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HYERS-ULAM STABILITY
FOR A NONLINEAR ITERATIVE EQUATION

BY

BING XU and WEINIAN ZHANG (Chengdu)

Abstract. We discuss the Hyers—Ulam stability of the nonlinear iterative equation
G(f™ (x),..., ™ (x)) = F(x). By constructing uniformly convergent sequence of func-
tions we prove that this equation has a unique solution near its approximate solution.

1. Introduction. When we consider a functional equation
(1.1) Ei(h) = Ex(h)

and know a function g which is an approzimate solution of (1.1), i.e., F1(g)
and Fs(g) are close in some sense, we may ask whether a solution f of (1.1)
exists near g. As in [3], we say equation (1.1) satisfies Hyers—Ulam stability
if for every function g such that

(1.2) 1E1(g) — Ex(g9)] <0
for some constant 0 > 0, there exists a solution f of (1.1) such that
(1.3) If =gl <e

for some positive constant £ depending only on §. Sometimes we say g is a
d-approzimate solution of (1.1) and f is e-close to g.

Such a problem was raised first by S. M. Ulam in 1940 and solved for
the Cauchy equation by D. H. Hyers [5] in 1941. Later, many papers on
the Hyers—Ulam stability have been published, generalizing Ulam’s problem
and Hyer’s theorem in various directions (see, e.g., [2], [3], [9] and [10]). For
instance, the problem of Hyers—Ulam stability is studied by Borelli [1] for
Hossz’s functional equation, Ger and Semrl [4] for the exponential equation,
Jun, Kim and Lee [6] for the gamma functional equation and beta functional
equation, Nikodem [8] for the Pexider equations, and Székelyhidi [15] for the
sine functional equation and cosine functional equation.
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The iterative equation

(1.4) G(f™ (@), .., [™(2)) = F(z)

is an important functional equation where x € I, a subset of a Banach space
X, F:I—Iisagiven map, f: I — I is an unknown map, f* denotes the
ith iterate of f, i.e., fO(z) = x and f*!(z) = f(f(x)) for all z € I and all
1=0,1,2,..., and n;,i = 1,...,k, are positive integers. For linear G, i.e.,
Gy, ,yk) = Zle Aiyi, many results have been given (e.g. [7], [11], [16],
[17], and [18]) on existence, uniqueness, continuous dependence, smoothness
and analyticity of solutions on I = [a,b]. For general G, some results are
given in [12]-[14] under the basic hypotheses:

(H1)  G:I*=Ix...xI—1Iis continuous, G(a,...,a)=a, G(b,...,b)=b;

(H2) there exist constants B; > 0,4 =1,...,k, such that
k
(1.5) Glyse o vm) = Gty 2) < S Bilyi — )
i=1
ify, > z,i=1,...,k;
(H3) n1 = 1 and there exist constants C; >0, C; > 0,7 =2,...,k, such
that
k
(16) G<y17'-'7yk)_G(zlv"'7 Z _Z”L
ifinZi,izl,...,ki. -

In this paper we further discuss the Hyers—Ulam stability of equation
(1.4) on I = [a,b] under the hypotheses (H1) and

(H2')  there exist constants B; > 0,4 =1,...,k, such that

(1.7) Gy, yk) — G(z1,...,2 ]<ZB|yZ— Z

ify,zzel,i=1,...k
(H3")  there exist constants C; >0, C; > 0, i = 2,. k such that

(18) G(ylv-"vyk)_G(zlv"'v )>Ol yl_zl ZC|%— Zi
ify,zzel,i=1,...,kand y; > 21.

Our requirements are much weaker than (H2)-(H3) in [1 ] because
(H2")~(H3') allow G not to be monotonic, for example, G(y1,y2) = Sy1—3y3.
By constructing a uniformly convergent sequence of functions we prove that
there is a unique solution of (1.4) near an approximate solution.
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2. Some lemmas. Let C(I) consist of all continuous functions on I.
Then C(I) is a Banach space equipped with the norm || f|| = maxgzer | f(2)]-
We can imitate [16] and [18] to prove the following lemma but do not need
to require that f and g be both Lipschitzian as in [16] and [18].

LEMMA 2.1. Suppose that f,g : I — I are continuous mappings and
Lip(f) < M where M is a positive constant. Then

k-1
k k j
(2.9) I/ =g <> MIlf—gll, VE=1,2,...
j=0
Furthermore we need the following two lemmas to construct a certain
convergent sequence of functions.

