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HODGE–BOTT–CHERN DECOMPOSITIONS OF
MIXED TYPE FORMS ON FOLIATED KÄHLER MANIFOLDS

BY

CRISTIAN IDA (Braşov)

Abstract. The Bott–Chern cohomology groups and the Bott–Chern Laplacian on
differential forms of mixed type on a compact foliated Kähler manifold are defined and
studied. Also, a Hodge decomposition theorem of Bott–Chern type for differential forms
of mixed type is proved. Finally, the case of projectivized tangent bundle of a complex
Finsler manifold is discussed.

1. Introduction and preliminaries

1.1. Introduction. The importance of Hodge theory both in Rieman-
nian and complex geometry is beyond question. On the other hand the
study of geometry and cohomology of hermitian foliations was initiated by
I. Vaisman [Va71, Va73, Va77] and the Hodge theory for basic forms, in
both transversally riemannian and kählerian cases, was intensively studied
by A. El Kacimi Alaoui et al. [E-K, E-K-G, E-K-H]. We also mention that
in [Zh06] a Hodge decomposition theorem on Kähler–Finsler manifolds is
obtained. Recently, M. Schweitzer [S] developed a Bott–Chern cohomology
theory on complex manifolds and obtained a Hodge type decomposition
with respect to the associated Bott–Chern Laplacian. Also, L.-S. Tseng and
S.-T. Yau [T-Y] presented a systematic study of cohomology and Hodge
theory of Bott–Chern type on symplectic manifolds.

The main goal of the present paper is to study a Bott–Chern cohomology
theory for differential forms of mixed type and some Hodge type decomposi-
tions for such forms on a compact foliated Kähler manifold. Firstly, follow-
ing [Va71, Va73] and [Va77] we give a short review of decompositions of the
classical operators d, ?, δ, L, Λ and C for forms of mixed type on compact
foliated Kähler manifolds. Next, we define the Bott–Chern and Aeppli coho-
mology groups of these forms, discuss the Bott–Chern and Aeppli Laplacian,
and prove some Hodge type decomposition theorems for differential forms
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of mixed type. The methods used here are similar to those applied in [S]
and [T-Y], and are closely related to those used in [Va77]. Finally, it is
shown that such Hodge decompositions of Bott–Chern type hold for differ-
ential forms of mixed type on the projectivized tangent bundle of a complex
Finsler manifold.

1.2. Preliminaries. Let us begin with a short review of complex ana-
lytic foliated manifolds and set up the basic notation and terminology. For
more details, see [Va71, Va73, Va77].

Definition 1.1 ([Va77]). A complex analytic foliated structure F , briefly
c.a.f., of complex codimension n on a complex (n+m)-dimensional manifold
M is given by an atlas {U , (zaα, zuα)}, with a, b, . . . running in {1, . . . , n} and
u, v, . . . running in {n+ 1, . . . , n+m}, such that for every Uα, Uβ ∈ U with
Uα ∩ Uβ 6= ∅ one has, besides analyticity, ∂zaβ/∂z

u
α = 0.

The leaves of F are locally given by zaα = const. Let T 1,0M be the

holomorphic tangent bundle of M, and T 0,1M = T 1,0M the antiholomor-
phic tangent bundle. The tangent vectors of the leaves define the structural
subbundle D1,0 = T 1,0F of T 1,0M with local bases ∂̇u = {∂/∂zuα} and the
transition functions (∂zuβ/∂z

v
α), and Q1,0F = T 1,0M/T 1,0F is the transver-

sal bundle with local bases defined by the equivalence classes [∂/∂zaα] and
the transition functions (∂zaβ/∂z

b
α).

Generally, we shall say that objects depending only on leaves are foli-
ated ; in particular, they may be c.a.f. For instance, f :M→ C is foliated if
∂f/∂zuα = ∂f/∂zuα = 0, and it is c.a.f. if moreover ∂f/∂zaα = 0. A differential
form is c.a.f. if it does not contain dzuα, dz

u
α and has local c.a.f. coefficients.

A vector bundle on M is c.a.f. if it has c.a.f. transition functions (for in-
stance, the transversal bundle is so).

