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QUASITRIANGULAR HOM-HOPF ALGEBRAS

BY

YUANYUAN CHEN, ZHONGWEI WANG and LIANGYUN ZHANG (Nanjing)

Abstract. A twisted generalization of quasitriangular Hopf algebras called quasitri-
angular Hom-Hopf algebras is introduced. We characterize these algebras in terms of cer-
tain morphisms. We also give their equivalent description via a braided monoidal category
H̃(HM). Finally, we study the twisting structure of quasitriangular Hom-Hopf algebras
by conjugation with Hom-2-cocycles.

1. Introduction. The theory of quantum groups, having its source in
theoretical physics, is a new branch of mathematics developed in the last
few years. It was introduced by Soviet mathematical physicists when inves-
tigating quantum integrable systems in quantum mechanics. In a sense, the
investigation of quantum groups is just the investigation of Hopf algebras.
By quantizing and other means, quasitriangular Hopf algebras are obtained.
As is well known, quasitriangular Hopf algebras are crucial to the theory of
quantum groups andR-matrices. For example, quasitriangular Hopf algebras
have a very close relation to the quantum Yang–Baxter equation

R12R13R23 = R23R13R12,

which is one of the most interesting subjects in quantum mechanics. Thus
the investigation of quasitriangular Hopf algebras is of interest not only in
mathematics but also in physics. As a generalization of quasitriangular Hopf
algebras, in this paper we mainly study quasitriangular Hom-Hopf algebras.

Hom-structures were first defined for Lie algebras. As deformations of
Lie algebras, Hom-Lie algebras are determined by an endomorphism. That
is, the Jacobi identity is replaced by the so-called Hom-Jacobi identity

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

where α is an endomorphism of Lie algebras. Earlier precursors of Hom-Lie
algebras can be found in [12, 13, 10]. Recently, Hom-Lie structures have been
further studied by many scholars [18, 24, 25, 27, 1, 2, 11]; these structures in-
clude Hom-Lie bialgebras, quasi-Hom-Lie algebras, Hom-Lie superalgebras,
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Hom-Lie color algebras, Hom-Lie admissible Hom-algebras, Hom-Nambu–
Lie algebras and so on. In [4], we have studied the construction of Hom-Lie
bialgebras from Hom-Lie algebras and Hom-Lie coalgebras.

Similar ideas were applied to other algebra structures. The concepts
of Hom-algebras, Hom-coalgebras, Hom-Hopf algebras, Hom-alternative al-
gebras, Hom-Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras,
infinitesimal Hom-bialgebras and Hom-power associative algebras were in-
troduced in [9, 17, 19, 16, 26, 28, 3, 7, 8, 23].

Further, some modules and comodules on these Hom-algebras struc-
tures such as Hom-modules, Hom-comodules, Hom-Hopf modules and Hom-
module algebras were considered, and the fundamental structure of Hom-
Hopf modules was investigated in [3]. Moreover, the antipodes and Drin-
fel’d doubles of Hom-Hopf algebras were considered in [23]. And cobraided
Hom-smash product Hopf algebras were studied in [14].

Motivated by Hom-Lie algebras and other Hom-type algebras, Yau in-
vented the concept of quasitriangular Hom-Hopf algebras [28], which can be
considered as generalized quantum groups. He studied properties of these
algebras, and proved that each quasitriangular Hom-Hopf algebra (H,α,R)
comes with a solution of the quantum Hom-Yang–Baxter equations:

(R12R13)R23 = R23(R13R12) and R12(R13R23) = (R23R13)R12,

where R12 = R⊗ c, R23 = c⊗R, R13 = (τ ⊗ id)R23 and c is a weak unit.
Further, solutions of the Hom-Yang–Baxter equations were obtained from
Hom-modules of suitable quasitriangular Hom-bialgebras. In addition, Chen
and Zhang [5] proved an FRT type theorem for the quantum Hom-Yang–
Baxter equations.

This paper has two purposes. One is to characterize quasitriangular
Hom-Hopf algebras via the category H̃(HM) of Hom-modules which is a
braided monoidal category. The other is to investigate the twisting of qu-
asitriangular Hom-Hopf algebras, that is, construction of a new quasitrian-
gular Hom-Hopf algebra from an old one by the twisting process through a
Hom-2-cocycle.

This paper is organized as follows. In Section 2, we recall the basic defi-
nitions concerning Hom-structures, including those of Hom-algebras, Hom-
coalgebras, Hom-bialgebras, Hom-Hopf algebras, Hom-modules and Hom-
comodules. In Section 3, we consider some properties of quasitriangular
Hom-Hopf algebras and give an equivalent description of quasitriangular
Hom-Hopf algebras via the braided monoidal category H̃(HM). Moreover,
we characterize the quasitriangular Hom-Hopf algebras in terms of certain
morphisms. In Section 4, we introduce two sub-Hom-Hopf algebras of a
quasitriangular Hom-Hopf algebra and study their relationship. In Section 5,
we give a construction of a new quasitriangular Hom-Hopf algebra by using
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a Hom-2-cocycle. Further, we apply these main results to a quasitriangular
Hom-Hopf algebra built on a 3-dimensional group algebra.

Throughout this paper we freely use the Hopf algebras and coalgebras
terminology introduced in [6], [22] and [21].

2. Preliminaries. Throughout, all vector spaces and tensor spaces we
consider are over a fixed field k. For a coalgebra, we write its comultiplication
∆(x) = x1⊗x2 and denote the comodule structure ρ(m) = m(0)⊗m(1) with
the summation symbols omitted according to [22]. Moreover, τ denotes the
flip map.

Let Mk = (Mk,⊗, k, a, l, r) be the k-module category. The monoidal
category H(Mk) defined in [3] is as follows: objects are couples (M,µ), with
M ∈Mk and µ ∈ Autk(M), a morphism f : (M,µ)→ (N, ν) is a morphism
f : M → N inMk such that ν ◦ f = f ◦µ, and the tensor product of (M,µ)
and (N, ν) is given by

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν).

Roughly speaking, Hom-structures are objects in the monoidal category
H̃(Mk) = (H(Mk),⊗, (k, id), ã, l̃, r̃) defined in [3], where the associativity
constraint ã is given by the fomula

ãM,N,L = aM,N,L ◦ ((µ⊗ id)⊗ ς−1) = (µ⊗ (id⊗ ς−1)) ◦ aM,N,L

for (M,µ), (N, ν), (L, ς) ∈ H(Mk), and the unit constraints l̃, r̃ are given by

l̃M = µ ◦ lM = lM ◦ (id⊗ µ), r̃M = µ ◦ rM = rM ◦ (µ⊗ id).

The category H̃(Mk) is called the Hom-category associated to the monoidal
category Mk, where a k-submodule N ⊆ M is called a subobject of (M,µ)

if µ restricts to an automorphism of N , that is, (N,µ|N ) ∈ H̃(Mk). Since

the category Mk has left duality, so does H̃(Mk). Now let M∗ be the left
dual of M ∈Mk, and let bM : k →M ⊗M∗ and dM : M∗ ⊗M → k be the
coevaluation and evaluation maps. Then the left dual of (M,µ) ∈ H̃(Mk)
is (M∗, (µ∗)−1), and the coevaluation and evaluation maps are given by

b̃M = (µ⊗ µ∗)−1 ◦ bM , d̃M = dM ◦ (µ∗ ⊗ µ).

