
COLLOQU IUM MATHEMAT ICUM
VOL. 87 2001 NO. 2

ON AN ESTIMATE FOR THE LINEARIZED COMPRESSIBLE

NAVIER–STOKES EQUATIONS IN THE Lp-FRAMEWORK

BY

PIOTR BOGUSŁAW MUCHA (Warszawa)

Abstract. An Lp-estimate with a constant independent of time for solutions of the
linearized compressible Navier–Stokes system in the whole space (under the assumption
that solutions have compact supports in space) is obtained.

1. Introduction. In the paper we examine the following system in R
4:

(1.1)
ut − µ∆u− ν∇ divu+ a∇η = f,

ηt + bdiv u = g;

we assume that

(1.2) supp(u, η) ⊂ B(0, 1)× (0,∞),

where B(0, 1) = {x ∈ R
3 : |x| < 1} and µ, ν, a, b are constant posi-

tive coefficients. System (1.1)–(1.2) can be treated as a localization of the
Cauchy problem for the linearized compressible Navier–Stokes equations in
the whole space with vanishing initial data:

(1.3)

vt − µ∆v − ν∇ div v + a∇q = F,

qt + bdiv v = G,

v|t=0 = 0, q|t=0 = 0.

To obtain (1.1)–(1.2) from (1.3) it is enough to multiply (1.3) by π, where
π is a smooth function with compact support, and consider the system for
u = πv and η = πq.

Our aim is to prove an Lp-estimate for solutions of (1.1)–(1.2) with a
constant independent of time. This result can be a useful tool to prove the
global existence of solutions to equations of motion of viscous compressible
barotropic fluids. In this way we will be able to obtain global-in-time solu-
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tions for the compressible Navier–Stokes system with sharp regularity such
that u ∈W 2,1r with r > 3 (see [4]).

One can find similar results (more general, but with the constant de-
pending on time) in [2, 5, 6].

The main result of the paper is the following:

Theorem. Let r ≥ 2, f ∈ Lr(R
4) ∩ L2(R

4), g ∈ W 1,0r (R
4) ∩W 1,02 (R

4).
Then for 0 < T < ∞ the solution of (1.1)–(1.2) satisfies the following
estimate:

(1.4) ‖u‖W 2,1r (R3×[0,T ]) + ‖η‖W 1,0r (R3×[0,T ]) + ‖ηt‖W 1,0r (R3×[0,T ])
+ ‖u‖W 2,12 (R3×[0,T ]) + ‖η‖W

1,0
2 (R

3×[0,T ]) + ‖ηt‖W 1,02 (R3×[0,T ])

≤ A0(‖f‖Lr(R3×[0,T ]) + ‖g‖W 1,0r (R3×[0,T ])

+ ‖f‖L2(R3×[0,T ]) + ‖g‖W 1,02 (R3×[0,T ])
),

where A0 is independent of T .

2. Notation. In our considerations we will need the anisotropic Sobolev
spaces Wm,nr (QT ), where m,n ∈ R+∪{0}, r ≥ 1 and QT = Q× (0, T ), with
the norm

‖u‖rWm,nr (QT )
=

T\
0

\
Q

|u(x, t)|r dx dt(2.1)

+
∑

0≤|m′|≤[|m|]

T\
0

\
Q

|Dm
′

x u(x, t)|
r dx dt

+
∑

|m′|=[|m|]

T\
0

dt
\
Q

\
Q

|Dm
′

x u(x, t)−D
m′

x u(x
′, t)|r

|x− x′|s+r(|m|−[|m|])
dx dx′

+
∑

0≤|n′|≤[|n|]

T\
0

\
Q

|Dn
′

t u(x, t)|
r dx dt

+
\
Q

dx

T\
0

T\
0

|D
[n]
t u(x, t)−D

[n]
t (x, t

′)|r

|t− t′|1+r(n−[n])
dt dt′,

where s = dimQ, [α] is the integral part of α, and Dlx = ∂
l1
x1 . . . ∂

ls
xs , where

l = (l1, . . . , ls) is a multiindex.