In the following, we suppose that M is hermitian with metric h. Then
the orthogonal bundle D1,0⊥ = T 1,0⊥F of T 1,0F , i.e. T 1,0M = D1,0⊥⊕D1,0,
which is differentially isomorphic to Q1,0F , has local bases of the form

(1.1)
δ

δza
=

∂

∂za
− tua

∂

∂zu

(the index α of the coordinate neighborhood will be omitted) and we shall
use the bases {δa, ∂̇u}, where δa = δ/δza, to express various vector fields

of X (M). By conjugation, we have D0,1 = D1,0 = span{∂̇u} and D0,1⊥ =

D1,0⊥ = span{δa}, and hence the decomposition of the complexified tangent
bundle of (M,F), namely TCM = D⊥⊕D, where D⊥ = D1,0⊥⊕D0,1⊥ and
D = D1,0 ⊕D0,1. The corresponding dual cobases are given by

(1.2) {dza, δzu = dzu + tuadz
a, dza, δzu = dzu + tuadz

a}.
These cobases allow us to speak of the type (p1, p2, q1, q2) of a differential
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form by counting in its expression the number of dza, dza, δzu and δzu,
respectively. Thus, we denote by

Ωp1,p2,q1,q2(M) = Λp1,p2D⊥ ∧ Λq1,q2D
the set of all (p1, p2, q1, q2)-differential forms, locally given by

(1.3) ϕ =
1

p1!p2!q1!q2!

∑
ϕAp1Bp2Uq1V q2

dzAp1 ∧ dzBp2 ∧ δzUq1 ∧ δzVq2

where we have put Ap1 = (a1 . . . ap1), Bp2 = (b1 . . . bp2), Uq1 = (u1 . . . uq1),
Vq2 = (v1 . . . vq2), dzAp1 = dza1 ∧ · · · ∧ dzap1 , dzBp2 = dzb1 ∧ · · · ∧ dzbp2 ,
δzUq1 = δzu1 ∧ · · · ∧ δzuq1 and δzVq2 = δzv1 ∧ · · · ∧ δzvq2 .

These forms will be referred to as being of complex type (p1+q1, p2+q2),
foliated type (p1 + p2, q1 + q2) and mixed type (p1, p2 + q1 + q2).

Throughout this paper we consider forms of mixed type and we denote
by Λp,qmix(M,F) the space of all differential forms of mixed type (p, q) on
(M,F). According to the above discussion we have (see also [B-C-I])

Λp,qmix(M,F) =
⊕
r,h

Ωp,r,h,q−r−h(M,F) =

q⊕
k=0

Λp,kD⊥ ∧ Λq−k(D, C).

The metric can be locally expressed as

(1.4) h = habdz
a ⊗ dzb + huvδz

u ⊗ δzv

and its fundamental form is

(1.5) ω = ω′ + ω′′, ω′ =
i

2
habdz

a ∧ dzb, ω′′ =
i

2
huvδz

u ∧ δzv.

We also notice that the metric h is Kähler (dω = 0) if and only if [Va73]:

(1.6)

(a) δchab − δahcb = 0, (b) ∂̇uhab − huvδatvb = 0,

(c) δahuv − hwv∂̇utwa = 0, (d) ∂̇uhvw − ∂̇vhuw = 0,

(e) δct
u
a − δatuc = 0, (f) huv∂̇wt

u
a − huw∂̇vtua = 0.

On the manifold M, we can consider the classical scalar product and
the operators d, ?, δ, L, Λ,C, with respect to forms of complex type [M-K];
following [Va77], we will present the decompositions of these operators with
respect to the mixed type.

Let us assume that the manifold M is compact. The operator d has an
obvious decomposition (see [Va71, Va73]),

(1.7) d = µ+ λ+ ν

into three parts of the respective mixed types (1, 0), (0, 1) and (2,−1).

It is easy to see that in the Kählerian case condition (1.6)(e) implies
ν = 0. Hence the differential forms on a foliated Kähler manifold are orga-
nized into a double cochain complex by means of mixed types.
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We denote by Ωp,q(M) the set of all (p, q)-forms of complex type on
(M,F). In order to recall the Hodge star operator ? for differential forms
of complex type, according to [Ko87, p. 60], we choose (1, 0)-forms ζ1, . . . ,
ζn+m ∈ Ω1,0(M) locally forming a unitary frame field for the holomorphic
cotangent bundle (T 1,0M)∗ so that

(1.8) h =
∑
α

ζα ⊗ ζα and ω = i
∑
α

ζα ∧ ζα.

