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ON AN ESTIMATE FOR THE LINEARIZED COMPRESSIBLE
NAVIER-STOKES EQUATIONS IN THE L,-FRAMEWORK

BY

PIOTR BOGUSELAW MUCHA (Warszawa)

Abstract. An Lp-estimate with a constant independent of time for solutions of the
linearized compressible Navier—Stokes system in the whole space (under the assumption
that solutions have compact supports in space) is obtained.

1. Introduction. In the paper we examine the following system in R*:
uy — pAu —vVdivu +aVn = f,

(1.1) ]
n + bdivu = g;

we assume that
(1.2) supp(u,n) C B(0,1) x (0, 00),

where B(0,1) = {z € R3 : |z| < 1} and p, v, a, b are constant posi-
tive coefficients. System (1.1)—(1.2) can be treated as a localization of the
Cauchy problem for the linearized compressible Navier—Stokes equations in
the whole space with vanishing initial data:

v — pAv —vVdive + aVg = F,
(1.3) gt + bdive = G,
V)g=0 =0,  qli=0 = 0.

To obtain (1.1)—(1.2) from (1.3) it is enough to multiply (1.3) by =, where
7 is a smooth function with compact support, and consider the system for
u = v and n = 7gq.

Our aim is to prove an Ly-estimate for solutions of (1.1)-(1.2) with a
constant independent of time. This result can be a useful tool to prove the
global existence of solutions to equations of motion of viscous compressible
barotropic fluids. In this way we will be able to obtain global-in-time solu-
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tions for the compressible Navier—Stokes system with sharp regularity such
that u € W2! with r > 3 (see [4]).

One can find similar results (more general, but with the constant de-
pending on time) in [2, 5, 6].

The main result of the paper is the following:

THEOREM. Let r > 2, f € L.(RY) N Ly(RY), g € WHO(RY) N W, 0 (RY).

Then for 0 < T < oo the solution of (1.1)—(1.2) satisfies the following
estimate:

(14)  ullwzr®s oy + 17llwzo s oy T 17elwroms xo,m)

+ lJullwzr ®sxjo.ry) + 17llwzoms oy + 1Melwro@sxo,m)
< Ao(If1l 2. ws x[o,77) + HQHWTLO(RsX[o,T])
F 1l 2@ xi0,17) + 19llw0 e x 0,77))
where Ag is independent of T .

2. Notation. In our considerations we will need the anisotropic Sobolev
spaces W™ (Qr), where m,n € Ry U{0},r > 1 and Qr = Q x (0,T), with
the norm

T
2.1) Nulljymrgp = \ | lu(z, 6)]" dedt
0Q

T
+ |V D u(a, )" dodt
0<im/|<[Im[] 0 Q
T ’ ’
D t) — D" u(a, t)|"
’x — x/’s+r(|m|7[\m\])
Im/|=[m|]0 Q@
T
+ ) \ 1D} u(a, t)|" dx dt
o</ [<In]] 0 Q
TT  pln] [n]¢ . 4ry|r
|D; "u(z,t) — Dy (z,t)] ’
+{da || P[0 D dt dt’,
Q 00
where s = dim @, [] is the integral part of ., and D}, = 0% ... 8% | where

l=(l,...,ls) is a multiindex.
In the case when Q1 = R® x R we can apply the Fourier transform and
define the Bessel-potential spaces given by the norm

(22) Nl ey = lullz, @ + 172 160 )]
+ 1 F2 €l A€, €0)l Lz, resr),

L, (Rs+1)
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where u(€, &) is the Fourier transform of u(z,t):
U, &) = Ve e P u(a, t) do dt = Fy L [u] (€, o),
and F~! the inverse transformation
Fralal(e,t) = (2m) 20D fetot [el€ra(s, o) de déo,
where £ = (&1,...,&) and £ - x = &x1 + ... + Esxs.
We also define the space V,.(Qr) with the norm
(2.3) lullv,.@r) = lullwrogqe + luellwrog,-
In the proof we will use the following results.

THEOREM 2.1 (Marcinkiewicz theorem, see [3]). Suppose that the func-
tion @ : R™ — C is smooth enough and there exists M > 0 such that for
every point © € R™ we have

kP

— <M, 0<k<m, 1<j;<...<jp<m.
ijl...ﬁxjk

|$j1 .- 'xjk|

Then the operator
Pg(x) = (2m)"™ | dye™d(y) | e "7g(2)dz
Rm, R”VL
is bounded in L,(R™) and

HPgHLp(R"L) S Ap,mMHgHLP(R'HL)

PROPOSITION 2.2 (see [7]). If r > 2 and m,n > 0 then
H™"(R* x R) c W™"(R®* x R)
and
[ullwmn g xry < ellull gmn s xr);
moreover if m,n € N then H™" = W™,

PROPOSITION 2.3 (see [1]). Let uw € W™ (2r), m,n € Ry, and ¢ > r

> 2. If
Z<a1+——l>%+<ﬁ+%—é>%<1,

then
||D5D§U||LQ(QT) < ellullwr o opy + c@)lull pyon)
for each € € (0,1), with c¢(¢) — o0 as e — 0.

