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DIRECT DECOMPOSITIONS OF UNIFORM GROUPS

BY

A. MADER (Honolulu, HI) and O. MUTZBAUER (Würzburg)

Abstract. Uniform groups are extensions of rigid completely decomposable groups
by a finite direct sum of cyclic primary groups all of the same order. The direct decompo-
sitions of uniform groups are completely determined by an algorithm that is realised by a
MAPLE procedure.

1. Introduction. Call a decomposition of a group into indecompos-
able summands an indecomposable decomposition for short. In the theory of
torsion-free abelian groups, the existence of many radically different inde-
composable decompositions has been an unpleasant surprise initially, and a
fascinating topic subsequently. Most examples and results dealt with almost
completely decomposable groups that are, by definition, finite extensions
of finite rank completely decomposable groups, and are relatively acces-
sible. Main references are [Jon57], [Jon59], [Cor61], [FL70], [BM80], [Bla83],
[Yak89], [BY90], [YK93], [BM94], but, in some form or fashion, the topic
is touched upon in almost every publication on almost completely decom-
posable groups. On the other hand, there are also uniqueness results, the
most remarkable and general of these being the theorem of Faticoni and
Schultz ([FS96]; for a different proof see [MV97] or [Mad00, Section 10.4]),
which says that an indecomposable decomposition of a group that is the
extension of a completely decomposable group by a finite primary group is
unique up to near-isomorphism. Indecomposable decompositions of exten-
sions of completely decomposable groups by cyclic primary groups, called
crq-groups, were shown to be unique up to isomorphism in [MV95] (or see
[Mad00, Section 6.5]).
In this paper we consider a class of almost completely decomposable

groups whose members trivially have unique indecomposable decompositions
and we endeavour to find these. The class is that of rigid p-local groups.
A type τ is an isomorphism class of rational groups, and a rational

group is an additive subgroup of the rationals containing Z. We frequently
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abuse notation and use τ for a representative of the class τ . The groups
G(τ), G♯(τ) are the usual (pure) type subgroups of G. A group G is rigid
if rk(G(τ)/G♯(τ)) ≤ 1 for every type τ and its critical typeset Tcr(G) =
{τ : G(τ)/G♯(τ) 6= 0} is an antichain. An almost completely decomposable
X is p-local for a prime p if X/R(X) is a (finite) p-group where R(X) is
the regulator of X. For a rigid almost completely decomposable group X
the regulator is simply R(X) =

∑

̺∈Tcr(X)
X(̺) =

⊕

̺∈Tcr(X)
X(̺) and

X(τ) ∼= τ .

Let X be a rigid p-local almost completely decomposable group and
A =
⊕

̺∈Tcr(X)
X(̺) its regulator. If X = Y ⊕Z, then Tcr(X) is the disjoint

union of Tcr(Y ) and Tcr(Z) and Y = (
⊕

̺∈Tcr(Y )
X(̺))X∗ . This shows that

Y is a fully invariant subgroup of X. It is an easy consequence (Lemma 3.2)
that X has a unique indecomposable decomposition. The problem is to find
the partition

Tcr(X) = T1 ∪ . . . ∪ Tn

such that

X =

n
⊕

i=1

(

⊕

̺∈Ti

X(̺)
)X

∗

and each summand is indecomposable. The equality of X with the direct
sum is equivalent to an index equality, namely,

[X : A] =

n
∏

i=1

[(

⊕

̺∈Ti

A(̺)
)X

∗
:
(

⊕

̺∈Ti

A(̺)
)]

.

In order to compute these indices, it is necessary to assume that the group
X is given in some specific form. The natural and usual description (except
for form) is the standard description developed in [BM98a] (or see [Mad00,
Chapter 11]). The Purification Lemma (Lemma 2.1; see [BM98a], [Mad00,
Lemma 11.4.1]) supplies the practical means for computing the necessary
indices. In a sense the problem is now solved: It is a finite task to list the
possible partitions of Tcr(X) and the computations of indices is algorith-
mic and can be done by computer. Further results must be concerned with
making the process more efficient and attractive. We do this by using the
fact that the standard description may be assumed to be special without
loosing generality ([MMN00]). This leads to a complete success in the case
of uniform groups, i.e., rigid p-local groups X such that X/R(X) is a direct
sum of mutually isomorphic cyclic groups. These groups were classified by
Dugas and Oxford ([DO93], [Mad00, Section 12.5]) and an indecomposabil-
ity criterion was formulated in geometric language. We establish a method
for finding the indecomposable decomposition of such a group and include
short MAPLE procedures that implement the algorithm. It is then possible
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to randomly generate groups (in a certain sense) and determine the experi-
mental frequency of indecomposables among them.
The general case of rigid local groups is more complicated and is left to