For each ordered set of indices Ap = {α1, . . . , αp}, we write ζAp = ζα1 ∧
· · ·∧ζαp , ζ

Ap
= ζ

α1 ∧· · ·∧ζαp
and denote by An+m−p = {αp+1, . . . , αn+m} a

complementary ordered set of indices. We might as well assume that αp+1 <
· · · < αn+m although this is not essential. The star operator ? : Ωp,q(M)→
Ωn+m−q,n+m−p(M) is defined as a linear map (over Ω0(M) = Ω0,0(M))
satisfying

(1.9) ?(ζAp ∧ ζBq
) = ε(Ap, Bq)ζ

Bn+m−q ∧ ζAn+m−p
,

where ε(Ap, Bq) = (−1)(n+m)p+(n+m)(n+m+2)/2σ(ApAn+m−p)σ(BqBn+m−q).

Here σ(ApAn+m−p) denotes the sign of the permutation (ApAn+m−p).
Next, we shall consider the dual operator ? defined by composition of ?
with complex conjugation, that is, ? : Ωp,q(M) → Ωn+m−p,n+m−q(M) is
given by ?ϕ := ?ϕ = ?ϕ.

The sign in (1.9) is chosen so that

(1.10) (ζAp ∧ ζBq
) ∧ ?(ζAp ∧ ζBq

) = in+m
∑
α

ζα ∧ ζα =
ωn+m

(n+m)!
.

If ϕ = 1
p!q!

∑
ϕApBq

ζAp ∧ ζBq
and ψ = 1

p!q!

∑
ψApBq

ζAp ∧ ζBq
are two (p, q)-

forms of complex type on (M,F) then

(1.11) ϕ ∧ ?ψ =

(
1

p!q!

∑
ϕApBq

ψApBq

)
ωn+m

(n+m)!
.

The inner product in the space of (p, q)-forms of complex type on (M,F)
is given by setting

(1.12) (ϕ,ψ) =
�

M
ϕ ∧ ?ψ.

Now, ? sends forms of mixed type (p, q) to forms of mixed type (n − p,
n + 2m − q). If we write ϕ,ψ ∈ Λp,qmix(M,F) as ϕ =

⊕q
h=0 ϕp+h,q−h and

ψ =
⊕q

h=0 ψp+h,q−h, where the subscripts indicate the complex type of the
respective terms, then their scalar product is given by

(1.13) 〈ϕ,ψ〉 =

q⊕
h=0

(ϕp+h,q−h, ψp+h,q−h).
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As in the classical theory [Ko87, M-K], it follows that

(1.14) (?)−1ϕ = (−1)degϕ?ϕ, δ = −?d?,
hence

(1.15) δ = µ∗ + λ∗ + ν∗, µ∗ = −?µ?, λ∗ = −?λ?, ν∗ = −?ν?,
where the summands have mixed types (−1, 0), (0,−1) and (−2, 1), respec-
tively, and in the kählerian case ν∗ = 0. From (1.5) we have L = L′ + L′′,
where L′ denotes left exterior multiplication by ω′ and has mixed type (1, 1),
and similarly L′′ has mixed type (0, 2). It also follows that

(1.16) Λ = Λ′ + Λ′′, Λ′ = −?L′?, Λ′′ = −?L′′?,
where the summands have mixed types (−1,−1) and (0,−2), respectively.

The operator C : Ω∗(M) → Ωp,q(M) is defined by Cϕ =
∑

p,q i
p−qϕp,q

for any ϕ =
∑

p,q ϕp,q ∈ Ω∗(M), where the subscripts indicate the com-
plex type of the respective terms. If ϕ is of mixed type (p, q) with ϕ =⊕q

h=0 ϕp+h,q−h, where the subscripts indicate the complex type of the re-
spective terms, then

(1.17) Cϕ = ip−q
q⊕

h=0

(−1)hϕp+h,q−h,

which shows that C preserves the mixed type and C−1 = (−1)p−qC. We
have

Proposition 1.1 ([Va77]). On a compact foliated Kähler manifold the
following relations hold:

Λ′µ− µΛ′ + Λ′′λ− λΛ′′ = −C−1λ∗C,(1.18)

Λ′′µ− µΛ′′ = 0, Λ′λ− λΛ′ = −C−1µ∗C.(1.19)

If we apply the above formulas to a homogeneous form of mixed type
(p, q) and use (1.17) we obtain

(1.20) Λ′µ− µΛ′ + Λ′′λ− λΛ′′ = iλ∗, Λ′λ− λΛ′ = −iµ∗.
Proposition 1.2. If (M,F , ω) is a compact foliated Kähler manifold,

then

µ2 = λ2 = µλ+ λµ = 0, µ∗2 = λ∗2 = µ∗λ∗ + λ∗µ∗ = 0,(1.21)

µ∗λ+ λµ∗ = 0, µλ∗ + λ∗µ = 0.(1.22)

Proof. Relations (1.21) follow since d2 = δ2 = 0, and (1.22) follows by
applying (1.20) and the first equation in (1.19).

2. Bott–Chern cohomology of forms of mixed type. In this sec-
tion we define the Bott–Chern cohomology groups of differential forms of
mixed type on a compact foliated Kähler manifold (M,F , ω).
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Let Λp,qmix(M,F) be the set of all differential forms of mixed type (p, q) on
the foliated Kähler manifold (M,F , ω). According to the previous section
we can consider the following differential complexes:

The differential complex

(2.1) · · · λ−→ Λp,q−1mix (M,F)
λ−→ Λp,qmix(M,F)

λ−→ · · ·
is called the λ-complex of (M,F , ω); its cohomology groups, defined in
[Va71], are explicitly given by

(2.2) Hp,q
mix,λ(M,F) =

ker{λ : Λp,qmix(M,F)→ Λp,q+1
mix (M,F)}

im{λ : Λp,q−1mix (M,F)→ Λp,qmix(M,F)}
.

The differential complex

(2.3) Λp−1,q−1mix (M,F)
µλ−→ Λp,qmix(M,F)

µ⊕λ−−−→ Λp+1,q
mix (M,F)⊕ Λp,q+1

mix (M,F)

is called the Bott–Chern complex of (M,F , ω); its cohomology groups

(2.4) Hp,q
mix,BC(M,F) =

ker{µ : Λp,qmix → Λp+1,q
mix } ∩ ker{λ : Λp,qmix → Λp,q+1

mix }
im{µλ : Λp−1,q−1mix → Λp,qmix}

are called the Bott–Chern cohomology groups of bidegree (p, q) of differential
forms of mixed type on (M,F , ω).

It is easy to see that the above discussion gives rise to the canonical
maps

(2.5) Hp,q
mix,BC(M,F)→ Hp+q

d (M,F), Hp,q
mix,BC(M,F)→ Hp,q

mix,λ(M,F).

Here Hp+q
d (M,F) denotes the (p + q)th de Rham cohomology group of

(M,F , ω).
In the following, as usual [A, Bi], we consider the dual of the Bott–Chern

cohomology groups, given by

Hp,q
mix,A(M,F) =

ker{µλ : Λp,qmix → Λp+1,q+1
mix }

im{µ : Λp−1,qmix → Λp,qmix}+ im{λ : Λp,q−1mix → Λp,qmix}
,

called the Aeppli cohomology groups of differential forms of mixed type on
(M,F , ω).

Proposition 2.1. The exterior product induces a bilinear map

(2.6) ∧ : Hp,q
mix,BC(M,F)×Hr,s

mix,A(M,F)→ Hp+r,q+s
mix,A (M,F).

Proof. Let ϕ,ψ ∈ Λp,qmix(M,F). If ϕ is d-closed and ψ is µλ-closed then
ϕ∧ψ is µλ-closed. Also, if ϕ is d-closed and ψ is d-exact then ϕ∧ψ is d-exact
and if ϕ is µλ-exact and ψ is µλ-closed then ϕ ∧ ψ is d-exact.

For the last assertion, we have

ϕ ∧ ψ = µλθ ∧ ψ = 1
2d[(λ− µ)θ ∧ ψ + (−1)p+qθ ∧ (µ− λ)ψ].
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In particular, we have

Hp,q
mix,BC(M,F)×Hn−p,n+2m−q

mix,A (M,F)

→ Hn,n+2m
mix,A (M,F) = H2n+2m(M,F).