LEMMA 2.2. Suppose that P : I — I is a Lipschitzian mapping firing
the end-points of I with Lip(P) < M where M > 0 is a constant. If the
reals Cy, j = 1,...,k, satisfy C1 > Zsz C;M™~1 then the function LP
defined by
(2.10) LP(z) = G(P" (z),..., P (z))

is an orientation-preserving homeomorphism of I onto itself, and
k
(2.11) Lip((LP)~!) < 1/(01 -3 CiM"i‘1>.
i=2

' Proof. Clgarly, P — I is alsQ a Lipschitzian mapping such that
P'(a) = a, P"(b) = b and Lip(P*) < M",i = 2,3,..., so by hypothesis (H1),
LP(a) =a, LP(b) = b. Let

k
(2.12) §=C1—> CM™!
=2

for short. For any x1,x2 € I with z9 > z1,
(2.13) LP(x2) — LP(x1)
= G(P”l_l(xg), ey P”k_l(xg)) — G(P”l_l(xl), .. ,P”k_l(xl))

k
> Oy (P () = PN (1)) = Y Gil P (o) — P ()|
=2

k
> Ol(IL’Q — :L’l) — (.CCQ — :L’l) ZC@M"iil > f(mg — 3:1) > 0,
i=2
since n; = 1. This implies that LP is strictly increasing and invertible on
I. Thus LP is an orientation-preserving homeomorphism of I onto itself.
Moreover, (2.11) follows from (2.13) immediately. m
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LEMMA 2.3. Suppose that Py, F : I — I are both Lipschitzian mappings
fizing the end-points of I such that Lip(Py) < M and Lip(F) < My for
positive constants M and My. If the reals Cj, 7 = 1,...,k, satisfy C1 >
Mo/M + 3%, CiM™=1, then both

(2.14) LPy_1(z) := G(PM M (2),..., P (2))
and
(2.15) P, :=(LP;_)) loF

are well defined and Py : I — I is a Lipschitzian mapping fizing the end-
points of I with Lip(Py) < M, k=1,2,...

Proof. By Lemma 2.2, LPy(x) := G(Py* *(x),..., Pg”“_l(:n)) is well de-
fined and maps I onto itself homeomorphically with LPy(a) = a, LPy(b) = b
and Lip((LPy)~1) < 1/€, where ¢ is defined in (2.12). Thus Pi(z) :=
(LPy)~'oF(x) is meaningful and Pi(a) = a, P1(b) = b. Moreover, Lip(P;) <
Lip((LPy)™1) - Lip(F) < (1/€§)Mo < M, by the assumptions on Cj.

For the inductive proof we assume that the conclusion of Lemma 2.3 is
true for the integer k. By Lemma 2.2, LPy(x) := G(Plg”*l(x), e P,?’“_l(:n))
is also well defined and maps I onto itself homeomorphically with LPy(a)
= a, LP;(b) = b and Lip((LP;)~!) < 1/¢. Similarly we see that Pyyq(7) :=
(LP,)~ o F(z) is also meaningful and Py1(a) = a, Py,1(b) = b. Moreover,
Lip(Pyy1) < Lip((LPy)™!) - Lip(F) < (1/6)My < M. This implies that the
conclusion of Lemma 2.3 is also true for k + 1 and completes the proof of
Lemma 2.3. u

3. Main result

THEOREM. Suppose that equation (1.4) satisfies the hypotheses (H1),
(H2") and (H3') and that F : I — I is a Lipschitzian mapping fizing the
end-points of I with Lip(F) < My for a positive constant My. If g : I — I
is a Lipschitzian mapping fixing the end-points of I with Lip(g) < M such
that
(3.16) F(2) = G(g™ (2., g™ (x))| <6, Vael,
for a constant § > 0, then there exists a unique continuous solution f : I — I
of equation (1.4) such that

(3.17) |f(@) —g(@)| <~d, Vel

where
k n;—2 k n;—2

Y= (C1 — iCiM”i_l _maX{ZCZ, Z MY, ZBz’ Z Mj}>_17
i=2 J=0 i=2 §=0

=2
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provided
k k TLZ'—Q k TLZ'—Q
(3.18) C1>Y CM™ ' fmax {MO/M, Sa Y M, Y B Y MJ}.
=2 1=2 7=0 =2 7=0

This Theorem implies that equation (1.4) satisfies Hyers—Ulam stability
if the constants in (1.7) and (1.8) satisfy (3.18).

In this Theorem we free both F' and f from the requirement of increasing
monotonicity, which were imposed in [12]-[14]. So the form of equation in
this paper is more general. Additionally, unlike [16] and [12] we do not
restrict our discussion to the subset
(3.19) X(L;0,M):={f:I—1] f(a)=a, f(b)=0,

0 < f(x2) — f(x1) < M(x9 — x1), Va1,29 € I With x9 > 21}

For example, for

2z, nggi,

_ 1, .5 1 5
Fla)=q —3z+35, <23,
16—11'—%, %<x§1,

consider the equation
21 1
2 — - —
(3200 (@) - 5

Let G(ylayQ) = %yl - %yg So, G(an) =0, G(]-a]-) =1 1If Yi, zi € I,
i1 =1,2, we have

(f*(2))* = F(z), zel=]0,1].