a subsequent paper.
All “groups” in this paper are abelian, and the torsion-free groups all

have finite rank. The expression Mk×r(S) denotes the set of k × r matrices
with entries in the set S. The set S is usually a ring, in particular the ring
of integers Z will occur and its quotient ring Z/eZ, but S may also be an
abelian group. When r = 1 we write s⇂ ∈ Mk×1(S). Similarly, when k = 1
we write ⇀s ∈ M1×r(S). Frequently we will need to deal with submatrices
of a matrix and we will use the following notation. Let M ∈ Mk×r(S).
Then M [i⇂] for 1 ≤ i ≤ k denotes the submatrix of M consisting of its ith
row; M [⇂j] for 1 ≤ j ≤ r denotes the submatrix of M consisting of its jth
column; M [i⇂j] is the entry of M in the ith row and jth column; M [α⇂] for
α ⊂ {1, . . . , k} denotes the submatrix of M formed by the rows with index
in α; M [⇂β] for β ⊂ {1, . . . , r} denotes the submatrix of M formed by the
columns with index in β; M [α⇂β] for α ⊂ {1, . . . , k} and β ⊂ {1, . . . , r}
denotes the submatrix of M formed by deleting all rows with index not
listed in α and all columns with index not listed in β.
Greatest common left divisors of integral matrices are only defined up

to right invertible factors, hence greatest divisors can and will be assumed
to have positive determinant.
For background on almost completely decomposable groups we refer the

reader to the survey article [Mad95] or the monograph [Mad00].

2. Background and basic observations. Throughout, X denotes an
almost completely decomposable group. The standard description of such a
group is

X = A+
⇀
ZN−1a⇂

where A is a completely decomposable group,
⇀
Z is the set of all 1 × k

integral matrices, N is a non-singular k × k integral matrix, a⇂ is a k × 1
matrix of elements in A, and juxtaposition is matrix multiplication in the
usual fashion.
It may and will be assumed routinely that gcdA(N, a⇂) = I since any

non-trivial common divisor of N and a⇂ can be canceled. This implies that
X/A ∼=

⇀
Z/
⇀
ZN and [X : A] = detN . It may be assumed further, without loss

of generality, that N = diag(d1, . . . , dk) with 1 ≤ di−1 | di for i = 2, . . . , k.
In this case there is a clear description of the quotient X/A, namely

X/A = Z(d−11 a1 +A)⊕ . . .⊕ Z(d−1k ak +A), ord(d−1i ai +A) = di.

Any almost completely decomposable group can be obtained in this form.
The completely decomposable group A can be written as A = τ1v1⊕. . .⊕τrvr



214 A. MADER AND O. MUTZBAUER

(r for rank) where the τi are rational groups. We call V = {v1, . . . , vr} a
conditioned basis of A. Given a conditioned basis V of A we can write

ai = mi1v1 + . . .+mirvr,

and we obtain a coordinate matrix M = [mij ] such that a
⇂ =Mv⇂. The basis

V can be chosen such that M is an integral matrix, M ∈Mk×r(Z) ([FM92],
[DO93], [BM98a], [Mad00, Chapter 11]). Since X contains A as a subgroup
of finite index, there is a positive integer e such that eX ⊂ A. Given such
an e the conditioned basis V of A may be chosen to be e-conditioned , or
simply an e-basis, which means that for a prime divisor p of e, either τi
is p-divisible or gcdA(p, vi) = 1. This can be done in such a way that the
coordinate matrix M of a⇂ with respect to V remains integral.
From now on we assume that eX ⊂ A, V = {v1, . . . , vr} is an e-basis