3. Bott–Chern Laplacian and Hodge decompositions of forms
of mixed type. In this section we define the Bott–Chern Laplacian for dif-
ferential forms of mixed type on a compact foliated Kähler manifold and we
obtain a Hodge type decomposition theorem with respect to this Laplacian.
The notions are introduced using the same technique as in [S, T-Y].

It is easy to see that in the kählerian case the Laplace operator ∆ =
dδ + δd admits the decomposition ∆ = ∆µ +∆λ, where

(3.1) ∆µ = µµ∗ + µ∗µ, ∆λ = λλ∗ + λ∗λ.

Proposition 3.1. Let (M,F , ω) be a compact foliated Kähler manifold.
Then ∆µ = ∆λ.

Proof. Using (1.20), we have

∆µ = µi(Λ′λ− λΛ′) + i(Λ′λ− λΛ′)µ
= iµΛ′λ− iµλΛ′ + iΛ′λµ− iλΛ′µ

and

∆λ = −λi(Λ′µ− µΛ′ + Λ′′λ− λΛ′′)− i(Λ′µ− µΛ′ + Λ′′λ− λΛ′′)λ
= −iλΛ′µ+ iλµΛ′ − iλΛ′′λ− iΛ′µλ+ iµΛ′λ+ iλΛ′′λ

= iµΛ′λ− iµλΛ′ + iΛ′λµ− iλΛ′µ.

According to [Va71], ∆λ is an elliptic operator and the following Hodge
decomposition holds:

(3.2) Λp,qmix(M,F) = ker∆λ ⊕ imλ⊕ imλ∗.

We now define the Bott–Chern Laplacian for differential forms of mixed
type (p, q) by

(3.3) ∆BC
mix = µλ(µλ)∗ + µ∗µ+ λ∗λ.

This operator is self-adjoint, i.e. 〈∆BC
mixϕ,ψ〉 = 〈ϕ,∆BC

mixψ〉. For a form ϕ ∈
Λp,qmix(M,F) we have

〈∆BC
mixϕ,ϕ〉 = 〈µλ(µλ)∗ϕ+ µ∗µϕ+ λ∗λϕ, ϕ〉

= 〈(µλ)∗ϕ, (µλ)∗ϕ〉+ 〈µϕ, µϕ〉+ 〈λϕ, λϕ〉
= ‖(µλ)∗ϕ‖2 + ‖µϕ‖2 + ‖λϕ‖2,

where ‖ϕ‖2 = 〈ϕ,ϕ〉. Thus, we obtain

Proposition 3.2. ∆BC
mixϕ = 0 if and only if (µλ)∗ϕ = µϕ = λϕ = 0.
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We denote the space of ∆BC
mix-harmonic (p, q)-forms of mixed type by

Hp,qmix,BC(M,F).

Following the ideas of [T-Y], we now show that H∗,∗mix,BC(M,F) is finite-
dimensional by analyzing the space of its harmonic forms. Firstly, we intro-
duce a related elliptic fourth-order differential operator:

(3.4) ∆̃BC
mix = µλλ∗µ∗ + λ∗µ∗µλ+ λ∗µµ∗λ+ µ∗λλ∗µ+ λ∗λ+ µ∗µ.

This operator has the same kernel as ∆BC
mix. Indeed,

0 = 〈ϕ, ∆̃BC
mixϕ〉 = ‖µϕ‖2+‖λϕ‖2+‖(µλ)∗ϕ‖2+‖µλϕ‖2+‖µ∗λϕ‖2+‖λ∗µϕ‖2

and the three additional terms clearly do not give any additional conditions
and are automatically zero if one requires that µϕ = λϕ = 0. Essentially,
the presence of the second-order differential terms ensures that the spaces
ker∆BC

mix and ker ∆̃BC
mix coincide. We notice that such a fourth-order differ-

ential operator is considered in [E-K-G] for basic forms on transversally

kählerian foliations. We have an analogous result for the operator ∆̃BC
mix:

Proposition 3.3. If (M,F , ω) is a compact foliated Kähler manifold,
then

∆̃BC
mix = ∆λ∆λ + µ∗µ+ λ∗λ.