We now recall some useful definitions given in [3].

Definition 2.1. A Hom-algebra is a vector space A together with an
element 1A ∈ A and linear maps

m : A⊗A→ A, a⊗ b 7→ ab, α ∈ Aut(A),

such that

α(a)(bc) = (ab)α(c), α(ab) = α(a)α(b),

a1A = 1Aa = α(a), α(1A) = 1A,

for all a, b, c ∈ A. In the following, we denote this Hom-algebra by (A,α).
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In the language of Hopf algebras, m is multiplication, α is the twisting
automorphism and 1A is the unit. Let (A,α) and (A′, α′) be two Hom-
algebras. A Hom-algebra morphism f : (A,α) → (A′, α′) is a linear map
such that f ◦ α = α′ ◦ f , f(ab) = f(a)f(b) and f(1A) = 1A′ .

Definition 2.2. A Hom-coalgebra is an object (C, γ) in the category

H̃(Mk) together with linear maps ∆ : C → C ⊗ C, ∆(c) = c1 ⊗ c2 and
ε : C → k such that

γ−1(c1)⊗∆(c2) = ∆(c1)⊗ γ−1(c2),(2.1)

∆(γ(c)) = γ(c1)⊗ γ(c2),

c1ε(c2) = γ−1(c) = ε(c1)c2, ε(γ(c)) = ε(c),

for all c ∈ C.

Note that (2.1) is equivalent to c1 ⊗ c21 ⊗ γ(c22) = γ(c11) ⊗ c12 ⊗ c2,
which is often used in the rest of the paper. Let (C, γ) and (C ′, γ′) be two
Hom-coalgebras. A Hom-coalgebra morphism f : (C, γ)→ (C ′, γ′) is a linear
map such that f ◦ γ = γ′ ◦ f , ∆ ◦ f = (f ⊗ f) ◦∆ and ε′ ◦ f = ε.

Definition 2.3. A Hom-bialgebra H = (H,α,m, η,∆, ε) is a bialgebra

in the monoidal category H̃(Mk). This means that (H,α,m, η) is a Hom-
algebra and (H,α,∆, ε) is a Hom-coalgebra such that ∆ and ε are Hom-
algebra maps, that is, for any h, g ∈ H,

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H ,

ε(hg) = ε(h)ε(g), ε(1H) = 1k.

A Hom-bialgebra (H,α) is a Hom-Hopf algebra if there exists a morphism

(called antipode) S : H → H in H̃(Mk) (i.e. S ◦ α = α ◦ S) such that

S ∗ id = η ◦ ε = id ∗ S.

In fact, a Hom-Hopf algebra is a Hopf algebra in the category H̃(Mk).
Further, the antipode of Hom-Hopf algebras has almost all the properties of
the antipode of Hopf algebras, such as

S(hg) = S(g)S(h), S(1H) = 1H ,

∆(S(h)) = S(h2)⊗ S(h1), ε ◦ S = ε.

That is, S is a Hom-anti-(co)algebra homomorphism. Since α is bijective
and commutes with the antipode S, we can also see that its inverse α−1

commutes with S, that is, S ◦α−1 = α−1 ◦S. For a finite-dimensional Hom-
Hopf algebra (H,α,m, η,∆, ε, S), the dual (H∗, (α∗)−1) is also a Hom-Hopf
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algebra with the following structures: for all g, h ∈ H and φ, ϕ ∈ H∗,
〈φϕ, h〉 = 〈φ, h1〉〈ϕ, h2〉, 1H∗ = ε,

〈∆(φ), g ⊗ h〉 = 〈φ, gh〉, εH∗ = η,

(α∗)−1(φ) = φ ◦ α−1, S(φ) = φ ◦ S−1.

Now we recall actions and coactions of Hom-algebras and Hom-coal-
gebras respectively.

Definition 2.4. Let (A,α) be a Hom-algebra. A right (A,α)-Hom-

module consists of (M,µ) in H̃(Mk) together with a morphism ψ : M ⊗ A
→M , ψ(m⊗ a) = m · a, such that

(m · a) · α(b) = µ(m) · (ab),
µ(m · a) = µ(m) · α(a), m · 1A = µ(m),

for all a, b ∈ A and m ∈M .

Similarly, we can define a left (A,α)-Hom-module. A Hom-algebra (A,α)
can be considered as a Hom-module over itself under multiplication. Let
(M,µ) and (N, ν) be two left (A,α)-Hom-modules. A map f : M → N
is called a left (A,α)-Hom-module morphism if f(a · m) = a · f(m) and

f ◦µ = ν◦f . We denote by H̃(AM) the category of left (A,α)-Hom modules.

If (M,µ), (N, ν) ∈ H̃(AM), then (M ⊗ N,µ ⊗ ν) ∈ H̃(AM) via the left
H-action

h · (m⊗ n) = h1 ·m⊗ h2 · n.

Let (M,µ) ∈ H̃(AM) and (M,µ) ∈ H̃(MA). Then (M,µ) is called a
Hom-bimodule if the following compatibility condition holds:

α(h) · (m · g) = (h ·m) · α(g)

for any m ∈M and h, g ∈ H.

Dually, we can define Hom-comodules. Let C = (C, γ) be a Hom-co-

algebra. A right (C, γ)-Hom-comodule is an object (M,µ) in H̃(Mk) together
with a k-linear map ρM : M →M ⊗ C, ρM (m) = m(0) ⊗m(1), such that

µ−1(m(0))⊗∆C(m(1)) = m(0)(0) ⊗ (m(0)(1) ⊗ γ−1(m(1))),

ρM (µ(m)) = µ(m(0))⊗ γ(m(1)), m(0)ε(m(1)) = µ−1(m),

for all m ∈M.

(C, γ) is a Hom-comodule over itself via comultiplication. Let (M,µ),
(N, ν) be two right (C, γ)-Hom comodules. A map g : M → N is called a
right (C, γ)-Hom comodule morphism if g ◦ µ = ν ◦ g and g(m(0))⊗m(1) =

g(m)(0) ⊗ g(m)(1). We denote by H̃(MC) the category of right (C, γ)-Hom-

comodules. If (M,µ), (N, ν) ∈ H̃(MC), then (M ⊗N,µ⊗ν) ∈ H̃(MC) with
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the Hom-comodule structure

ρ(m⊗ n) = m(0) ⊗ n(0) ⊗m(1)n(1).

Note that all the above definitions coincide with the usual definitions of
algebras, coalgebras, bialgebras, modules and comodules respectively when
the automorphisms are id.

3. Quasitriangular Hom-Hopf algebras. In this section, we con-
sider some properties of quasitriangular Hom-Hopf algebras, and give an
equivalent description of quasitriangular Hom-Hopf algebras via the braided
monoidal category H̃(HM).

Definition 3.1. A quasitriangular Hom-Hopf algebra is a Hom-Hopf
algebra together with an invertible element R ∈ H ⊗H obeying

(α⊗ α⊗ id)(∆⊗ id)(R) = R13R23,

(id⊗ α⊗ α)(id⊗∆)(R) = R13R12,
(3.1)

R∆(h) = τ ◦∆(h)(α⊗ α)(R), ∀h ∈ H,(3.2)

where R is called the Hom-quasitriangular structure.