During our considerations we will use well known results like the imbed-
ding theorems for Sobolev spaces. All constants are denoted by c.
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3. Proof of Theorem. In our considerations we assume that all func-
tions are C'*™ smooth. The result for such functions easily implies (1.4) in
the general case. We examine the system
(3.1) uy — pAu — vVdivu +aVn = f,

' n +bdivue =g
in R*:; we assume that
supp(u,n) C 2 x (0,00),

where {2 is a bounded domain with smooth boundary S and diam {2 < 1.
The first aim is to find an estimate on divu. We set

d = divu.

From (3.1) we get

di — (p+v)Ad + aAn = div f,
(3:2) ne+bd =g,

dls = 0.
To simplify (3.2) we solve the parabolic problem
dit— (p+v)Ad; =div f,
di|s = 0.
The solutions of (3.3) satisfy (see Appendix, Lemma 4A)
(3.4)

(3.3)

el 20720 0,00)) F It lli172 2 0,009
< ([l fll L, (2x0,00)) + 1f 122 (0,00)))-
We look for d in the form
d=dy +ds.

Hence (3.2) reduces to

dot — (u+v)Ady + aln =0,
(3.5) ne+bdy =g—0bd1 =g,

da|s = 0.
To examine (3.5) we apply the Lo-technique. Multiplying (3.5); by da, in-
tegrating over {2, and using (3.5)2 we get
1d
2.dt

which gives

a

(3.6) .

S (d% + %]Vn]2> dr + (n+ V)S |Vdy|? dr = SVn -Vg'dx,

o0

(.1 2o ooy <} 10~ V9L o
0
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Inequality (3.7) and (3.5)2 also give

o0

1/2
(3:8) IVnlra@xioon < c( §§190- Vo'ldudt) ™ + 9/l 0.00:
0
From (3.5) and (3.8) we obtain the equation
(3.9) do — (p+v)Ade s = —adiv Vi,
datls = 0.

By Lemma 4A (see Appendix) we have
(310) ||d27tHW21’1/2(Q><(O,oo)) < CantHLg(QX(O,oo))'
By the imbedding theorem (Proposition 2.3), (3.10) and (3.8) we get

o0 1/2
(B11)  ||datll, (2x(0.00)) < c( [ §1vn-vy dazdt) IV o oo
0

where 2 < r < 10/3.
Now we return to (3.2) in the form
—(p+v)Ad+adn =div f —di — day,
(3.12) N+ bd = g,
dlt=0 =0,  nft=0 = 0.

We recall that d and n have compact supports in space. From (3.12) we get
the equation in the whole space

w+v 1. .
-A =-d d —dis—d
(3.13) ( b e + 6“7) b ivVg+div f 1, 2.ts

Nlt=0 = 0.

To solve (3.13) we consider two systems

1
—A<M+ Vm,t + am> = b div Vg + div f,

b
Mli=0 =0
and
—A<'u —g V772,t + anz) = —dy; —day,
N2lt=0 = 0
We see that

(3.14) n=m +ne.
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Solving for n; and 79, and applying the Fourier transform we get

-
TPt =) [T
i 1
=P e mmy” T e |

Since

[0l “ %,

— <
a—+ MT#Z&) ’
by Theorem 2.1 we have

||V771
IV?n2llz, @y < clldilL, @y + clldallL, @a-

We see that from (3.15) we cannot obtain an estimate for n. Take the equa-
tion for n;:

w+v . 1
“A —div(-V
(3.16) ( Tt +a771> v <b g+ f> ;
M l¢=0 = 0.