Proof. Using (1.21) and (1.22), by direct calculation one gets

∆̃BC
mix = µλλ∗µ∗ + λ∗µ∗µλ+ λ∗µµ∗λ+ µ∗λλ∗µ+ λ∗λ+ µ∗µ

= µµ∗λλ∗ + µ∗µλ∗λ+ µ∗µλλ∗ + µµ∗λ∗λ+ λ∗λ+ µ∗µ

= (µµ∗ + µ∗µ)(λλ∗ + λ∗λ) + λ∗λ+ µ∗µ

= ∆µ∆λ + λ∗λ+ µ∗µ = ∆λ∆λ + λ∗λ+ µ∗µ.

Theorem 3.1. Let (M,F , ω) be a compact foliated Kähler manifold.
Then

(i) dimHp,qmix,BC(M,F) <∞;

(ii) There is an orthogonal decomposition

(3.5) Λp,qmix(M,F) = Hp,qmix,BC(M,F)⊕ im(µλ)⊕ (imµ∗ + imλ∗).

(iii) There are canonical isomorphisms

Hp,qmix,BC(M,F) ∼= Hp,q
mix,BC(M,F) ∼= Hp,q

mix,λ(M,F).

Proof. (i) Because only the highest order differential contributes to the

principal symbol of a Laplace operator, by the calculations of ∆̃BC
mix from

Proposition 3.3, it follows that the principal symbol of ∆̃BC
mix is equal to that

of the square of the operator ∆λ, so it is positive. ∆̃BC
mix is thus elliptic and

hence its kernel, Hp,qmix,BC(M,F), is finite-dimensional.
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Assertion (ii) then follows directly by applying elliptic theory. For (iii),
using the decomposition of (ii), we have

(3.6) ker(µ+ λ) = Hp,qmix,BC(M,F)⊕ im(µλ).

Indeed, for a form ϕ ∈ Λp,qmix(M,F) given by ϕ = ψ + µλθ + µ∗θ1 + λ∗θ2,
where ψ ∈ Hp,qmix,BC(M,F), we have µϕ = λϕ = 0 if and only if

0 = 〈θ1, µ(µ∗θ1 + λ∗θ2)〉+ 〈θ2, λ(µ∗θ1 + λ∗θ2)〉
= 〈µ∗θ1 + λ∗θ2, µ

∗θ1 + λ∗θ2〉 = ‖µ∗θ1 + λ∗θ2‖2,
which gives µ∗θ1+λ∗θ2 = 0, i.e. the desired decomposition (3.6). Thus every
cohomology class of H∗,∗mix,BC(M,F) contains a unique harmonic represen-

tative and Hp,qmix,BC(M,F) ∼= Hp,q
mix,BC(M,F), proving the first isomorphism

of (iii). Furthermore, we have

(3.7) ker ∆̃BC
mix = ker∆λ.

Indeed, if ϕ ∈ ker ∆̃BC
mix then by the calculations of ∆̃BC

mix from Proposi-
tion 3.3,

0 = 〈ϕ, ∆̃BC
mixϕ〉 = ‖∆λϕ‖2 + ‖µϕ‖2 + ‖λϕ‖2,

which says that ϕ ∈ ker∆λ. Conversely, if ϕ ∈ ker∆λ, then by Proposi-
tion 3.1, ϕ ∈ ker∆µ, hence λϕ = µϕ = 0 and so ϕ ∈ ker ∆̃BC

mix. Finally,
similarly to the above we have Hp,qmix,λ(M,F) ∼= Hp,q

mix,λ(M,F), and now the

second isomorphism of (iii) follows from (3.7).

Corollary 3.1. If (M,F , ω) is a compact foliated Kähler manifold,
then Hp,q

mix,BC(M,F) is finite-dimensional.

Now, let us define the Aeppli Laplacian for differential forms of mixed
type (p, q) by

(3.8) ∆A
mix = µµ∗ + λλ∗ + (µλ)∗µλ.

It is not elliptic, but the related operator

(3.9) ∆̃A
mix = µµ∗ + λλ∗ + λ∗µ∗µλ+ µλλ∗µ∗ + µλ∗λµ∗ + λµ∗µλ∗

is elliptic when (M,F , ω) is a compact foliated Kähler manifold.