Write R = R(1) ⊗R(2); this notation is used in Rij = 1H ⊗ · · · ⊗R(1) ⊗
1H ⊗ · · · ⊗ R(2) ⊗ · · · ⊗ 1H , the element of H ⊗ · · · ⊗ H which is R in the
ith and jth factors. For convenience, we omit the summation symbols in
the following and briefly denote the triple (H,α,R) as a quasitriangular
Hom-bialgebra or Hom-Hopf algebra. Then (3.1) is equivalent to

R(1)
1 ⊗R

(1)
2 ⊗R

(2) = R(1) ⊗R′(1) ⊗R(2)R′(2),(3.3)

R(1) ⊗R(2)
1 ⊗R

(2)
2 = R(1)R′(1) ⊗R′(2) ⊗R(2),(3.4)

which is the same as the structure of the usual quasitriangular Hopf algebras.
And (3.2) can be rewritten as

R(1)h1 ⊗R(2)h2 = h2α(R(1))⊗ h1α(R(2)),

which is equivalent to α(R(1))⊗α(R(2)) = R(1)⊗R(2) (i.e., R is α-invariant)
and

(3.5) R(1)h1 ⊗R(2)h2 = h2R(1) ⊗ h1R(2).

Note that our definition of quasitriangular Hom-Hopf algebras is different
from Yau’s [28].

If R is a Hom-quasitriangular structure for a quasitriangular Hom-bi-
algebra (H,α), then so is τ(R−1). Also, by a direct checking, τ(R) and R−1
are Hom-quasitriangular structures on (Hop, α) or (Hcop, α) which are de-
fined as in the ordinary Hom-bialgebra with the Hom-anti-algebra structure
or Hom-anti-coalgebra structure.
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Although our definition of quasitriangular Hom-Hopf algebras is different
from Yau’s, we can get more properties under our definition.

Proposition 3.2. Let (H,α, S,R) be a quasitriangular Hom-Hopf al-
gebra. Then

(i) (ε⊗ id)(R) = (id⊗ ε)(R) = 1H ,
(ii) R−1 = (S ⊗ id)(R) = (id⊗ S)(R),

(iii) R obeys the quantum Hom-Yang–Baxter equation (QHYBE )

(3.6) r(1)R(1) ⊗R(1)R(2) ⊗R(2)r(2) = R(1)r(1) ⊗R(2)R(1) ⊗ r(2)R(2).

Proof. (i) Applying ε⊗ ε⊗ id to (3.3), we get (ε⊗ id)(R) = 1H , since R
is invertible. Similarly, applying id⊗ ε⊗ ε to (3.4) yields (id⊗ ε)(R) = 1H .

(ii) Since

R(S ⊗ id)(R) = R(1)S(R′(1))⊗R(2)R′(2)

= (m⊗ id⊗ id) ◦ (id⊗ S ⊗ id)(R(1) ⊗R′(1) ⊗R(2)R′(2))
(3.3)
= (m⊗ id⊗ id) ◦ (id⊗ S ⊗ id)(R(1)

1 ⊗R
(1)
2 ⊗R

(2))

= R(1)
1 S(R(1)

2 )⊗R(2) = 1H ⊗ 1H

and R(id ⊗ S)(R) = 1H ⊗ 1H , we have R−1 = (S ⊗ id)(R). Similarly,
R−1 = (id⊗ S)(R).

(iii) Starting from the right side of the QHYBE, we have

R(1)r(1) ⊗R(2)R(1) ⊗ r(2)R(2) = R(1)R(1)
1 ⊗R

(2)R(1)
2 ⊗R

(2)

= R(1)
2 R(1) ⊗R(1)

1 R(2) ⊗R(2) = r(1)R(1) ⊗R(1)R(2) ⊗R(2)r(2).

If (H,m, η,∆, ε, S,R) is a quasitriangular Hopf algebra and α : H → H
is a Hopf algebra automorphism, then Hα = (H,mα = α ◦ m, η,∆α =
∆ ◦ α−1, ε, S,R) is a quasitriangular Hom-Hopf algebra. We know that Hα

is a Hom-Hopf algebra from [28, Theorem 3.1]. It is easy to check that R
is still a Hom-quasitriangular structure for Hα, so Hα is a quasitriangular
Hom-Hopf algebra. This conclusion provides a practical method for finding
examples of quasitriangular Hom-Hopf algebras.

Example 3.3. Given a finite abelian group with identity e, the group
algebra kG of G over k is a finite-dimensional commutative and cocommu-
tative Hopf algebra. The multiplication m is given by(∑

x∈G
axx
)(∑

y∈G
byy
)

=
∑
z∈G

(∑
xy=z

axby

)
z

for ax, by ∈ k, and the unit is e. The comultiplication, counit and antipode
are

∆(x) = x⊗ x, ε(x) = 1, S(x) = x−1,
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for any x ∈ G. A quasitriangular structure for kG is equivalent to a function
R on G⊗G such that∑

cd=y

R(x, c)R(z, d) = δx,zR(x, y),
∑
cd=x

R(c, y)R(d, z) = δy,zR(x, y),

∑
y

R(x, y) = δx,e =
∑
y

R(y, x),

for all x, y, z ∈ G, where δx,y denotes the Kronecker delta [15]. Thus we have
a quasitriangular Hopf algebra (kG,m, e,∆, ε, S,R) for some fixed R.

Let a k-linear map α : G → G be a group homomorphism. We can find
easily that it is a Hopf algebra morphism on kG. Thus we have a quasi-
triangular Hom-Hopf algebra kGα = (kG,mα, e,∆α, ε, S,R). In particular,
consider the k-linear group homomorphism α : x 7→ x−1, x ∈ G. Since kG is
a commutative cocommutative Hopf algebra, we can check that α is a Hopf
algebra automorphism. So we obtain a quasitriangular Hom-Hopf algebra
kGα with α−1 = α, and the twisted multiplication and comultiplication are
given by

mα(x⊗ y) = x−1y−1, ∆α(x) = x−1 ⊗ x−1,

for any x, y ∈ G.

We just take the abelian group G = {1, g, g2} of three elements for
example, where g−1 = g2, g3 = 1 and (g2)−1 = g. Just as above, there is
a quasitriangular Hopf algebra structure on the group algebra kG. And the
Hom-quasitriangular structure is as follows:

R =
1

3

2∑
a,b=0

e−2πiab/3ga ⊗ gb.

In fact,

R(13)R(23) =
1

9

∑
e−2πi(ab+cd)/3ga ⊗ gc ⊗ gb+d

=
1

9

∑
e−2πib(a−c)/3e−2πicb

′/3ga ⊗ gc ⊗ gb′

=
1

3

∑
e−2πiab

′/3ga ⊗ ga ⊗ gb′ ,

where b′ = b + d, and in the third step we use 1
n

∑n−1
b=0 e

2πiab/n = δa,0 (i.e.
1 if a = 0 and 0 otherwise). This equals (∆⊗ id)(R), as required. The other
equalities of quasitriangular Hopf algebra can be obtained similarly. Thus
we have a quasitriangular Hopf algebra (kG,m,∆,R). Taking the k-linear
group homomorphism α : x 7→ x−1, x ∈ G, we obtain the quasitriangular
Hom-Hopf algebra kGα = (kG,mα,∆α,R) with multiplication and comul-
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tiplication given as follows:

g1 = g2, g21 = g, gg = g, gg2 = 1, g2g2 = g2,

∆α(1) = 1⊗ 1, ∆α(g) = g2 ⊗ g2, ∆α(g2) = g ⊗ g.
In the following, we provide a characterization of the axioms of quasitri-

angular Hom-bialgebras.