21 1
(3.21)  |G(y1,92) — G(21,22)] < %|y1 — 21|+ %|y2 + 22| - |y2 — 22|

< E\?/1 — 21| + i|y2 — 29].
— 20 10
Moveover, if y; > 21, we have
(3:22)  Glunw) ~ Glar ) 2 oy — =1) — 15lue — 2l
Thus the hypotheses (H1)-(H2') and (H3') are satisfied, where C; = 3+ and
Coy = %. Clearly, the function

3 5
£, 0<z< 3,
g(x) =14 > . °

3r—2, 2 1

satisfies the inequality

F) - (o) - (@) )| <038
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i.e., g is a d-approximate solution where § = 0.343. Clearly Lip(F') = 2 and
Lip(g) = 3. We can check that condition (3.18) is satisfied. By our Theorem,
equation (3.20) satisfies Hyers—-Ulam stability.

4. Proof of Theorem. For simplicity, we apply the notation £ as in
(2.12) and

k n;—2 n; —2
(4.23) n:maX{ZC 3 M, ZB ZMJ}
=2 7=0 =2 7=0

Construct a sequence { Px(x)} of functions as follows. Take Py(x) = g(x)
first and then define Py(x) by (2.15) inductively. By Lemma 2.3, both
LPy_1(x) and Py(x) are well defined for £ > 1. Lemmas 2.2 and 2.3 also im-
ply that Py(a) = a, Py(b) = b, Lip(Px) < M and that LPj is an orientation-
preserving homeomorphism of I onto itself with Lip((LP;)~1) < 1/¢.

Now we claim that

k—1

(4.24) |Pu() — Py ()] < %(g) 5
k

(4.25) |F(z) — LPy o Py(x)] < <g> s,

forallz € I and k =1,2,...

First (4.24) and (4.25) are obvious when k£ = 1. Assume that they are
true for the integer k. Then

(4.26)  [Piga(z) — Py()| = [(LPy) ™" o F(z) — (LPy) ™" o (LFy) 0 P(z))|

|F(2) = (LPg) o Py()]
(1)

(4.27)  F(z) — LPyy1 0 Pyt ()
= G(Pey1(z), P> ' o Peya(2),..., P{* " 0 Pryr ()
— G(Pyi(2), P2 (), P/?ﬁ( z))
K

> =y clppt-prT = - Z C;M™ Py, — Pyl
=2 =2

IN

IN

1
3
1
£

by (4.25). Moreover,

by (1.8), and
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(4.28)  F(z) — LPgt1 0 Py ()
= G(Pk;—H( ) Pn OPk_H(CC) ng_loPk+1(:C))
— G(Pya(z), P2 (), P/?L( z))
k

<> BilPT -prTY < Z BiM" '|P, — Pyl
=2 =2

by (1.7). It follows that

(4.29)  [F(x) — LPyt1 0 Peya ()]
k n;—2 k -2

< |P, —Pk+1|max{ZC’Z Y M, Y B Z MJ}
2

i=2 j=0 i= Jj=0

k k+1
<ee) o) = (&)
E\¢ £
by hypotheses (H2')—(H3") and (4.26). Thus (4.24) and (4.25) are proved by

induction.
For any positive integers k and s with k& > s,

(4.30)  [Pe(z) — Ps(2)| < |Pe(w) — Pe—1(z)| + [Pr-1(z) — Pr—2(2)]
+ oo+ [Psya(z) — Po()]

(e o)) oeri(e)
_ 5 (/&) — (/o)

3 L—n/&
by (4.24). Note from (3.18) that & > 7. It follows from (4.30) that

<

(4.31) |Pr(z) — Ps(z)] = 0 ask>s— .

As a Cauchy sequence, {Py(z)} converges uniformly in the Banach space
C(I). Let
(4.32) lim Py(z) = f(z).

k—o00

Clearly, f : I — I is also a Lipschitzian mapping with Lip(f) < M. From
(4.25),

(4.33) |[F(2) = Lf o f(z)| = lim |F(z) — LPy o Py(z)|
< lim (3/€)"6 =0,

i.e., f is a solution of equation (1.4). Furthermore, from (4.24),
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(434)  |f(x) - g(a)| = lim |Py(z) — Po(a)
< lim {|Pi(@) = Pit(2)] + [Py (2) = Pea(a)

+...+|Pi(z) — Py(x)|}

. 1 n k—1 1<n>k‘—2 1 } 1
—| = 0+ = = O+...+=6p,=—0.
SJE&{&(&) Tele) 0Tt —

This proves (3.17).

Concerning uniqueness, we assume that there is another continuous so-
lution ¢ : I — I for equation (1.4), which may not be Lipschitzian, such
that

[¢(z) —g(x)] <e

where € > 0 only depends on §. Then

(4.35) G(f™(x),..., " (x)) = G(¢" (x),...,¢"(z)).
It follows from Lemma 2.1 and hypothesis (H3") that

k
(4.36) Cr(f™ () = ¢" () = D Cil f™(z) — ¢™i ()| <0
=2

that is,
k n;—1

(4.37) (cl Say Mj> If — ¢l < 0.
i=2 =0

However, Cq > Zf:Q Ci Z;L;Bl M7 by (3.18). This implies that || f — ¢|| = 0,
e, f=d.
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