Now, if we denote Hp,qmix,A(M,F) = ker ∆̃A
mix, then by applying ellliptic

theory arguments, similar to those in Theorem 3.1, we obtain

Theorem 3.2. Let (M,F , ω) be a compact foliated Kähler manifold.
Then

(i) dimHp,qmix,A(M,F) <∞.

(ii) There is an orthogonal decomposition

(3.10) Λp,qmix(M,F) = Hp,qmix,A(M,F)⊕ (imµ+ imλ)⊕ im(λ∗µ∗).
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(iii) There is a canonical isomorphism

Hp,qmix,A(M,F) ∼= Hp,q
mix,A(M,F).

Corollary 3.2. If (M,F , ω) is a compact foliated Kähler manifold,
then Hp,q

mix,A(M,F) is finite-dimensional.

Finally, if ϕ ∈ Hp,qmix,BC(M,F) then µϕ = λϕ = µ∗λ∗ϕ = 0 if and

only if λ∗(?ϕ) = µ∗(?ϕ) = µλ(?ϕ) = 0, which holds if and only if ?ϕ ∈
Hn−p,n+2m−q

mix,A (M,F), where we have used the relations λ∗ = −?λ? and
µ∗ = −?µ?. Thus, ? gives an isomorphism

Hp,q
mix,BC(M,F) ∼= Hn−p,n+2m−q

mix,A (M,F).

4. The case of the projectivized tangent bundle of a complex
Finsler manifold. In this section it is shown that similar Hodge decom-
positions of Bott–Chern type are valid for differential forms of mixed type
on the total space of the projectivized tangent bundle of a complex Finsler
manifold.

Let M be an n-dimensional complex manifold and (zk), k = 1, . . . , n,
the complex coordinates in a local chart U . The complexification of the
real tangent bundle TRM , denoted by TCM , splits into the direct sum
T 1,0M ⊕ T 0,1M of the holomorphic tangent bundle T 1,0M and antiholo-
morphic tangent bundle T 0,1M . The total space of the holomorphic tangent
bundle π : T 1,0M → M is in turn a 2n-dimensional complex manifold with
(zk, ηk), k = 1, . . . , n, the induced complex coordinates in the local chart

π−1(U), where η = ηk∂/∂zk ∈ T 1,0
z M .

A complex Finsler space is a pair (M,F ), where F : T 1,0M → R+ ∪ {0}
is a continuous function satisfying the following conditions:

(i) L := F 2 is smooth on M̃ := T 1,0M − {zero section};
(ii) F (z, η) ≥ 0, and equality holds if and only if η = 0;
(iii) F (z, λη) = |λ|F (z, η) for any λ ∈ C (homogeneity);
(iv) the hermitian matrix (gij) is positive definite, where gij =

∂2L/∂ηi∂ηj is the fundamental metric tensor, or equivalently, the

indicatrix Iz = {η ∈ T 1,0
z M | gij(z, η)ηiηj = 1} is strongly pseudo-

convex for any z ∈M .

Consequently, from (iii) we have

(4.1)
∂L

∂ηk
ηk =

∂L

∂ηk
ηk = L,

∂gij
∂ηk

ηk =
∂gij

∂ηk
ηk = 0, gijη

iηj = L.

Roughly speaking, the geometry of a complex Finsler space involves the
geometric objects of the complex manifold T 1,0M endowed with a hermitian
metric structure defined by gij .
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Let V 1,0(M̃) ⊂ T 1,0(M̃) be the holomorphic vertical bundle, locally

spanned by {∂/∂ηk}, and V 0,1(M̃) be its conjugate, locally spanned by

{∂/∂ηk}. A complex nonlinear connection, briefly c.n.c., on M̃ is defined

by a complementary complex subbundle to V 1,0(M̃) in T 1,0(M̃), so that

T 1,0(M̃) = H1,0(M̃) ⊕ V 1,0(M̃). The horizontal subbundle H1,0(M̃) is lo-
cally spanned by {

δ

δzk
=

∂

∂zk
−N j

k

∂

∂ηj

}
,

where N j
k(z, η) are the coefficients of the c.n.c., which obey a specific trans-

formation rule under changes of local charts such that

δ

δzk
=
∂z′j

∂zk
δ

δz′j
.

Obviously, we also have

∂

∂ηk
=
∂z′j

∂zk
∂

∂η′j
.