Proposition 3.4. Let (H,α) be a finite-dimensional Hom-bialgebra and
let R in H ⊗H induce a linear map f1 : H∗ → H by

f1(φ) = R(1)〈φ,R(2)〉 for all φ ∈ H∗,
where (H∗, (α∗)−1) is the dual of (H,α). Then R is α-invariant and axiom
(3.1) holds if and only if f1 is a Hom-coalgebra and Hom-anti-algebra map
(i.e. there is a bialgebra map H∗op → H).

Likewise, R is α-invariant and axiom (3.1) holds if and only if the map

f2 : H∗ → H; φ 7→ 〈φ,R(1)〉R(2)

is a Hom-algebra and Hom-anti-coalgebra map.

Proof. For all φ ∈ H∗, we have

f1 ◦ (α∗)−1(φ) = R(1)〈φ, α−1(R(2))〉,
α ◦ f1(φ) = α(R(1))〈φ,R(2)〉.

So f1 ∈ H̃(Mk) if and only if (α ⊗ α)(R) = R. Moreover, f1 preserves the
unit and counit by Proposition 3.2(i).

For any φ, ψ ∈ H∗, we have

f1(φψ) = R(1)〈φψ,R(2)〉 = R(1)〈φ,R(2)
1 〉〈ψ,R

(2)
2 〉,

f1(ψ)f1(φ) = R(1)R′(1)〈ψ,R(2)〉〈φ,R′(2)〉
= R(1)R′(1)〈φ,R′(2)〉〈ψ,R(2)〉,

so the above two expressions are equal if and only if (3.4) holds if and only
if f1 a Hom-anti-algebra map.

In addition,

∆(f1(φ)) = ∆(R(1))〈φ,R(2)〉 = R(1)
1 ⊗R

(1)
2 〈φ,R

(2)〉,
(f1 ⊗ f1)(∆(φ)) = f1(φ1)⊗ f1(φ2) = R(1)〈φ1,R(2)〉 ⊗ R′(1)〈φ2,R′(2)〉

= R(1) ⊗R′(1)〈φ,R(2)R′(2)〉,
hence f1 is a Hom-coalgebra map if and only if R satisfies axiom (3.3). Thus
R is α-invariant and satisfies axiom (3.1) if and only if f1 is a Hom-coalgebra
and Hom-anti-algebra map.

Similarly, R is α-invariant and satisfies axiom (3.1) if and only if f2 is a
Hom-algebra and Hom-anti-coalgebra map.
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Theorem 3.5. Let (H,α) be a Hom-Hopf algebra. Then there is a Hom-

quasitriangular structure on (H,α) if and only if the category H̃(HM) of
left H-Hom-modules is a braided monoidal category.

Proof. Assume that R = R(1)⊗R(2) is a Hom-quasitriangular structure
on Hom-Hopf algebras (H,α). For all (M,µ), (N, ν) ∈ H̃(HM), define a
map BrM,N : M ⊗N → N ⊗M by

m⊗ n 7→ R(2) · ν−1(n)⊗R(1) · µ−1(m)

for all m ∈ M and n ∈ N . For any morphism f : (M,µ) → (M ′, µ′) and

g : (N, ν)→ (N ′, ν ′) in H̃(Mk),

(g ⊗ f) ◦ BrM,N = BrM ′,N ′ ◦ (f ⊗ g),

so the naturality of Br holds.
Next we need to check that Br is a morphism of left H-Hom-modules.

In fact, for any m ∈M and n ∈ N ,

h · BrM,N (m⊗ n) = h · (R(2) · ν−1(n)⊗R(1) · µ−1(m))

= h1 · (R(2) · ν−1(n))⊗ h2 · (R(1) · µ−1(m))

= α−1(h1R(2)) · n⊗ α−1(h2R(1)) ·m
(3.5)
= α−1(R(2)h2) · n⊗ α−1(R(1)h1) ·m
= R(2) · (α−1(h2) · ν−1(n))⊗R(1) · (α−1(h1) · µ−1(m))

= R(2) · ν−1(h2 · n)⊗R(1) · µ−1(h1 ·m)

= BrM,N (h1 ·m⊗ h2 · n) = BrM,N (h · (m⊗ n)).

In the following, we will prove the two hexagon axioms. For all m ∈M ,
n ∈ N and l ∈ (L, ς) ∈ H̃(HM), we have

ã−1 ◦ Br ◦ ã−1(m⊗ (n⊗ l)) = ã−1 ◦ Br((µ−1(m)⊗ n)⊗ ς(l))
= ã−1(R(2) · l ⊗R(1) · (µ−2(m)⊗ ν−1(n)))

= ã−1(R(2) · l ⊗ (R(1)
1 · µ

−2(m)⊗R(1)
2 · ν

−1(n)))

= (ς−1(R(2) · l)⊗R(1)
1 · µ

−2(m))⊗ ν(R(1)
2 · ν

−1(n))

= (α−1(R(2)) · ς−1(l)⊗R(1)
1 · µ

−2(m))⊗ α(R(1)
2 ) · n,

and

(Br⊗ id) ◦ ã−1 ◦ (id⊗ Br)(m⊗ (n⊗ l))
= (Br⊗ id) ◦ ã−1(m⊗ (R(2) · ς−1(l)⊗R(1) · ν−1(n)))

= (Br⊗ id)((µ−1(m)⊗R(2) · ς−1(l))⊗ ν(R(1) · ν−1(n)))

= (R′(2) · ς−1(R(2) · ς−1(l))⊗R′(1) · µ−2(m))⊗ α(R(1)) · n
= (α−1(R′(2)R(2)) · ς−1(l)⊗R′(1) · µ−2(m))⊗ α(R(1)) · n.
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The above two expressions are equal because of (3.3). Similarly, axiom (3.4)

implies ã ◦ Br ◦ ã = (id ⊗ Br) ◦ ã ◦ (Br ⊗ id). Thus H̃(HM) is a braided
monoidal category.

Conversely, if Br is the braiding structure of the braided monoidal cate-
gory H̃(HM), set

R = τ ◦ Br(1H ⊗ 1H) ∈ H ⊗H.
Then it is easy to deduce that R is α-invariant and invertible from the
fact that Br is an isomorphism. Further, the above proof shows that the
hexagon axioms are equivalent to (3.1), and Br is a morphism of left
H-Hom-modules if and only if R(1)h1 ⊗R(2)h2 = h2R(1) ⊗ h1R(2). So R is
a Hom-quasitriangular structure of (H,α).

4. Minimal quasitriangular Hom-Hopf algebras. In this section,
we introduce two sub-Hom-Hopf algebras of a quasitriangular Hom-Hopf
algebra, and study their relationship.