of A, A = τ1v1 ⊕ . . . ⊕ τrvr, and a
⇂ = Mv⇂ for some coordinate matrix

M ∈ Mk×r(Z). If it so happens that gcd
A(p, vi) = 1 for all i ∈ {1, . . . , r}

and all prime divisors of e, then gcdA(N,Mv⇂) = gcld(N,M) ([BM98a,
Proposition 5.5], [Mad00, Corollary 11.3.4]). By gcld(N,M) we denote the
greatest common left divisor of the matrices N , M . It is a standard fact,
apparently known since the dawn of matrix theory, that the greatest com-
mon (left or right) divisor of two integral matrices (of compatible size) exists
and can be effectively computed by elementary matrix operations ([Mac46],
[BM98b], [BM98a], [Mad00, Section 11.2]). In the following we will restrict
ourselves to p-local almost completely decomposable groups, i.e. the case
where e is a p-power, say e = pd. In this case a p-divisible critical type
τi creates a p-divisible direct summand τivi of X and these summands are
uninteresting for most purposes. We therefore assume that the groups un-
der consideration are p-reduced , meaning that there are no non-trivial p-
divisible subgroups. In this situation a pd-basis V = {v1, . . . , vr} is the same
as a p-basis and it means that gcdA(p, vi) = 1 for each i, or equivalently,
1/p 6∈ τi.
The so-called Purification Lemma ([BM98a, Lemma 4.1], [Mad00, Lem-

ma 11.4.1]) will be a convenient and necessary tool. For easy reference we
state here the part that will be needed later.

Lemma 2.1 (Purification Lemma). Assume that A = B ⊕ C is an arbi-
trary torsion-free abelian group of arbitrary rank , a⇂ = b⇂+c⇂, where b⇂ ∈ B⇂

and c⇂ ∈ C⇂. Let

X = A+
⇀
ZN−1a⇂

be a finite essential extension of A with gcdA(N, a⇂) = I. Let NB =
gcdA(N, c⇂). Then NB is non-singular and

BX∗ = B +
⇀
ZN−1B b

⇂ with gcdA(NB, b
⇂) = I.
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3. Decomposition of rigid local almost completely decompos-

able groups: basics. The following simple but essential decomposition
result applies to rigid almost completely decomposable groups.

Lemma 3.2. Let X be any group with an indecomposable decomposition
and the property that every direct summand is fully invariant. Then the

indecomposable decomposition of X is unique.

Proof. Let X = X1 ⊕ . . .⊕Xm be an indecomposable decomposition of
X. Let X = Y ⊕ Z with Y indecomposable. Then, Y being fully invariant,
Y = (Y ∩X1)⊕ . . .⊕ (Y ∩Xk). Since Y is indecomposable we may assume
without loss of generality that Y ⊂ X1. But X1 is also fully invariant and
henceX1 = Y ⊕(X1∩Z). SinceX1 is indecomposable and Y 6= 0 we conclude
that X1 = Y . Hence the summands of two indecomposable decompositions
must be pairwise equal.

The decompositions of certain p-local crq-groups are a simple and canon-
ical matter and the promising start of an inductive procedure. Recall first
that a group is clipped if it has no completely decomposable summand, and
that every almost completely decomposable group X has a decomposition
X = Xcd⊕Xcl such thatXcd is completely decomposable and Xcl is clipped,
that the summand Xcd is unique up to isomorphism, and the summand Xcl
is unique up to near-isomorphism. This is the so-called Main Decomposition
of X ([MV95, Theorem 2.3], [Mad00, Theorem 9.2.7]).

Lemma 3.3. Let X be a finite essential extension of a completely de-
composable group A by a p-primary cyclic group, i.e., X is torsion-free and
contains A such that X/A is a cyclic p-group. Assume that X has a regu-
lating regulator. If X = Xcd ⊕Xcl is the Main Decomposition of X, then
Xcl is indecomposable.

Proof. We first show that X/R(X) is also a cyclic p-group. Since X has
a regulating regulator, we have R(X) =

∑

̺∈Tcr(X)
X(̺) = Xcd ⊕ R(Xcl).

