^{2}\right) \otimes \beta\left(R^{1}\right) h_{1} \otimes \beta\left(r^{1}\right) h_{2} \\
& \stackrel{(\text { QHA } 5)(\text { (HA1) }}{=} \beta^{-3}\left(R^{2}\right) \beta^{-3}\left(r^{2}\right) \otimes R^{1} h_{1} \otimes r^{1} h_{2} \\
& =\quad h_{1-1} h_{1-1} \otimes h_{10} \otimes h_{20},
\end{aligned}
$$

therefore we obtain (HCMC1).
(HCMC2) can be checked by using (QHA1).
Finally, we verify that (HYD) is satisfied:

$$
\begin{aligned}
& \left(\beta^{2}\left(h_{1}\right) \triangleright g\right)_{-1} h_{2} \otimes\left(\beta^{2}\left(h_{1}\right) \triangleright g\right)_{0}=\beta^{-3}\left(R^{2}\right) h_{2} \otimes R^{1}\left(\beta^{2}\left(h_{1}\right) g\right) \\
& \stackrel{(\text { HA } 2)}{=} \quad \beta^{-3}\left(R^{2}\right) h_{2} \otimes\left(\beta^{-1}\left(R^{1}\right) \beta^{2}\left(h_{1}\right)\right) \beta(g) \\
& \stackrel{(\mathrm{HAl})(\mathrm{HC1})}{=} \beta^{-3}\left(R^{2} \beta^{3}(h)_{2}\right) \otimes \beta^{-1}\left(R^{1} \beta^{3}(h)_{1}\right) \beta(g) \\
& \stackrel{(\text { QHA }}{=}{ }^{-3} \beta^{-3}\left(\beta^{3}(h)_{1} R^{2}\right) \otimes \beta^{-1}\left(\beta^{3}(h)_{2} R^{1}\right) \beta(g) \\
& { }^{(\text {HA1)(HC1) }}={ }_{1} h_{1} \beta^{-3}\left(R^{2}\right) \otimes\left(\beta^{2}\left(h_{2}\right) \beta^{-1}\left(R^{1}\right)\right) \beta(g) \\
& \stackrel{(\text { HA2 }}{=} \quad h_{1} \beta^{-3}\left(R^{2}\right) \otimes \beta^{3}\left(h_{2}\right)\left(\beta^{-1}\left(R^{1}\right) g\right) \\
& \stackrel{(\mathrm{QHA5})}{=} h_{1} \beta^{-2}\left(R^{2}\right) \otimes \beta^{3}\left(h_{2}\right)\left(R^{1} g\right)=h_{1} \beta\left(g_{-1}\right) \otimes\left(\beta^{3}\left(h_{2}\right) \triangleright g_{0}\right),
\end{aligned}
$$

finishing the proof.
Proposition 5.4. Let (H, β, S) be a Hom-Hopf algebra, with the notations as above. If $\left(H, \beta, \rho^{H}\right)$ is a left (H, β)-comodule Hom-coalgebra and $\left(H, \mu_{H}, \rho^{H}, \beta\right)$ is a Hom-Yetter-Drinfeld module, then (H, β, R) is a quasitriangular Hom-Hopf algebra.

Proof. This is straightforward.
By Propositions 5.3 and 5.4, we have:
Theorem 5.5. With the notations above, (H, β, R) is a quasitriangular Hom-Hopf algebra if and only if $\left(H, \beta, \rho^{H}\right)$ is a left (H, β)-comodule Homcoalgebra and $\left(H, \mu_{H}, \rho^{H}, \beta\right)$ is a Hom-Yetter-Drinfeld module.

Dually, we have
Theorem 5.6. Let (H, β, S) be a Hom-Hopf algebra and $\sigma: H \otimes H \rightarrow K$ a bilinear map. Define $\triangleright_{H}: H \otimes H \rightarrow H$ by

$$
h \otimes g \mapsto h \triangleright_{H} g=\sigma\left(g_{1}, \beta^{-3}(h)\right) g_{2}
$$

for $h, g \in H$. Then (H, β, σ) is a cobraided Hom-Hopf algebra (see [11, 27]) if and only if $\left(H, \beta, \triangleright_{H}\right)$ is a left (H, β)-module Hom-algebra and $\left(H, \triangleright_{H}\right.$, $\left.\Delta_{H}, \beta\right)$ is a Hom-Yetter-Drinfeld module.