A sub-quasitriangular Hom-Hopf algebra of a quasitriangular Hom-Hopf
algebra (H,R, α) is a quasitriangular Hom-Hopf algebra (H ′,R′, α|H′) such
that (H ′, α|H′) is a sub-Hom-Hopf algebra of (H,α).

Definition 4.1. A quasitriangular Hom-Hopf algebra is defined to be
minimal if it has no proper sub-quasitriangular Hom-Hopf algebras.

Minimal quasitriangular Hom-Hopf algebras generalize the notion of
minimal quasitriangular Hopf algebras [20].

Let (M,µ), (N, ν) ∈ H̃(Mk) and R ∈ M ⊗ N . Define the subspaces
(Rl, µl) ⊆ (M,µ) and (Rr, νr) ⊆ (N, ν) by

(4.1) Rl = {(id⊗ α)(R) | α ∈ N∗}, Rr = {(β ⊗ id)(R) | β ∈M∗},
where µl and νr are the automorphisms µ and ν restricted to Rl and Rr
respectively. Assume thatR 6= 0 and writeR =

∑p
i=1mi⊗ni ∈M⊗N, where

p is as small as possible. Then m1, . . . ,mp is a basis for Rl and n1, . . . , np is
a basis for Rr. In particular, dimRl = dimRr. This common dimension is
called the rank of R and is denoted by rank(R).

Proposition 4.2. Let (H,α,R, S) be a quasitriangular Hom-Hopf al-
gebra. Set A = (Rl, αl) and B = (Rr, αr). Then

(i) A,B are finite-dimensional sub-Hom-Hopf algebras of H.
(ii) dimA = dimB = rank(R).

(iii) The map f : A∗cop → B defined by f(φ) = (φ ⊗ id)(R) for φ ∈ A∗
is a Hom-Hopf algebra isomorphism.

Proof. (i) From the definition of (Rl, αl),

A = {R(1)〈φ,R(2)〉 | φ ∈ H∗} = Im f1,
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where f1 is the map defined in Proposition 3.4. We know that f1 is a mor-
phism of Hom-coalgebras and Hom-anti-algebras. Hence

∆ ◦ f1(φ) = (f1 ⊗ f1) ◦∆(φ) ⊆ Im f1 ⊗ Im f1 = A⊗A,
f1(φ)f1(ψ) = f1(ψφ) ⊆ Im f1 = A,

for all φ, ψ ∈ H∗. In addition, α(A) ⊆ A, since

α(R(1))〈φ,R(2)〉 = α(R(1))〈(α∗)−1(φ), α(R(2))〉
= R(1)〈(α∗)−1(φ),R(2)〉 ∈ A.

It follows that A is both a sub-Hom-coalgebra and a sub-Hom-algebra of H.
Thus A is a sub-Hom-bialgebra. Further, from (S ⊗ S)(R) = R, we have
S(A) ⊆ A. Thus A is a sub-Hom-Hopf algebra of H. Similarly, B is also a
finite-dimensional sub-Hom-Hopf algebra of H.

(ii) This is obvious from the definition.

(iii) In fact, f = f2|A∗cop , where f2 is given in Proposition 3.4. We know
that f2 is a map of Hom-algebras and Hom-anti-coalgebras, so f is a Hom-
bialgebra map. It follows from (i) and (ii) that f is a Hom-Hopf algebra
isomorphism.

Lemma 4.3. Let (C,∆, γ) be a Hom-coalgebra. Then the dual (C∗, (γ∗)−1)
of (C,∆, γ) determines a (C∗, (γ∗)−1)-Hom-bimodule on (C, γ), defined as
follows:

(4.2) φ ⇀ c = γ2(c1)〈φ, c2〉, c ↼ φ = 〈φ, c1〉γ2(c2),

where φ ∈ C∗ and c ∈ C.

In addition, 〈φψ, c〉 = 〈(γ∗)−2(φ), ψ ⇀ c〉 = 〈(γ∗)−2(ψ), c ↼ φ〉 for any
φ, ψ ∈ C∗ and c ∈ C.

Proof. It is easy to show that the dual (C∗, (γ∗)−1) of (C,∆, γ) is a
Hom-algebra with the following multiplication and automorphism:

〈φψ, c〉 = 〈φ, c1〉〈ψ, c2〉, (γ∗)−1(φ) = φ ◦ γ−1,

for φ, ψ ∈ C∗ and c ∈ C.

Firstly, the actions “⇀” and “↼” define a left and a right C∗-Hom-
module structure on C. In fact, by the Hom-coassociativity, for any
φ, ψ ∈ C∗ and c ∈ C,

(φψ) ⇀ γ(c) = γ3(c1)〈φψ, γ(c2)〉 = γ3(c1)〈φ, γ(c21)〉〈ψ, γ(c22)〉
= γ4(c11)〈φ, γ(c12)〉〈ψ, c2〉 = γ4(c11)〈(γ∗)−1(φ), γ2(c12)〉〈ψ, c2〉
= (γ∗)−1(φ) ⇀ (γ2(c1)〈ψ, c2〉) = (γ∗)−1(φ) ⇀ (ψ ⇀ c),
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γ(φ ⇀ c) = γ3(c1)〈φ, c2〉 = γ3(c1)〈(γ∗)−1(φ), γ(c2)〉
= (γ∗)−1(φ) ⇀ γ(c),

ε ⇀ c = γ2(c1)〈ε, c2〉 = γ2(γ−1(c)) = γ(c).

So, C is a left C∗-Hom-module. Similarly, it is also a right C∗-Hom-module.
Next, the compatibility condition of Hom-bimodule holds: for any c ∈ C

and φ ∈ C∗,
(γ∗)−1(φ) ⇀ (c ↼ ψ) = 〈ψ, c1〉(γ∗)−1(φ) ⇀ γ2(c2)

= 〈ψ, c1〉〈(γ∗)−1(φ), γ2(c22)〉γ4(c21)
= 〈ψ, γ(c11)〉〈(γ∗)−1(φ), γ(c2)〉γ4(c12)
= 〈(γ∗)−1(ψ), γ2(c11)〉〈φ, c2 > γ4(c12)

= (φ ⇀ c) ↼ (γ∗)−1(ψ).

Finally, for any φ, ψ ∈ C∗ and c ∈ C,

〈φψ, c〉 = 〈(γ∗)−2(φ), ψ ⇀ c〉 = 〈(γ∗)−2(ψ), c ↼ φ〉
by the definition of the actions.

Similarly, we can define a Hom-bimodule structure on the dual space A∗

of some Hom-algebra (A,m,α); the proof is analogous to that of the above
lemma, using the Hom-associativity of the Hom-algebra.

Lemma 4.4. Let (A,m,α) be a finite-dimensional Hom-algebra and
(A∗, (α∗)−1) be its dual with comultiplication ∆(φ) = φ1 ⊗ φ2. Then the
Hom-algebra A induces an (A,α)-Hom-bimodule structure on (A∗, (α∗)−1)
by the transpose action: for any a, b ∈ A and φ ∈ A∗,

a . φ = (α∗)−2(φ1)〈φ2, a〉, φ / a = 〈φ1, a〉(α∗)−2(φ2),
that is,

(4.3) 〈a . φ, b〉 = 〈φ, α−2(b)a〉, 〈φ / a, b〉 = 〈φ, aα−2(b)〉.
Proof. This is straightforward.