In the case when QT = R
s × R we can apply the Fourier transform and

define the Bessel-potential spaces given by the norm

‖u‖Hm,nr (Rs+1) = ‖u‖Lr(Rs+1) + ‖F
−1
t,x [|ξ|

mû(ξ, ξ0)]‖Lr(Rs+1)(2.2)

+ ‖F−1t,x [|ξ0|
nû(ξ, ξ0)]‖Lr(Rs+1),
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where û(ξ, ξ0) is the Fourier transform of u(x, t):

û(ξ, ξ0) =
\
e−iξ0t

\
e−iξ·xu(x, t) dx dt ≡ Ft,x[u](ξ, ξ0),

and F−1 the inverse transformation

F−1t,x [û](x, t) = (2π)
−2(s+1)

\
eiξ0t
\
eiξ·xû(ξ, ξ0) dξ dξ0,

where ξ = (ξ1, . . . , ξs) and ξ · x = ξ1x1 + . . .+ ξsxs.
We also define the space Vr(QT ) with the norm

(2.3) ‖u‖Vr(QT ) = ‖u‖W 1,0r (QT ) + ‖ut‖W 1,0r (QT ).

In the proof we will use the following results.

Theorem 2.1 (Marcinkiewicz theorem, see [3]). Suppose that the func-
tion Φ : R

m → C is smooth enough and there exists M > 0 such that for
every point x ∈ R

m we have

|xj1 . . . xjk |

∣∣∣∣
∂kΦ

∂xj1 . . . ∂xjk

∣∣∣∣ ≤M, 0 ≤ k ≤ m, 1 ≤ j1 < . . . < jk ≤ m.

Then the operator

Pg(x) = (2π)−m
\

Rm

dy eixyΦ(y)
\

Rm

e−iyzg(z) dz

is bounded in Lp(R
m) and

‖Pg‖Lp(Rm) ≤ Ap,mM‖g‖Lp(Rm).

Proposition 2.2 (see [7]). If r > 2 and m,n > 0 then

Hm,nr (R
s × R) ⊂Wm,nr (Rs × R)

and

‖u‖Wm,nr (Rs×R) ≤ c‖u‖Hm,nr (Rs×R);

moreover if m,n ∈ N then Hm,nr =Wm,nr .

Proposition 2.3 (see [1]). Let u ∈ Wm,nr (ΩT ), m,n ∈ R+, and q ≥ r
≥ 2. If

κ =
3∑

i=1

(
αi +

1

r
−
1

q

)
1

m
+

(
β +
1

r
−
1

q

)
1

n
< 1,

then

‖Dβt D
α
xu‖Lq(ΩT ) ≤ ε‖u‖Wm,nr (ΩT ) + c(ε)‖u‖L2(ΩT )

for each ε ∈ (0, 1), with c(ε)→∞ as ε→ 0.

During our considerations we will use well known results like the imbed-
ding theorems for Sobolev spaces. All constants are denoted by c.
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3. Proof of Theorem. In our considerations we assume that all func-
tions are C∞ smooth. The result for such functions easily implies (1.4) in
the general case. We examine the system

(3.1)
ut − µ∆u− ν∇ divu+ a∇η = f,

ηt + bdiv u = g

in R
4; we assume that

supp(u, η) ⊂ Ω × (0,∞),

where Ω is a bounded domain with smooth boundary S and diamΩ ≤ 1.
The first aim is to find an estimate on div u. We set

d = div u.

From (3.1) we get

(3.2)

dt − (µ+ ν)∆d+ a∆η = div f,

ηt + bd = g,

d|S = 0.

To simplify (3.2) we solve the parabolic problem

(3.3)
d1,t − (µ+ ν)∆d1 = div f,

d1|S = 0.

The solutions of (3.3) satisfy (see Appendix, Lemma 4A)

(3.4) ‖d1‖W 1,1/2r (Ω×(0,∞))
+ ‖d1‖W 1,1/22 (Ω×(0,∞))

≤ c(‖f‖Lr(Ω×(0,∞)) + ‖f‖L2(Ω×(0,∞))).

We look for d in the form

d = d1 + d2.