Because A has finite index in X, we have A(τ) = A ∩X(τ) for any type τ
and

X(τ)

A(τ)
=
X(τ)

A ∩X(τ)
∼=
A+X(τ)

A
≤
X

A
.

It follows that A ⊂ R(X) and X(τ) = A(τ)X∗ . Hence X/A maps epimor-
phically onto X/R(X) ∼= Xcl/R(Xcl) and these isomorphic groups are also
p-primary and cyclic. Every direct summand Y of X has a regulating regu-
lator as well. Suppose that Xcl = Y ⊕ Z. Then R(Xcl) = R(Y )⊕R(Z) and
hence

Xcl
R(Xcl)

=
Y

R(Y )
⊕
Z

R(Z)
.
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Since Xcl/R(Xcl) is p-primary and cyclic, either Y/R(Y ) = 0 or Z/R(Z)
= 0. Suppose without loss of generality that Y = R(Y ). Then Y is com-
pletely decomposable and since Xcl is clipped, Y must be zero. Thus Xcl is
indecomposable.

A torsion-free group is block-rigid if its critical typeset is an antichain. If
X is a p-local cyclic essential extension of a block-rigid completely decom-
posable group given in a standard description, then one can read off whether
the group is clipped (equivalently, indecomposable). The following result is
included for the sake of completeness and easy reference.

Lemma 3.4. Let A = τ1v1⊕ . . .⊕τrvr be a block-rigid completely decom-
posable group and a = m1v1+ . . .+mrvr ∈ A for integers mi. Furthermore,
let p be a prime and d a positive integer.

(1) Assume that X = A + Zp−da is clipped. Then A is rigid , pτi 6= τi,
and gcd(pd,mi) < p

d.

(2) Assume that A is rigid , gcdA(p, vi) = 1, and gcd(p
d,mi) < p

d. Then

X = A+ Zp−da is clipped and indecomposable.

Proof. (1) It is well known and easy to see that A must be rigid and
that no critical type can be p-divisible. It is even simpler to see that τivi is
a direct summand of X if mi is divisible by p

d.

(2) The subgroup τivi is a direct summand of X if and only if X = τivi⊕
(
⊕

j 6=i τjvj)
X
∗ . This is the case if and only if [(

⊕

j 6=i τjvj)
X
∗ : (
⊕

j 6=i τjvj)]

= pd. By the Purification Lemma this is equivalent to gcdA(pd,mjvj) =

pd. The hypothesis that gcdA(p, vs) = 1 implies that gcd
A(pd,mjvj) =

gcd(pd,mj) and by the second hypothesis gcd(p
d,mj) 6= p

d. Hence X is
clipped and therefore indecomposable by Lemma 3.3.

4. Decomposition of rigid local almost completely decompos-

able groups: algorithms. We wish to study direct decompositions of a
rigid p-local almost completely decomposable group X. In order to eliminate
an obvious completely decomposable direct summand we assume that X is
p-reduced, meaning that X has no non-trivial p-divisible subgroups. The
problem of finding the unique indecomposable decomposition of X amounts
to studying partitions

(4.5) Tcr(X) = T1 ∪ . . . ∪ Tn

with the property that

(4.6) X =
n
⊕

i=1

(

⊕

̺∈Ti

X(̺)
)X

∗
.
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For convenience we will call such a partition a decomposition partition of X.
Eventually we need to find the unique indecomposable decomposition parti-
tion for which each summand (

⊕

̺∈Ti
X(̺))X∗ is indecomposable. Listing all

the partitions of Tcr(X) is a finite albeit lengthy task. It is then necessary
to test a given partition for being a decomposition partition of X. When
we do this, the particular structure of X must come into play and some
representation of the group must be assumed upon which a procedure can
be based. We only assume that X is a finite essential p-primary extension
of a rigid completely decomposable group A. Then A =

⊕

̺∈Tcr(X)
A(̺),

A(τ) = A ∩ X(τ), and X(τ) = A(τ)X∗ . We can now say that (4.5) is a
decomposition partition of X if and only if

(4.7)
n
∏

i=1

[(

⊕

̺∈Ti

A(̺)
)X

∗
:
(

⊕

̺∈Ti

A(̺)
)]

= [X : A].