From the above lemma, we have the following conclusion.

Proposition 4.5. Let (H,R, α) be a quasitriangular Hom-Hopf algebra
with a bijective antipode S, and A = Rl, B = Rr. Then, for any sub-Hom-
coalgebra (C,α|C) of H, we have AC = CA and BC = CB. In particular,
AB = BA.

Proof. As (H,R, α) is a quasitriangular Hom-Hopf algebra with a bijec-
tive antipode S, axiom (3.5) can be written as the following formulas:

R(1)h⊗R(2) = α2(h12)R(1) ⊗ (h11α
−2(R(2)))S(h2),(4.4)

hR(1) ⊗R(2) = R(1)α2(h21)⊗ S(h1)(α
−2(R(2))h22),(4.5)



80 Y. Y. CHEN ET AL.

R(1) ⊗R(2)h = (h22α
−2(R(1)))S−1(h1)⊗ α2(h21)R(2),(4.6)

R(1) ⊗ hR(2) = S−1(h2)(α
−2(R(1))h11)⊗R(1)α2(h12),(4.7)

for all h ∈ H. Here we just prove (4.4) for example. From (3.5), that is,

h2R(1) ⊗ h1R(2) = R(1)h1 ⊗R(2)h2,

we have

h12R(1) ⊗ (h11R(2))S(h2) = R(1)h11 ⊗ (R(2)h12)S(h2)

= R(1)α−1(h1)⊗ (R(2)h21)α(S(h22))

= R(1)α−1(h1)⊗ α(R(2))(h21S(h22))

= R(1)α−1(h1)⊗ α(R(2))ε(h2)1H

= R(1)α−2(h)⊗ α2(R(2)),

which is equivalent to R(1)h⊗R(2) = α2(h12)R(1)⊗ (h11α
−2(R(2)))S(h2) by

the α-invariance of R. The other formulas are obtained in a similar way.
If a ∈ A, then a = R(1)〈φ,R(2)〉 for some φ ∈ H∗. For c ∈ C,

ac = R(1)c〈φ,R(2)〉 (4.4)= α2(c12)R(1)〈φ, (c11α−2(R(2)))S(c2)〉
(4.3)
= α2(c12)R(1)〈S(c2) . φ, α

2(c11)R(2)〉
(4.3)
= α2(c12)R(1)〈(S(c2) . φ) / α2(c11), α

2(R(2))〉
= α2(c12)R(1)〈(α∗)2((S(c2) . φ) / α2(c11)),R(2)〉 ∈ CA.

In addition,

ca = cR(1)〈φ,R(2)〉 (4.5)= R(1)α2(c21)〈φ, S(c1)(α
−2(R(2))c22)〉

(4.3)
= R(1)α2(c21)〈φ / S(c1),R(2)α2(c22)〉

(4.3)
= R(1)α2(c21)〈α2(c22) . (φ / S(c1)), α

2(R(2))〉
= R(1)α2(c21)〈(α∗)2(α2(c22) . (φ / S(c1))),R(2)〉 ∈ AC.

So AC = CA. Similarly, by using (4.6) and (4.7), we have BC = CB. In
particular, AB = BA.

As a consequence of Proposition 4.5, we have the following result.

Theorem 4.6. Let (H,R, α) be a quasitriangular Hom-Hopf algebra,
A = Rl, and B = Rr. Suppose that HR is the sub-Hom-Hopf algebra gener-
ated by A + B. Then HR = AB. In particular, HR is a finite-dimensional
minimal quasitriangular Hom-Hopf algebra.

Example 4.7. Let kGα = (kG,mα,∆α,R) be the 3-dimensional
quasitriangular Hom-Hopf algebra defined in Example 3.3, where R =
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1
3

∑2
a,b=0 e

−2πiab/3ga ⊗ gb and α(x) = x−1 for any x ∈ kG. By direct check-
ing, we find that R is α-invariant, Rl = Rr = kG and rank(R) = 3. Of
course, RlRr = RrRl = kGR, which are all 3-dimensional.

5. Reconstruction of quasitriangular Hom-Hopf algebras. In this
section, we provide a “twisting” construction of quasitriangular Hom-Hopf
algebras by conjugation with a Hom-2-cocycle. As an application, we give a
further study in the case of commutation.

Definition 5.1. Let (H,α) be a Hom-bialgebra. A Hom-2-cocycle is
an invertible and α-invariant element X = X (1) ⊗ X (2) ∈ H ⊗ H (i.e.
α⊗2(X ) = X ) such that

(5.1) X12(∆⊗ α−1)(X ) = X23(α
−1 ⊗∆)(X ),

where X12 = X (1) ⊗ X (2) ⊗ 1H and X23 = 1H ⊗ X (1) ⊗ X (2). It is called
counital if

(5.2) (ε⊗ id)(X ) = 1H = (id⊗ ε)(X ).

Example 5.2. (1) Let (H,α,R) be a quasitriangular Hom-Hopf algebra.
Then the Hom-quasitriangular structure R can be regarded as a Hom-2-
cocycle. First, R is invertible and α-invariant. Next,

R12(∆⊗ α−1)(R) = R(1)r
(1)
1 ⊗R

(2)r
(1)
2 ⊗ r

(2)

(3.3)
= R(1)R(1) ⊗R(2)r(1) ⊗R(2)r(2)

(3.6)
= R(1)R(1) ⊗ r(1)R(2) ⊗ r(2)R(2)

(3.4)
= R(1) ⊗ r(1)R(2)

1 ⊗ r
(2)R(2)

2

= R23(α
−1 ⊗∆)(R),

which is just (5.1). Furthermore, R is counital because (ε ⊗ id)(R) =
(id⊗ ε)(R) = 1H .

Let kGα = (kG,mα,∆α,R) be the quasitriangular Hom-Hopf algebra
defined in Example 4.7. Since R = 1

3

∑2
a,b=0 e

−2πiab/3ga ⊗ gb is α-invariant,
we have a Hom-2-cocycle R on kGα. Moreover, R is counital by direct
computation.

(2) Let G be a finite abelian group with unit e, and kG be the group
algebra as defined in Example 3.3. We consider the dual k-linear space (kG)∗

of kG, which can be identified with the set of functions on G with values
in k. There is a commutative and cocommutative Hopf algebra structure on
(kG)∗ denoted by k(G) and the structure maps are given as follows. The
multiplication and unit are

〈φψ, x〉 = 〈φ, x〉〈ψ, x〉, 〈η(λ), x〉 = λ,
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for φ, ψ ∈ k(G), x ∈ G and λ ∈ k. The comultiplication, counit and antipode
are

〈∆(φ), x⊗ y〉 = 〈φ, xy〉,(5.3)

ε(φ) = φ(e), 〈S(φ), x〉 = 〈φ, x−1〉,
for φ ∈ k(G) and x, y ∈ G. Then a quasitriangular structure on k(G) means
a function R on G⊗G obeying

R(xy ⊗ z) = R(x⊗ z)R(y ⊗ z), R(x⊗ yz) = R(x⊗ y)R(x⊗ z),
R(x⊗ e) = 1 = R(e⊗ x),

for all x, y, z ∈ G. This means that a quasitriangular structure for k(G) is
precisely a bicharacter of G.