Hence (3.2) reduces to

(3.5)

d2,t − (µ+ ν)∆d2 + a∆η = 0,

ηt + bd2 = g − bd1 = g
′,

d2|S = 0.

To examine (3.5) we apply the L2-technique. Multiplying (3.5)1 by d2, in-
tegrating over Ω, and using (3.5)2 we get

(3.6)
1

2

d

dt

\(
d22 +

a

b
|∇η|2

)
dx+ (µ+ ν)

\
|∇d2|

2 dx =
a

b

\
∇η · ∇g′ dx,

which gives

(3.7) ‖d2‖
2
W 1,02 (Ω×(0,∞))

≤ c
∞\
0

\
|∇η · ∇g′| dx dt.
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Inequality (3.7) and (3.5)2 also give

(3.8) ‖∇ηt‖L2(Ω×(0,∞)) ≤ c
(∞\
0

\
|∇η · ∇g′| dx dt

)1/2
+ ‖∇g′‖L2(Ω×(0,∞)).

From (3.5) and (3.8) we obtain the equation

(3.9)
d2,tt − (µ+ ν)∆d2,t = −adiv∇ηt,

d2,t|S = 0.

By Lemma 4A (see Appendix) we have

(3.10) ‖d2,t‖W 1,1/22 (Ω×(0,∞))
≤ c‖∇ηt‖L2(Ω×(0,∞)).

By the imbedding theorem (Proposition 2.3), (3.10) and (3.8) we get

(3.11) ‖d2,t‖Lr(Ω×(0,∞)) ≤ c
(∞\
0

\
|∇η ·∇g′| dx dt

)1/2
+ c‖∇g′‖L2(Ω×(0,∞)),

where 2 ≤ r ≤ 10/3.

Now we return to (3.2) in the form

(3.12)

−(µ+ ν)∆d+ a∆η = div f − d1,t − d2,t,

ηt + bd = g,

d|t=0 = 0, η|t=0 = 0.

We recall that d and η have compact supports in space. From (3.12) we get
the equation in the whole space

(3.13)
−∆

(
µ+ ν

b
ηt + aη

)
=
1

b
div∇g + div f − d1,t − d2,t,

η|t=0 = 0.

To solve (3.13) we consider two systems

−∆

(
µ+ ν

b
η1,t + aη1

)
=
1

b
div∇g + div f,

η1|t=0 = 0

and

−∆

(
µ+ ν

b
η2,t + aη2

)
= −d1,t − d2,t,

η2|t=0 = 0.

We see that

(3.14) η = η1 + η2.
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Solving for η1 and η2, and applying the Fourier transform we get

η1 = F
−1

[
iξ

|ξ|2(a+ µ+νb iξ0)
F

[
f +
1

b
∇g

]]
,

η2 = F
−1

[
1

|ξ|2(a+ µ+νb iξ0)
F [−d1,t − d2,t]

]
.

Since ∣∣∣∣|ξ0|
α∂αξ0

1

a+ µ+νb iξ0

∣∣∣∣ < c,

by Theorem 2.1 we have

(3.15)
‖∇η1‖Lr(R4) ≤ c‖f‖Lr(R4) + c‖∇g‖Lr(R4),

‖∇2η2‖Lr(R4) ≤ c‖d1‖Lr(R4) + c‖d2,t‖Lr(R4).

We see that from (3.15) we cannot obtain an estimate for η. Take the equa-
tion for η1:

(3.16)
−∆

(
µ+ ν

b
η1,t + aη1

)
= div

(
1

b
∇g + f

)
,

η1|t=0 = 0.

Multiplying (3.16)1 by η1 and integrating over R
3 we obtain

(3.17)
µ+ ν

2b

d

dt

\
R3

|∇η1|
2 dx+ a

\
R3

|∇η1|
2 dx = −

\
R3

(
1

b
∇g + f

)
· ∇η1 dx.

Integrating (3.17) with respect to t over [0,∞) and applying the Young
inequality we get

(3.18) sup
t∈(0,∞)

\
R3

|∇η1|
2 dx+

∞\
0

\
R3

|∇η1|
2 dx dt

≤ c
∞\
0

\
R3

(|∇g|2 + |f |2) dx dt.