In order to compute the indices in (4.7) further specifications are necessary.
Naturally we assume that the group X is given in standard description:

(4.8)

X = A+
⇀
ZN−1Mv⇂, A = τ1v1 ⊕ . . .⊕ τrvr,

V = {v1, . . . , vr} is a p-basis of A, i.e., gcd
A(p, vi) = 1,

N = diag(pd1 , . . . , pdk) with 1 ≤ d1 ≤ . . . ≤ dk =: d,

M ∈Mk×r(Z), and gcd
A(N,Mv⇂) = I.

Under these conditions gcdA(N,Mv⇂) = gcld(N,M) and the greatest com-
mon divisor can be computed by column reduction of the augmented matrix
[N |M ] ([BM98a, Theorem 3.3], [Mad00, Section 11.2]). The Purification
Lemma now provides a criterion for testing partitions of Tcr(X) for being
decomposition partitions. In fact, (4.5) is a decomposition partition of X if
and only if

(4.9) (detN1) . . . (detNn) = detN where

Ni = gcld(N,M [⇂{1, . . . , r} \ Ti]).

Note that A need not be the regulator ofX and that the Purification Lemma
works in this less restricted situation. The indecomposable decomposition
partition is found when the summands have no proper decomposition par-
titions.

We will first deal with the case of uniform groups treated by Dugas–
Oxford ([DO93]). This is, by definition, the case d := d1 = . . . = dk. It was
shown in [DO93] and [MMN00] that in case N = pdIk is a scalar matrix it
may be assumed that M is of the form
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M = [E|F ],(4.10)

E =







1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1






, F =







m1,k+1 . . . m1r
m2,k+1 . . . m2r
. . . . . . . . .
mk,k+1 . . . mkr






.

In the following we do not need that N is a scalar matrix, but we do
need the special form (4.10) of M . So let N = diag(pd1 , . . . , pdk) as before.
To simplify the discourse we note that each row of the coordinate matrixM
determines and corresponds to a generator of X, namely the generator

xi = p
−di(vi +mi,k+1vk+1 + . . .+mirvr),

and we call supp(i) = {τj : mij 6≡ 0 mod p
di} the support of xi or of the ith

row M [i⇂] of M . We can write

xi = p
−di
∑

{mijvj : τj ∈ supp(i)}+
∑

{p−dimijvj : τj 6∈ supp(i)},

where
∑

{p−dimijvj : τj 6∈ supp(i)} ∈ A. Thus xi can be replaced by
xi −

∑

{p−dimijvj : τj 6∈ supp(i)}, so that we may assume without loss
of generality that τj 6∈ supp(i) if and only if mij = 0.
The following theorem contains the observations that lead to an efficient

determination of the decomposition partition of X.

Theorem 4.11. Let A = τ1v1 ⊕ . . .⊕ τrvr be a rigid completely decom-
posable group and p a prime such that 1/p 6∈ τi for each i. Assume that

X = A+
⇀
ZN−1Mv⇂ with

N=diag(pd1 , . . . , pdk), M=







1 0 . . . 0 m1,k+1 . . . m1r
0 1 . . . 0 m2,k+1 . . . m2r
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 mk,k+1 . . . mkr






.

Then the following hold :

(1) For i ∈ {1, . . . , k}, the group Li := (
⊕

{τjvj : τj ∈ supp(i)})
X
∗ is

pure, fully invariant in X, and a cyclic extension of Ai =
⊕

{τjvj : τj ∈
supp(i)} as follows:

Li = Ai + Zp−di
(

vi +
∑

{mijvj : τj ∈ supp(i), j > k}
)

.

(2) The subgroups Li are indecomposable, and the indecomposable par-
tition of X is the finest partition Tcr(X) = T1 ∪ . . . ∪ Tn with the property
that for each i ∈ {1, . . . , k} there is j ∈ {1, . . . , n} such that supp(i) ⊂ Tj .