If a k-linear map α : G → G is a group homomorphism, then there
exists an inductive Hopf algebra morphism (α∗)−1 : k(G) → k(G) given
by (α∗)−1(φ) = φ ◦ α−1. So we have the quasitriangular Hom-Hopf al-
gebra k(G)(α∗)−1 = (k(G),m(α∗)−1 , e,∆α∗ , ε, S,R), for some fixed quasitri-

angular structure R. In particular, when α is given by α(x) = x−1, i.e.,
〈(α∗)−1(φ), x〉 = 〈φ, x−1〉 for x ∈ G and φ ∈ k(G), we obtain a quasitrian-
gular Hom-Hopf algebra k(G)(α∗)−1 satisfying α∗2 = id with multiplication
and comultiplication

〈m(α∗)−1(φ⊗ ψ), x〉 = 〈φ, x−1〉〈ψ, x−1〉,
〈∆α∗(φ), x⊗ y〉 = 〈φ, x−1y−1〉,

for any φ, ψ ∈ k(G) and x, y ∈ G.
Furthermore, there is a counital Hom-2-cocycle on k(G)(α∗)−1 , meaning

a non-zero function X on G⊗G such that

X (α(x)⊗ α(y)) = X (x⊗ y),(5.4)

X (y ⊗ z)X (x⊗ yz) = X (x⊗ y)X (xy ⊗ z),(5.5)

X (e⊗ x) = 1 = X (x⊗ e),(5.6)

for all x, y, z ∈ G. In fact, the equality (5.4) is just the α-invariance of X .
Moreover, since comultiplication is defined in (5.3), (5.1) corresponds to
(5.5), and (5.2) is equivalent to (5.6).

Theorem 5.3. Let (H,m, η,∆, ε, α,R) be a quasitriangular Hom-bi-
algebra and X be a counital Hom-2-cocycle. Then there is a quasitriangular
Hom-bialgebra HX = (H,m, η,∆X , ε, α,RX ), where

∆X (h) = (X∆(h))X−1, RX = (X 21R)X−1,
for all h ∈ HX , in which X 21 = τ(X ) = X (2) ⊗X (1).

Furthermore, if (H,S, α,R) is a quasitriangular Hom-Hopf algebra with
α2 = id, then HX is a quasitriangular Hom-Hopf algebra with antipode
SX (h) = (US(h))U−1, where U = X (1)S(X (2)).
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Proof. We prove the theorem in three steps.

Step 1. It is easy to see that

∆X ◦ α = α⊗2 ◦∆X , (ε⊗ id) ◦∆X (h) = (id⊗ ε) ◦∆X (h) = α−1(h),

for any h ∈ HX . Then we check that ∆X is Hom-coassociative: on one hand,

(∆X ⊗α−1)◦∆X (h) = (∆X ⊗α−1)((X∆(h))X−1)
= (X12(∆⊗α−1)((X∆(h))X−1))X−112

= (X12(∆⊗α−1)(X (∆(h)X−1)))X−112

= ((X12(∆⊗α−1)(X ))α⊗3◦(∆⊗α−1)(∆(h)X−1))X−112

= (X12(∆⊗α−1)(X ))(α⊗3◦(∆⊗α−1)(∆(h)X−1)X−112 )

= (X12(∆⊗α−1)(X ))(α⊗3◦α⊗3◦(∆⊗α−1)
◦∆(h)((∆⊗α−1)(X−1)X−112 ));

on the other hand,

(α−1⊗∆X )◦∆X (h) = (α−1⊗∆X )((X∆(h))X−1)
= (X23(α

−1⊗∆)((X∆(h))X−1))X−123

= (X23(α
−1⊗∆)(X (∆(h)X−1)))X−123

= ((X23(α
−1⊗∆)(X ))α⊗3◦(α−1⊗∆)(∆(h)X−1))X−123

= (X23(α
−1⊗∆)(X ))(α⊗3◦(α−1⊗∆)(∆(h)X−1)X−123 )

= (X23(α
−1⊗∆)(X ))(α⊗3◦α⊗3◦(α−1⊗∆)

◦∆(h)((α−1⊗∆)(X−1)X−123 )).

We see that (5.1) ensures that the above two expressions are equal, that is,
∆X is Hom-coassociative. Secondly, ∆X is a Hom-algebra map: since X is
α-invariant, for any h, g ∈ H,

∆X (1H) = (X∆(1))X−1 = (α⊗ α)(X )X−1 = XX−1 = 1H ⊗ 1H ,

∆X (h)∆X (g) = ((X∆(h))X−1)((X∆(g))X−1)
= (((X (α−1 ⊗ α−1) ◦∆(h))X−1)X )(α⊗2 ◦∆(g)X−1)
= ((X∆(h))(X−1X ))(α⊗2 ◦∆(g)X−1)
= (Xα⊗2 ◦∆(h))(α⊗2 ◦∆(g)X−1)
= ((X∆(h))α⊗2 ◦∆(g))X−1

= (X (∆(h)∆(g)))X−1 = ∆X (hg).

Step 2. We will prove that RX is a Hom-quasitriangular structure for
the Hom-bialgebra HX . It is obvious that RX is invertible and α-invariant,
by the invertibility and invariance ofR and X . In the following computation,
we ignore the Hom-associativity because of the invariance of RX ,R,X :
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(α⊗ α⊗ id)(∆X ⊗ id)(RX )

= (∆X ⊗ α−1)(RX ) = X12(∆⊗ α−1)(X 21RX−1)X−112

= X12(∆⊗ α−1)(X 21)(∆⊗ α−1)(R)(∆⊗ α−1)(X−1)X−112

(3.1)
= X12(∆⊗ α−1)(X 21)R13R23(∆⊗ α−1)(X−1)X−112

(5.1)
= X12(∆⊗ α−1)(X 21)R13R23(α

−1 ⊗∆)(X−1)X−123

(3.2)
= X12(∆⊗ α−1)(X 21)R13(α

−1 ⊗ τ ◦∆)(X−1)R23X−123

(a)
= X31(X (1)

2 ⊗ α−1(X (2))⊗X (1)
1 )R13(α

−1 ⊗ τ ◦∆)(X−1)R23X−123

(3.2)
= X31R13(X (1)

1 ⊗ α−1(X (2))⊗X (1)
2 )(α−1 ⊗ τ ◦∆)(X−1)R23X−123

(b)
= X31R13X−113 X32(α

−1 ⊗ τ ◦∆)(X )(α−1 ⊗ τ ◦∆)(X−1)R23X−123

= (RX )13((X32R23)X−123 ) = (RX )13(RX )23.

In the equalities (a) and (b), we use the Hom-2-cocycle condition, in which
we make a cyclic rotation of the factors in H ⊗H ⊗H to get X12(∆⊗α−1)
(X21) = X31(X (1)

2 ⊗α−1(X (2))⊗X (1)
1 ) and a further permutation inH⊗H⊗H

to obtain X31(X (1)
1 ⊗ α−1(X (2)) ⊗ X (1)

2 ) = X32(α
−1 ⊗ τ ◦ ∆)(X ), which is

(b) X (1)
1 ⊗ α−1(X (2)) ⊗ X (1)

2 = X−131 X32(α
−1 ⊗ τ ◦∆)(X ). So, (α ⊗ α ⊗ id)

◦ (∆X ⊗ id)(RX ) = (RX )13(RX )23 as required. Similarly, we can get
(id⊗α⊗α)◦(id⊗∆X )(RX ) = (RX )13(RX )12, that is,RX obeys axiom (3.1).