Since η has compact support in space, from (3.13) we get (in the same way
as for (3.16))

(3.19) sup
t∈(0,∞)

\
R3

|∇η|2 dx+
∞\
0

\
R3

(|∇η|2 + |η|2) dx dt

≤ c
∞\
0

\
R3

(|∇g|2 + |f |2) dx dt.

Since η2 = η − η1, from (3.18) and (3.19) we get

(3.20) ‖∇η2‖Lr(0,∞;L2(R3)) ≤ c(‖∇g‖L2(R4) + ‖f‖L2(R4)).
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From the imbedding theorem we have

(3.21) ‖∇η2‖Lr(Ω) ≤ c(‖∇
2η2‖Lr(Ω) + ‖∇η2‖L2(Ω)).

From (3.20) and (3.21) we obtain

(3.22) ‖∇η2‖Lr(Ω×(0,∞)) ≤ c(‖∇
2η2‖Lr(R4) + ‖∇g‖L2(R4) + ‖f‖L2(R4)).

By (3.4), (3.11), (3.15) and (3.22) we get

‖∇η‖Lr(Ω×(0,∞)) ≤ c‖f‖Lr(Ω×(0,∞)) + c‖∇g‖Lr(Ω×(0,∞))

+ c‖∇g‖L2(Ω×(0,∞)) + c‖f‖L2(Ω×(0,∞))

+ c
(∞\
0

\
|∇η · ∇g′| dt dx

)1/2
.

In particular when r = 2, we can estimate the last term of the r.h.s. from
the Young inequality:

c
(∞\
0

\
∇η · ∇g′ dt dx

)1/2

≤
1

2
‖∇η‖L2(Ω×(0,∞)) + c‖∇g‖L2(Ω×(0,∞)) + c‖f‖L2(Ω×(0,∞)),

and this gives

(3.23) ‖∇η‖L2(Ω×(0,∞)) + ‖∇η‖Lr(Ω×(0,∞))

≤ c(‖f‖Lr(Ω×(0,∞)) + ‖∇g‖Lr(Ω×(0,∞))

+ ‖f‖L2(Ω×(0,∞)) + ‖∇g‖L2(Ω×(0,∞))).

We have already got an estimate of ∇η in Lr, so we can treat (3.1)1 as a
parabolic system with a solution with compact support in space. Hence by
(3.23) we easily get

‖u‖W 2,1r (Ω×(0,∞)) ≤ c(‖f‖Lr(Ω×(0,∞)) + ‖∇g‖Lr(Ω×(0,∞))(3.24)

+ ‖f‖L2(Ω×(0,∞)) + ‖∇g‖L2(Ω×(0,∞))).

From (3.1)2 we have

‖∇ηt‖Lr(Ω×(0,∞)) ≤ c(‖f‖Lr(Ω×(0,∞)) + ‖∇g‖Lr(Ω×(0,∞))(3.25)

+ ‖f‖L2(Ω×(0,∞)) + ‖∇g‖L2(Ω×(0,∞))).

If r ≤ 10/3, from (3.23)–(3.25) we obtain

(3.26) ‖u‖W 2,1r (Ω×(0,∞)) + ‖η‖Lr(Ω×(0,∞)) + ‖ηt‖Lr(Ω×(0,∞))

≤ c(‖f‖Lr(Ω×(0,∞))+‖f‖L2(Ω×(0,∞))+‖∇g‖Lr(Ω×(0,∞))+‖∇g‖L2(Ω×(0,∞))),

but if r > 10/3 we have to return to (3.9) with ∇ηt ∈ L10/3. Hence in the

same way as in (3.10) we get d2,t ∈ Lr if r ≤ 10, becauseW
1,1/2
10/3 ⊂ L10. And
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if r > 10 then we repeat the above procedure to obtain (3.26) for r < ∞

(W
1,1/2
10 ⊂ L∞).
Inequality (1.4) comes easily from (3.26) and the uniqueness in time of

solutions of system (1.1).

4. Appendix. We consider the following problem in a bounded domain
Ω with smooth boundary S:

(4.1)

dt − α∆d = div f,

d|S = 0,

d|t=0 = 0.