The pair {δ/δzk, ∂/∂ηk}, k = 1, . . . , n, will be called the adapted frame of
the c.n.c. By conjugation an adapted frame {δ/δzk, ∂/∂ηk} is obtained on

T 0,1(M̃). The dual adapted bases are given by {dzk}, {δηk = dηk +Nk
j dz

j},
{dzk} and {δηk = dηk +Nk

j
dzj}, respectively.

According to [A-P, Ai, Mu], a c.n.c. on (M,F ) depending only on the
complex Finsler metric F is the Chern–Finsler c.n.c. locally given by

(4.2)
CF

N j
k = gmj∂k∂̇m(L),

where (gmj) is the inverse of (gjm), and it has an important property:

(4.3)
CF

Rikj = δk
CF

N i
j −δj

CF

N i
k = 0.

We will consider the adapted frames and coframes with respect to the
Chern–Finsler c.n.c. Similarly to (1.3), with respect to the adapted coframes

{dzk, dzk, δηk, δηk} of T ∗CM̃ , a (p1, p2, q1, q2)-form ϕ on M̃ is locally given
by

(4.4) ϕ =
1

p1!p2!q1!q2!
ϕIp1Jp2Kq1Hq2

(z, η)dzIp1 ∧ dzJp2 ∧ δηKq1 ∧ δηHq2 .

Such (p1, p2, q1, q2)-forms on complex Finsler manifolds are defined in [P-M].
See also [Zh09a, Zh09b].

As in the preliminary subsection these forms may be viewed as being of
mixed type (p1, p2 + q1 + q2) (see also [I]), and we denote by Λp,qmix(M̃) the

set of all differential forms of mixed type (p, q) on M̃ .
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Now we suppose that the manifold M is compact. Note that there is
a natural C∗ = C − {0} action on M̃ , and the associated projectivized

bundle is defined by P (M̃) = M̃/C∗ with the projection pM : P (M̃)→ M .

Each fiber Pz(T
1,0M) = P (T 1,0

z M) is isomorphic to the (n− 1)-dimensional
complex projective space Pn−1(C). The pull-back bundle p−1M (T 1,0M) is a

holomorphic vector bundle of rank n over P (M̃). Thus, the local complex
coordinates (z, η) on T 1,0M may also be considered as a local complex co-

ordinate system for P (M̃) as long as η1, . . . , ηn is treated as a homogeneous
coordinate system for fibers. All the geometric objects on T 1,0M which are
invariant under replacing η by λη, λ ∈ C∗, descend to P (M̃). The reason

for working with P (M̃) rather than M̃ is that P (M̃) is a compact complex

manifold with dimC P (M̃) = 2n − 1 whenever M is a compact complex
manifold of dimension n (see [Ko75, Ko96]). Also, due to [B-K], the natural

hermitian metric on M̃ given by the Sasaki type lift of the fundamental
metric tensor gij ,

G
M̃

= gijdz
i ⊗ dzj + gijδη

i ⊗ δηj ,

descends to a nondegenerate metric

G
P (M̃)

= gijdz
i ⊗ dzj + (lnL)ijδη

i ⊗ δηj

on the total space P (M̃), where (lnL)ij = ∂2 lnL/∂ηi∂ηj . See also [Ai,

C-W]. The corresponding fundamental form is ω
P (M̃)

= ωh
P (M̃)

+ ωv
P (M̃)

,

where

(4.5) ωh
P (M̃)

=
√
−1 gijdz

i ∧ dzj , ωv
P (M̃)

=
√
−1 (lnL)ijδη

i ∧ δηj .

Let Λp,qmix(P (M̃)) be the set of all differential forms of mixed type (p, q)
locally given by (4.4) which are invariant under replacing η by λη, λ ∈ C∗.

Now by (4.3), the exterior derivative d on such forms admits a decom-
position d = λ+ µ into parts of the respective mixed types (1, 0) and (0, 1).
Thus, by the same technique as in the previous sections, we can define the
Bott–Chern and Aeppli Laplacian on Λp,qmix(P (M̃)), and we can prove that
similar Hodge decompositions of Bott–Chern type are valid for the differ-
ential forms of mixed type (p, q) on the projectivized tangent bundle of a
complex Finsler manifold.
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