Proof. (1) We use the Purification Lemma to compute the purifica-
tion Li. Accordingly, the greatest common divisor gcld(diag(p

d1 , . . . , pdk),
M [⇂Tcr(X) \ supp(i)]) must be computed. This is done by reducing the
augmented matrix



DIRECT DECOMPOSITIONS OF UNIFORM GROUPS 219

[diag(pd1 , . . . , pdk) |M [⇂Tcr(X) \ supp(i)]

to column reduced form. The augmented matrix contains the columns of the
identity matrix except for its ith column. In row i all entries are divisible by
pdi . It is clear that the augmented matrix reduces by column transformations
to (zero columns omitted)















1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . pdi . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1















← row i

The claim follows from the Purification Lemma by omitting redundant gen-
erators.
(2) The subgroup Li is indecomposable by Lemma 3.3 and fully invariant

in X. Note that

(4.12) X =
⊕

{

τjvj : τj 6∈
⋃

i

supp(i)
}

⊕
k
∑

j=1

Lj .

Let X = X1 ⊕ . . . ⊕Xn be the indecomposable decomposition of X. Then
Li = Li ∩ X1 ⊕ . . . ⊕ Li ∩ Xn and since Li is indecomposable, there is
j ∈ {1, . . . , n} such that Li ⊂ Xj . Hence the groups Li are distributed over
the indecomposable summands Xj in some way. If Xj contains no group
Li, then the critical type(s) of Xj is outside

⋃

i supp(i) and therefore Xj
is one of the summands of

⊕

{τjvj : τj 6∈
⋃

i supp(i)}. If Xj does contain
certain groups Li, then Xj =

∑

{Li : Li ⊂ Xj} by (4.12). The claim is now
clear.

The following MAPLE V program implements an algorithm for finding
the decomposition partition, hence the indecomposable decomposition of
a rigid uniform group. We first observe that we only need to distinguish
between entries of M [i⇂] divisible by pdi and entries not divisible by pdi .
Replacing the entries of row i divisible by pdi by 0 and those not divisible
by pdi by 1, we obtain a (0, 1)-matrix, again called M . In the procedure
findec row i of the (0, 1)-matrixM is multiplied by i to obtain a matrix L.
Initially the value of findec is set to [0, . . . , 0] meaning that initially each
τivi is allowed to be in a different summand of X. By successively adding
rows of the matrix L to findec one can tell whether there is an overlap of the
supports of the current row i with previous rows. If so the value i replaces
previous values indicating that the ith row placed certain critical types into
one part of the decomposition partition. The first procedure diag1tok is
called by the main program findec. We will explain the procedure below
with an example.
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##############################################################

# Create a k by k diagonal matrix with diagonal entries 1,...,k

##############################################################

diag1tok := proc(k)

local diag1tok, i, j;

diag1tok := matrix(k,k):

for i from 1 to k

do

for j from 1 to k

do

if i<>j then diag1tok[i,j] := 0

else diag1tok[i,j] := i

fi;

od;

od;

diag1tok;

end;

##############################################################

# Procedure to determine the direct decomposition of a group

# with a (0,1)-representing matrix M = [I|F] of size k x r.

# The output is a list of non-negative integers 0,1,...,k of size r.

# 0 in position j means that tau j v j is a direct summand.

# i > 0 means all tau j v j marked by the entry i belong to the same

# indecomposable summand.

##############################################################

findec := proc(M)

local findec, k, r, L, i, entries, j, s;

k := rowdim(M); # row dimension

r := coldim(M); # column dimension

L := multiply(diag1tok(k),M);

findec := matrix(1,r,0); # list of zeros

for i from 1 to k

do

findec := matadd(findec,submatrix(L,i..i,1..r));

findec; # see result

entries := convert(findec,set);

for j from i+1 to 2*i-1

do

if member(j,entries) then

for s from 1 to r

do

if findec[1,s] = j-i or findec[1,s] = j
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then findec[1,s] := i fi;

od;

fi;

od;

od;

findec;

end;

We will now execute the procedure on an example. Let

M =











1 0 0 0 0 0 0 1 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1











.