Acknowledgements. This work was partially supported by the NNSF of China (No. 11101128) and the Foundation of Henan Province (No. 14IRTSTHN023).

REFERENCES

[1] N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010), 375-417.
[2] S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), 2216-2240.
[3] Y. Y. Chen, Z. W. Wang and L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013), 073515.
[4] Y. Y. Chen, Z. W. Wang and L. Y. Zhang, Quasitriangular Hom-Hopf algebras, Colloq. Math. 137 (2014), 67-88.
[5] Y. Y. Chen and L. Y. Zhang, The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation, J. Math. Phys. 55 (2014), 031702.
[6] S. Dăscălescu, C. Năstăsescu and S. Raianu, Hopf Algebras. An Introduction, Lecture Notes in Pure Appl. Math. 235, Dekker, New York, 2001.
[7] C. Kassel, Quantum Groups, Grad. Texts in Math. 155, Springer, Berlin, 1995.
[8] H. Y. Li and T. S. Ma, On Hom-Yetter-Drinfeld category, submitted, 2014.
[9] L. Liu and B. L. Shen, Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (2014), 031701.
[10] T. S. Ma, H. Y. Li and L. L. Liu, Double biproduct Hom-bialgebra and related quasitriangular structures, submitted, 2014.
[11] T. S. Ma, H. Y. Li and T. Yang, Cobraided smash product Hom-Hopf algebras, Colloq. Math. 134 (2014), 75-92.
[12] T. S. Ma, H. Y. Li and W. Z. Zhao, On the braided structures of Radford's biproduct, Acta Math. Sci. Ser. B English Ed. 31 (2011), 701-715.
[13] T. S. Ma and S. H. Wang, Bitwistor and quasitriangular structures of bialgebras, Comm. Algebra 38 (2010), 3206-3242.
[14] S. Majid, Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group, Comm. Math. Phys. 156 (1993), 607-638.
[15] S. Majid, Algebras and Hopf algebras in braided categories, in: Advances in Hopf Algebras (Chicago, IL, 1992), Lecture Notes in Pure Appl. Math. 158, Dekker, New York, 1994, 55-105.
[16] A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (2014), 013501.
[17] A. Makhlouf and F. Panaite, Twisting operators, twisted tensor products and smash products for Hom-associative algebras, arXiv:1402.1893 (2014).
[18] A. Makhlouf and S. D. Silvestrov, Hom-algebra stuctures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[19] A. Makhlouf and S. D. Silvestrov, Hom-algebras and hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589.
[20] D. E. Radford, The structure of Hopf algebra with a projection, J. Algebra 92 (1985), 322-347.
[21] D. E. Radford, Hopf Algebras, Ser. Knots and Everything 49, World Sci., 2012.
[22] D. Simson, Coalgebras of tame comodule type, comodule categories, and a tamewild dichotomy problem, in: Representation of Algebras and Related Topics (Tokyo, 2010), A. Skowroński and K. Yamagata (eds.), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2010, 561-660.
[23] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[24] D. Yau, Module Hom-algebras, arXiv:0812.4695v1 (2008).
[25] D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45-64.
[26] D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys. A 45 (2012), 065203, 23 pp .
[27] D. Yau, Hom-quantum groups II: Cobraided Hom-bialgebras and Hom-quantum geometry, arXiv:0907.1880 (2009).
[28] D. Yau, Hom-quantum groups III: Representations and module Hom-algebras, arXiv:0911.5402 (2009).
[29] D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys. 52 (2011), 053502.
[30] D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A 42 (2009), 165202, 12 pp.
[31] T. Zhang, Comodule Hom-coalgebras, arXiv:1301.4152 (2013).
[32] N. F. Zheng, The braided structures over Hom- ω-smash coproduct Hopf algebras, Acta Math. Sci. Ser. A 33 (2013), 1068-1088 (in Chinese).

Haiying Li, Tianshui Ma (corresponding author)
College of Mathematics and Information Science
Henan Normal University
453007 Xinxiang, China
E-mail: haiyingli2012@yahoo.com
matianshui@yahoo.com