(3.15)

Multiplying (3.16); by n; and integrating over R3 we obtain

ptvd

(3.17) TR

1
S IV |?dz +a S Vi |? de = — S <EVg—|—f> -V dz.
R3 R3

Integrating (3.17) with respect to t over [0,00) and applying the Young
inequality we get

(3.18) sup S |V |? de + S |V |? da dt
0

t€(0,00)
RS R3 -

<e | (VP + 1/ doar
0 R3

Since 1 has compact support in space, from (3.13) we get (in the same way
as for (3.16))

(3.19) sup S |Vn|? do + S (IVnl* + |n|?) dx dt
t€(0,00) p3 0 R3

3

<c| { (Vg +|f?) dudt.
0 R

Since 1y = n — 11, from (3.18) and (3.19) we get
(3.20) IVi2llL, 0,000 (r3)) < CUIVGllLo@e) + 1 Lare))-
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From the imbedding theorem we have
(3:21) IVn2llL, ) < cIVn2llL, ) + IVn2]lLa2)-
From (3.20) and (3.21) we obtain
(3:22)  [IVi2llL, (@x(0.00)) < (V2L t) + Vgl Loy + [1F] ozs))-
By (3.4), (3.11), (3.15) and (3.22) we get
IV, (2x(0,00) < el fllL,(2x0,00) + VL, (2x(0,00))
+ el Vgl La(@2x(0,00)) T+ €l fllLa(2x (0,00))
o 1/2
—i—c( S S!Van’\dtdx) .
0

In particular when r = 2, we can estimate the last term of the r.h.s. from
the Young inequality:

o0 1/2
c( §) fvn- Vg’dtdm)

< SVl Lo 2x0,00)) + €IVl La(2x (0,00)) T €l fll L2 (2 (0,00))

N —

and this gives

(323) IVl La(2x0,00)) + IVl L, (2 (0,00))
< c(Iflz,.(2x (0,000 + IVl L, (2x (0,00))

+ [ fllzo(2x(0,00)) + 1Vl L2 (2% (0,00)))-
We have already got an estimate of Vn in L,., so we can treat (3.1); as a
parabolic system with a solution with compact support in space. Hence by
(3.23) we easily get
(3:24)  lullyz1(ox(0,00)) < UL (@2x0,00)) + IVl L, (2% (0,00))
F 1l za(2x(0,00)) + IVl La(2x(0,00)))-

From (3.1)2 we have

(3:25) [IVnellz, (2x(0,00)) < Ul fllL, (2x0,00)) + IV, (2% (0,00))
+ [ fll 22 2x(0,00)) T IVl L2 (2% (0,00)))-
If r < 10/3, from (3.23)—(3.25) we obtain

(3.26)  [lullywz1(ox(0,00)) T 1ML (2x(0,000) F 7]l L, (2 (0,00))
< e(Ifllz, (2x0,00) T F Il L2 (2x 0,000 IV Il 2. (2% (0,00)) FIV Gl Lo (2 (0,00)))
but if r > 10/3 we have to return to (3.9) with Vn; € L/3. Hence in the

same way as in (3.10) we get do ;+ € L, if r < 10, because Wllo%f C L1p. And
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if » > 10 then we repeat the above procedure to obtain (3.26) for r < oo
(Wig"? € Loo).

Inequality (1.4) comes easily from (3.26) and the uniqueness in time of
solutions of system (1.1).

4. Appendix. We consider the following problem in a bounded domain
{2 with smooth boundary S:

dy — aAd = div f,
(4.1) dls =0,
d|t:0 == O

LEMMA 4A. For solutions of problem (4.1) we have the following esti-
mate:

(4.2) HdHWTLl/z(QX(O,oo)) + ||d||W21>1/2(Q><(0,oo))

< ([ fllzr2x(0,00)) + 1 f | La(2x (0,00)))

where r > 2.
COROLLARY 4A. We also have

(4.3) ||dHWT1’1/2(Q><[O,T]) + HdHWzl’l/z(QX[O,T])

< A([[fllz,coxior + 1flzac2xo,m)):
where r > 2 and A is a constant independent of T.

Proof of Lemma 4A. To obtain a suitable estimate we introduce a
smooth function ¢ such that

[ for Blyo,\).
C(x)_{o for B(yg,Q)\),

and 0 < ¢ <1, |V(¢| <¢/), Ais a parameter which will be defined later.
Using the function ¢ we define a new variable
D = (d.
From (4.1) we obtain an equation for D:
D, —aAD =div(f - V(- f+2V(-Vd+ Add,
D|s = 0.
If B(yo,2A) NS = 0 equation (4.4) can be treated as a problem in R*; to
solve it we can use the Fourier transform to get
1

i§o + af¢]?
= D1+ Do,

(4.4)

(45) D=r"1 Fldiv ¢ f + 2div(V¢d) — VEf — Ald]
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where
T
Dy =57 el + 244
_ 1 1 _ L f
Dy =F [i£0+a|§|2f[ V(- f A(d]}
Since 2
lateog, 0 s <
2
R e S

by the Marcinkiewicz theorem (Theorem 2.1) we have
|7~ leol 2 FDu] I, ey + IV Dal L, o)
(4.6) < c|[¢fllL. @) + clldVC]| L, ra),
D2t ., rey + IV Dall L, @e) < €llVE - fllL, @) + cll ACd]
Hence D, € Hrl’l/2 and Do € H?', but locally, we only have estimates
for the highest derivatives. We need a Poincaré inequality. We assume that

B(yo,2\) C Ri' Then we extend the problem to the whole space using the
transformation

7 _ h(xlv x3)7 xs3 Z 07
(4.7) hw) = { —h(a',—x3), x3<D0.