The matrix M has k = 5 rows and r = 12 columns. Let X(M) denote the
rigid group belonging to M . The matrix L is obtained by multiplying row i
of M by i:

L =











1 0 0 0 0 0 0 1 1 1 1 0
0 2 0 0 0 2 2 0 0 0 0 0
0 0 3 0 0 0 0 3 0 3 3 0
0 0 0 4 0 4 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 5











.

The initial value of findec is

findec = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The interpretation is that the critical typeset is partitioned into singletons.
The i-loop starts with i = 1 . The first row of L is added to findec to
produce

findec = [1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0] with entries = {0, 1}.

The j-loop runs from j = i + 1 = 2 to j = 2i − 1 = 1, hence nothing is
executed. So far the decomposition partition consists of seven singletons and
the set {τ1, τ8, τ9, τ10, τ11}.

Next i = 2 . The value of findec becomes

findec = [1, 2, 0, 0, 0, 2, 2, 1, 1, 1, 1, 0] with entries = {0, 1, 2}.

The only value of the j-loop is j = 3, which is not one of the entries and
the value of findec is not changed.

i = 3 . Then

findec = [1, 2, 3, 0, 0, 2, 2, 4, 1, 4, 4, 0] with entries = {0, 1, 2, 3, 4}.

The j-loop starts with j = i+ 1 = 4, which is one of the entries. It signals
that there is an overlap of supports of the first and third row of M . The
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values j − i = 1 and j = 4 in findec are replaced by i = 3 to produce

findec = [3, 2, 3, 0, 0, 2, 2, 3, 3, 3, 3, 0].

The second and last value j = 5 is not an entry, so nothing more is done. At
this point the decomposition partition consists of three singletons, {τ1, τ3, τ8,
τ9, τ10, τ11}, and {τ2, τ6, τ7}.

i = 4 . Then

findec = [3, 2, 3, 4, 0, 6, 2, 3, 3, 3, 3, 0] with entries = {0, 2, 3, 4, 6}.

The j-loop starts with j = i + 1 = 5, which is not one of the entries. The
next value j = 6 is an entry and the values j − i = 2 and j = 6 in findec
are replaced by i = 4 to produce

findec = [3, 4, 3, 4, 0, 4, 4, 3, 3, 3, 3, 0].

The third and last value j=6 is not an entry, so nothing more is done. Now
the decomposition partition consists of two singletons, {τ1, τ3, τ8, τ9, τ10, τ11},
and {τ2, τ4, τ6, τ7}.

i = 5 . Then

findec = [3, 4, 3, 4, 5, 4, 4, 3, 3, 3, 3, 5] with entries = {3, 4, 5}.

The j-loop starts with j = i+1 = 6 and ends with j = 2i− 1 = 9 and none
of these is an entry, so the final value and output of the procedure is

findec = [3, 4, 3, 4, 5, 4, 4, 3, 3, 3, 3, 5],

which says that the group X(M) has the indecomposable decomposition

X(M) = (τ1v1 ⊕ τ3v3 ⊕ τ8v8 ⊕ τ9v9 ⊕ τ10v10 ⊕ τ11v11)
X
∗

⊕ (τ2v2 ⊕ τ4v4 ⊕ τ6v6 ⊕ τ7v7)
X
∗ ⊕ (τ5v5 ⊕ τ12v12)

X
∗ .

Using the random matrix generator of MAPLE V we produced representing
matrices of the form M = [I |F ] ∈ Mk×r({0, 1}) where I is the identity
matrix of size k, and computed the proportion of indecomposable groups
among these. The following table contains the results.

k 5 5 5 5 5 5 5 5
r 6 7 8 9 10 15 20 20
No. of groups 100 100 100 100 100 100 100 200
No. of indecomposables 2 25 36 56 77 79 59 119

It appears that the highest probability of indecomposable groups (around
80%) is obtained for rank 15 when X/A has 5 generators. The generators of
X/A may be viewed as clamps that hold blocks (summands) of A together.
One would therefore expect that the probability of generating indecompos-
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able groups increases with increasing numbers of generators of X/A. This is
confirmed empirically by the next table.

k 10 10 10 10 10 10 10 10 10 10
r 12 14 16 20 30 40 50 100 150 200
No. of groups 50 50 50 50 50 50 50 50 50 50
No. of indecomposables 4 26 44 49 49 49 50 48 42 42

Question 4.13. What is the probability that a randomly chosen (0, 1)-

matrix F results in an indecomposable group X = A+
⇀
ZN−1[Ik|F ]v

⇂?