Lemma 4A. For solutions of problem (4.1) we have the following esti-
mate:

(4.2) ‖d‖
W
1,1/2
r (Ω×(0,∞))

+ ‖d‖
W
1,1/2
2 (Ω×(0,∞))

≤ c(‖f‖Lr(Ω×(0,∞)) + ‖f‖L2(Ω×(0,∞))),

where r ≥ 2.

Corollary 4A. We also have

(4.3) ‖d‖
W
1,1/2
r (Ω×[0,T ])

+ ‖d‖
W
1,1/2
2 (Ω×[0,T ])

≤ A(‖f‖Lr(Ω×[0,T ]) + ‖f‖L2(Ω×[0,T ])),

where r ≥ 2 and A is a constant independent of T .

Proof of Lemma 4A. To obtain a suitable estimate we introduce a
smooth function ζ such that

ζ(x) =

{
1 for B(y0, λ),
0 for B(y0, 2λ),

and 0 ≤ ζ ≤ 1, |∇ζ| ≤ c/λ, λ is a parameter which will be defined later.
Using the function ζ we define a new variable

D = ζd.

From (4.1) we obtain an equation for D:

(4.4)
Dt − α∆D = div ζf −∇ζ · f + 2∇ζ · ∇d+∆ζd,

D|S = 0.

If B(y0, 2λ) ∩ S = ∅ equation (4.4) can be treated as a problem in R
4; to

solve it we can use the Fourier transform to get

D = F−1
[

1

iξ0 + α|ξ|2
F [div ζf + 2div(∇ζd)−∇ζf −∆ζd]

]
(4.5)

= D1 +D2,
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where

D1 = F
−1

[
iξ

iξ0 + α|ξ|2
F [ζf + 2d∇ζ]

]
,

D2 = F
−1

[
1

iξ0 + α|ξ|2
F [−∇ζ · f −∆ζd]

]
.

Since ∣∣∣∣|ξ0|
α∂αξ0 |ξ|

β∂βξ
ξ|ξ0|

1/2

iξ0 + α|ξ|2

∣∣∣∣ < c,
∣∣∣∣|ξ0|

α∂αξ0 |ξ|
β∂βξ
|ξ0|+ |ξ|

2

iξ0 + α|ξ|2

∣∣∣∣ < c,

by the Marcinkiewicz theorem (Theorem 2.1) we have

(4.6)

‖F−1[|ξ0|
1/2FD1]‖Lr(R4) + ‖∇D1‖Lr(R4)

≤ c‖ζf‖Lr(R4) + c‖d∇ζ‖Lr(R4),

‖D2,t‖Lr(R4) + ‖∇
2D2‖Lr(R4) ≤ c‖∇ζ · f‖Lr(R4) + c‖∆ζd‖Lr(R4).

Hence D1 ∈ H
1,1/2
r and D2 ∈ H

2,1
r , but locally, we only have estimates

for the highest derivatives. We need a Poincaré inequality. We assume that
B(y0, 2λ) ⊂ R

3
+. Then we extend the problem to the whole space using the

transformation

(4.7) h̃(x) =

{
h(x′, x3), x3 ≥ 0,
−h(x′,−x3), x3 < 0.

Note that this transformation preserves the equation. It is easily seen that
∆h̃ is a regular distribution, hence on x3 = 0 there are no singularities
(h(x′, 0) = 0, ∂x3 h̃(x

′, 0) is continuous, ∂2x3 h̃(x
′, x3) in Lr is well defined as

a function).

The transformation (4.7) changes (4.4) into the following problem in the
whole space:

(4.8) D̃t − α∆D̃ = div f11 + f̃12,

where f11 and f12 comes from the r.h.s. of (4.4) and f
1
11 = f̃

1
11, f

2
11 = f̃

2
11,

f311 =

{
f311(x

′, x3), x3 ≥ 0,
f311(x

′,−x3), x3 < 0.