L (R%)-

Note that this transformation preserves the equation. It is easily seen that
Ah is a regular distribution, hence on z3 = 0 there are no singularities

(h(z’,0) = 0, Oy, h(a',0) is continuous, 853};(1}/,.7}3) in L, is well defined as
a function).

The transformation (4.7) changes (4.4) into the following problem in the
whole space:

(4.8) Di — aAD = div f1; + fiz,
where fi; and fio comes from the r.h.s. of (4.4) and f}, = ]?1117 = J?121>

73 _ {ff’l($',$3), zg > 0,
= f(x, —x3), w3 <0.

Since (4.8) has the same structure as (4.4), for D; and Dy we have estimates
(4.6). As Dy(2’,0) = 0, we get a Poincaré inequality which gives estimates
for || D1l[, (supp DxR) (in particular for r = 2). Since D has compact support
(in space), from (4.8) we have the following energy estimate:

(4.9) IDllza sy < elllFrallzaes) + 12l zas))-
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Together with (4.6) and Proposition 2.3 we obtain D € HPY? and by Propo-
sition 2.2 if r > 2 we have D € WTI’I/Q. Thus

(410) 1Dl < <(llf
+ ||d||LT(suppD><(0,<>o)) + ||d||L2(suppD><(0,oo)))‘

If B(yo,2X\) NS # 0 then we have to transform the problem to the
half-space. Since S is smooth, the transformation F' is also smooth. And we
have

L, (supp Dx (0,00)) + HfHLz(suppDX(0,00))

F:B(yo,2\) N2 — R% x [0,00).,, 0p =20, — VFO..
Then (4.4) reads

Dt - aAzD — dlvz f21 + f22 + a(Aa: - Az)Da
(4.11)
D|Z3:0 = 07

where fy1 and fa2 comes from the r.h.s. of (4.4).
We have

(412) (A, — A.)D =V(VFVD) - V(V?*FD)+ V(VFVFVD)
+V*FD - V(VFVF)VD + VFV?FVD.

We extend equation (4.11) in the same way as in (4.7) to get a problem in
the whole space. This is possible since (4.11)2 holds. From the considerations
from the first part of the proof we get, by (4.12),

(4.13) D72 gy < ellfllzoupp Dx(0,00)) F €Dl L, (supp Dx (0,00))

+ CHdHLT(suppDX(O,oo))
+ C‘VF‘ : HVDHLT(suppDX(O,oo))a

where R} = R2, x [0,00)., x R. But the function F satisfies the following
relations (by smoothness of the boundary 5):

(4.14) F(0)=0, VF(0)=0, FeC®* |VF|<c\

Thus taking A small enough, using the interpolation theorem, by (4.12) and
(4.14) we obtain

(415) ||D||W7}'1/2(Ri) < CHfHLr(SuppDX(O,oo))

+ clldl| 2, (supp Dx (0,00)) + €l L, (supp Dx (0,00))-

Taking a cover of {2 consisting of such balls, from (4.10) and (4.15), remem-
bering that the functions D have compact supports in space, we obtain

(4'16) ||d||WT1’1/2(_Q><(O,OO)) < C||f||Lr(Q><(O,oo)) + CHdHLz(QX(O,OO))'

To estimate the last term of the r.h.s. of (4.16) we write the energy estimate
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for (4.1):

d 2 2

Egd dr+a | |Vd*dr = - f-Vdda.
2 2 kP

Since d|;—o = 0, d|s = 0 and {2 is bounded, using the Poincaré inequality,
we easily get

N

(4.17) ldllL2(2x(0,000) < €llfllLa(2%(0,00))-
This gives by (4.16) the estimate

(4.18) 1l 1172 (g 0.00y) < ULl (2x(0,00)) + Il L2(2x0,000))

where r > 2. From (4.18) we immediately obtain (4.2).
The proof of Corollary 4A follows easily from the uniqueness in time for
system (4.1).
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