The following theorem displays another method for decomposing a rigid
group that is based on concepts and results from [MM00]. We will omit
proofs but some notation is needed. By a “line” of a matrix we mean either
a row or a column.

A (0, 1)-matrixM is said to be in block diagonal form or a block diagonal
matrix if M = diag(M1, . . . ,Mk) where the blocks Mi are rectangular and
all entries outside of the blocks are 0. A (0, 1)-matrix M , not of size 1
by 1, without 0-lines, is said to be indecomposed if it has only the trivial
block diagonal form, i.e., M = diag(M). A (0, 1)-matrix of size 1 by 1
is indecomposed by convention. (0, 1)-matrices with 0-lines are considered
decomposed.

A matrix A is permutation equivalent to a matrix B if there are per-
mutation matrices P , Q, such that A = PBQ. A (0, 1)-matrix is called
indecomposable if it is not permutation equivalent to a decomposed matrix.
The supportM∗ of the (0, 1)-matrixM is the submatrix obtained by deleting
all 0-lines of M . A (0, 1)-matrix M is called totally decomposed if its sup-
port M∗ = diag(M1, . . . ,Mk) is a block diagonal matrix with all blocks Mi
indecomposable.

There are total decompositions of (0, 1)-matrices relative to permutation
equivalence, i.e., block diagonal forms of the support such that the diagonal
blocks are indecomposable. It is shown in [MM00] that the size of the inde-
composable diagonal blocks of those total decompositions are unique up to
rearrangements of the diagonal blocks.

With each matrix M = [mij ] over some ring we associate a (0, 1)-
matrix M ′ = [m′ij ] by agreeing that m

′
ij = 1 if mij 6= 0 and m

′
ij = 0

otherwise. The original matrix M is called decomposed , decomposable, etc.,
if the corresponding matrix M ′ has the respective properties. Since block
decompositions are only rearrangements of rows and columns we are allowed
to take tacitly the corresponding (0, 1)-matrix M ′ instead of the matrix M .

Theorem 4.14. Let d1, . . . , dk be natural numbers. Let A = τ1v1 ⊕ . . .
. . . ⊕ τrvr be a rigid completely decomposable group and p a prime such
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that 1/p 6∈ τi for each i. Assume that X = A +
⇀
ZN−1[E |M ]v⇂ with

N = diag(pd1 , . . . , pdk) and unit matrix E. Then the group X is directly
decomposable if and only if the matrix M is decomposable. Moreover , the
block diagonal structure of the permutation equivalence class of M displays
the finest decomposition of X. More precisely , let diag(B1, . . . , Bh) repre-
sent the finest diagonal block structure of the permutation equivalence class

of M , where Bi is of size mi by ni. Then a finest direct decomposition of X
has the form X =

⊕h
i=1Xi, where rk(Xi) = mi+ni. The regulator quotient

of Xi has rank mi.

A matrix with entries in {0, 1} is called doubly ordered if both its rows
and its columns are in the lexicographic order determined by 1 > 0. In
[MM00] it is shown that it is enough to double order the matrix M ′ in
order to obtain the matrix with the finest diagonal block structure in the
permutation equivalence class of M . There are fast algorithms that double
order a matrix.

The matrix M above can be doubly ordered manually by first arranging
the columns according to order, then the rows, and then one more time the
columns. This produces the doubly ordered matrix











1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1











.

The block structure of this matrix shows that the group X corresponding to
M has an indecomposable decomposition into indecomposable summands of
rank 6, 4, and 2 as before. Without keeping track of the column exchanges,
the precise decomposition cannot be told.

We have not tried to analyse the two algorithms (findec, double order-
ing) by way of quantitative efficiency. Double ordering does more than just
finding decompositions and therefore is likely to require more computer re-
sources. On the other hand, findec uses MAPLE which obscures its actual
workings. Our interest was in finding quick and reliable ways to obtain de-
compositions and indecomposable groups for testing and finding theoretical
results.
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