Moreover, for any h ∈ HX ,

τ ◦∆X (h) = (X 21τ ◦∆(h))X−21 = ((X 21(R∆(h)))R−1)X−21

= (((X 21R)α⊗2 ◦∆(h))R−1)X−21 = (((RXX )α⊗2 ◦∆(h))R−1)X−21

= ((RX (X∆(h)))R−1)X−21 = (RX (Xα⊗2∆(h)))(R−1X−21)
= (RX (Xα⊗2∆(h)))(X−1R−1X ) = ((RX (X∆(h)))X−1)R−1X
= (RX ((X∆(h))X−1))R−1X = (RX∆X (h))R−1X ,

which is just axiom (3.5) for RX .

Step 3. Finally, if H is a Hom-Hopf algebra with α2 = id, we check that
SX is an antipode for HX . For this, we need to show that U is invertible. We
define U−1 = S(X−(1))X−(2), where X−1 = X−(1) ⊗ X−(2) in our notation,
and X ′−1 is another copy of X−1 in the following computation:

UU−1 = (X (1)S(X (2)))(S(X−(1))X−(2))
= (α−1(X (1)S(X (2)))S(X−(1)))α(X−(2))
= (X (1)α−1 ◦ S(X−(1)X (2)))α(X−(2))
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= (α(X (1))S(α−1(X−(1))X (2)))α(X−(2))
(c)
= ((α−2(X ′−(1))X (1))S(α−1(X−(1))X (2)))(α−1(S(X ′−(2)1 )X ′−(2)2 )X−(2))

= ((α−2(X ′−(1))X (1))S(α−1(X−(1))X (2)))(S(X ′−(2)1 )α−1(X ′−(2)2 X−(2)))

= (α−1((α−2(X ′−(1))X (1))S(α−1(X−(1))X (2)))S(X ′−(2)1 ))(X ′−(2)2 X−(2))

= ((α−2(X ′−(1))X (1))S(α−2(X−(1))α−1(X (2)))S(α−1(X ′−(2)1 )))(X ′−(2)2 X−(2))

= ((α−2(X ′−(1))X (1))S(α−1(X ′−(2)1 )(α−2(X−(1))α−1(X (2)))))(X ′−(2)2 X−(2))

= ((α−2(X ′−(1))X (1))S(α−2(X ′−(2)1 X−(1))X (2)))(X ′−(2)2 X−(2))

= ((X ′−(1)X (1))S((X ′−(2)1 X−(1))X (2)))α2(X ′−(2)2 X−(2))
(d)
= (X−(1)1 S(X−(1)2 ))X−(2) = ε(X−(1))α(X−(2)) = 1H .

For (c), we use the fact X (−1)ε(X (−2)) = 1H from (5.2). And for (d), we
apply the Hom-2-cocycle condition (5.1) in the form

(∆⊗ α−1)X−1 = (((α−1 ⊗∆)X−1)X−123 )X12,

that is,

X−(1)1 ⊗X−(1)2 ⊗X−(2) = X ′−(1)X (1)⊗ (X ′−(2)1 X−(1))X (2)⊗α2(X ′−(2)2 X−(2)).

Similarly, from another form of the Hom-2-cocycle condition

(∆⊗ α−1)X = X−112 (X23(α
−1 ⊗∆)X ),

i.e.,

X (1)
1 ⊗X (1)

2 ⊗X (2) = X−(1)X ′(1) ⊗X−(2)(X (1)X ′(2)1 )⊗ α2(X (2)X ′(2)2 ),

where X ′ is another copy of X , we have U−1U = 1H . Further, from the
α-invariance of X , we know that U,U−1 are both α-invariant. So we have
α ◦ SX (h) = (US ◦ α(h))U−1 = SX ◦ α(h) for any h ∈ HX . By using the
definitions, the properties of the antipode and α2 = id, we have

m◦(SX⊗id)◦∆X (h) = ((US((X (1)h1)X−(1)))U−1)((X (2)h2)X−(2))
= α(US((X (1)h1)X−(1)))(U−1α((X (2)h2)X−(2)))
= (α(U)S(X (1)(α(h1)X−(1))))((S(X ′−(1))X ′−(2))(X (2)(α(h2)X−(2))))
= (U(S(α(h1)X−(1))S(X (1))))(α◦S(X ′−(1))(X ′−(2)(α(X (2))(h2α(X−(2))))
= ((US(α(h1)X−(1)))α◦S(X (1)))(α◦S(X ′−(1))(α(X ′−(2)X (2))(α(h2)X−(2))))
= ((α(US(α(h1)X−(1)))S(X (1)))α◦S(X ′−(1)))((X ′−(2)X (2))(h2α(X−(2))))
= ((US(α(h1)X−(1)))S(X ′−(1)X (1)))((X ′−(2)X (2))(h2α(X−(2))))
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= α(US(α(h1)X−(1)))(α(h2)X−(2))
= α(U(S(X−(1))S(α(h1))))(α(h2)X−(2))
= U(α◦S(X−(1))S(h1))(α(h2)X−(2))
= ((US◦α(X−(1)))α◦S(h1))(α(h2)X−(2))
= (US(X−(1)))(α◦S(h1)(h2α(X−(2)))) = (US(X−(1)))((S(h1)h2)X−(2))
= ε(h)(α(U)S(X−(1)))α(X−(2)) = ε(h)U(S(X−(1))X−(2))
= ε(h)UU−1 = ε(h)1H .

On the other hand, in the same way

m ◦ (id⊗ SX ) ◦∆X (h) = ε(h)1H .

So SX is an antipode for HX . Thus, we finally obtain a new quasitriangular
Hom-Hopf algebra (HX , α,RX ).

Remark 5.4. Under the assumption of Theorem 5.3, if H is commuta-
tive, then the quasitriangular Hom-Hopf algebra HR, twisted by R, is just
H with the same multiplication, comultiplication, unit, counit and antipode,
but only with the different Hom-quasitriangular structure R21, namely, the
opposite Hom-quasitriangular structure.

From Theorem 5.3, we know that

∆R(h) = (R∆(h))R−1, RR = (R21R)R−1, SX (h) = (US(h))U−1,

for all h ∈ HX . Here R21 = R(2) ⊗ R(1) and U = R(1)S(R(2)). Since H is
commutative and R is α-invariant, we have

∆R(h) = (R∆(h))R−1 = (∆(h)R)R−1 = α⊗2(∆(h))(RR−1)
= α⊗2(∆(h))(1H ⊗ 1H) = ∆(h),

RR = (R21R)R−1 = R21(RR−1) = R21,

SX (h) = (US(h))U−1 = α(S(h))(UU−1) = α(S(h))1H = S(h).

That is, the twisted quasitriangular Hom-Hopf algebra HR is just H,
except for the opposite Hom-quasitriangular structure R21.
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