Since (4.8) has the same structure as (4.4), for D̃1 and D̃2 we have estimates

(4.6). As D̃1(x
′, 0) = 0, we get a Poincaré inequality which gives estimates

for ‖D̃1‖Lr(supp D̃×R) (in particular for r = 2). Since D̃ has compact support

(in space), from (4.8) we have the following energy estimate:

(4.9) ‖D̃‖L2(R4) ≤ c(‖f11‖L2(R4) + ‖f̃12‖L2(R4)).



168 P. B. MUCHA

Together with (4.6) and Proposition 2.3 we obtainD ∈ H
1,1/2
r and by Propo-

sition 2.2 if r ≥ 2 we have D ∈W
1,1/2
r . Thus

‖D‖
W
1,1/2
r (R4)

≤ c(‖f‖Lr(suppD×(0,∞)) + ‖f‖L2(suppD×(0,∞))(4.10)

+ ‖d‖Lr(suppD×(0,∞)) + ‖d‖L2(suppD×(0,∞))).

If B(y0, 2λ) ∩ S 6= ∅ then we have to transform the problem to the
half-space. Since S is smooth, the transformation F is also smooth. And we
have

F : B(y0, 2λ) ∩Ω → R
2
z′ × [0,∞)z3 , ∂x = ∂z −∇F∂z.

Then (4.4) reads

(4.11)
Dt − α∆zD = divz f21 + f22 + α(∆x −∆z)D,

D|z3=0 = 0,

where f21 and f22 comes from the r.h.s. of (4.4).

We have

(∆x −∆z)D = ∇(∇F∇D)−∇(∇
2FD) +∇(∇F∇F∇D)(4.12)

+∇3FD −∇(∇F∇F )∇D +∇F∇2F∇D.

We extend equation (4.11) in the same way as in (4.7) to get a problem in
the whole space. This is possible since (4.11)2 holds. From the considerations
from the first part of the proof we get, by (4.12),

‖D‖
W
1,1/2
r (R4+)

≤ c‖f‖Lr(suppD×(0,∞)) + c‖D‖Lr(suppD×(0,∞))(4.13)

+ c‖d‖Lr(suppD×(0,∞))

+ c|∇F | · ‖∇D‖Lr(suppD×(0,∞)),

where R
4
+ = R

2
z′ × [0,∞)z3 × R. But the function F satisfies the following

relations (by smoothness of the boundary S):

(4.14) F (0) = 0, ∇F (0) = 0, F ∈ C3, |∇F | ≤ cλ.

Thus taking λ small enough, using the interpolation theorem, by (4.12) and
(4.14) we obtain

‖D‖
W
1,1/2
r (R4+)

≤ c‖f‖Lr(suppD×(0,∞))(4.15)

+ c‖d‖L2(suppD×(0,∞)) + c‖d‖Lr(suppD×(0,∞)).

Taking a cover of Ω consisting of such balls, from (4.10) and (4.15), remem-
bering that the functions D have compact supports in space, we obtain

(4.16) ‖d‖
W
1,1/2
r (Ω×(0,∞))

≤ c‖f‖Lr(Ω×(0,∞)) + c‖d‖L2(Ω×(0,∞)).

To estimate the last term of the r.h.s. of (4.16) we write the energy estimate
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for (4.1):
1

2

d

dt

\
Ω

d2 dx+ α
\
Ω

|∇d|2 dx = −
\
Ω

f · ∇d dx.

Since d|t=0 = 0, d|S = 0 and Ω is bounded, using the Poincaré inequality,
we easily get

(4.17) ‖d‖L2(Ω×(0,∞)) ≤ c‖f‖L2(Ω×(0,∞)).

This gives by (4.16) the estimate

(4.18) ‖d‖
W
1,1/2
r (Ω×(0,∞))

≤ c(‖f‖Lr(Ω×(0,∞)) + ‖f‖L2(Ω×(0,∞))),

where r ≥ 2. From (4.18) we immediately obtain (4.2).
The proof of Corollary 4A follows easily from the uniqueness in time for

system (4.1).
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[6] G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J.
Math. 143 (1990), 359–375.

[7] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-
Holland, Amsterdam, 1978.

Institute of Applied Mathematics and Mechanics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: mucha@hydra.mimuw.edu.pl

Received 11 February 2000;

revised 9 March 2000 (3881)


