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HYERS–ULAM STABILITY

FOR A NONLINEAR ITERATIVE EQUATION

BY

BING XU and WEINIAN ZHANG (Chengdu)

Abstract. We discuss the Hyers–Ulam stability of the nonlinear iterative equation
G(fn1(x), . . . , fnk (x)) = F (x). By constructing uniformly convergent sequence of func-
tions we prove that this equation has a unique solution near its approximate solution.

1. Introduction. When we consider a functional equation

E1(h) = E2(h)(1.1)

and know a function g which is an approximate solution of (1.1), i.e., E1(g)
and E2(g) are close in some sense, we may ask whether a solution f of (1.1)
exists near g. As in [3], we say equation (1.1) satisfies Hyers–Ulam stability
if for every function g such that

‖E1(g)− E2(g)‖ ≤ δ(1.2)

for some constant δ ≥ 0, there exists a solution f of (1.1) such that

‖f − g‖ ≤ ε(1.3)

for some positive constant ε depending only on δ. Sometimes we say g is a
δ-approximate solution of (1.1) and f is ε-close to g.

Such a problem was raised first by S. M. Ulam in 1940 and solved for
the Cauchy equation by D. H. Hyers [5] in 1941. Later, many papers on
the Hyers–Ulam stability have been published, generalizing Ulam’s problem
and Hyer’s theorem in various directions (see, e.g., [2], [3], [9] and [10]). For
instance, the problem of Hyers–Ulam stability is studied by Borelli [1] for
Hosszú’s functional equation, Ger and Šemrl [4] for the exponential equation,
Jun, Kim and Lee [6] for the gamma functional equation and beta functional
equation, Nikodem [8] for the Pexider equations, and Székelyhidi [15] for the
sine functional equation and cosine functional equation.
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The iterative equation

G(fn1(x), . . . , fnk(x)) = F (x)(1.4)

is an important functional equation where x ∈ I, a subset of a Banach space
X, F : I → I is a given map, f : I → I is an unknown map, f i denotes the
ith iterate of f , i.e., f0(x) = x and f i+1(x) = f(f i(x)) for all x ∈ I and all
i = 0, 1, 2, . . . , and ni, i = 1, . . . , k, are positive integers. For linear G, i.e.,
G(y1, . . . , yk) =

∑k
i=1 λiyi, many results have been given (e.g. [7], [11], [16],

[17], and [18]) on existence, uniqueness, continuous dependence, smoothness
and analyticity of solutions on I = [a, b]. For general G, some results are
given in [12]–[14] under the basic hypotheses:

(H1) G:Ik=I× . . .× I→I is continuous, G(a, . . . , a)=a, G(b, . . . , b)=b;

(H2) there exist constants Bi ≥ 0, i = 1, . . . , k, such that

(1.5) G(y1, . . . , yk)−G(z1, . . . , zk) ≤

k
∑

i=1

Bi(yi − zi)

if yi ≥ zi, i = 1, . . . , k;

(H3) n1 = 1 and there exist constants C1 > 0, Ci ≥ 0, i = 2, . . . , k, such
that

(1.6) G(y1, . . . , yk)−G(z1, . . . , zk) ≥

k
∑

i=1

Ci(yi − zi)

if yi ≥ zi, i = 1, . . . , k.

In this paper we further discuss the Hyers–Ulam stability of equation
(1.4) on I = [a, b] under the hypotheses (H1) and

(H2′) there exist constants Bi ≥ 0, i = 1, . . . , k, such that

(1.7) |G(y1, . . . , yk)−G(z1, . . . , zk)| ≤

k
∑

i=1

Bi|yi − zi|

if yi, zi ∈ I, i = 1, . . . , k;

(H3′) there exist constants C1 > 0, Ci ≥ 0, i = 2, . . . , k, such that

(1.8) G(y1, . . . , yk)−G(z1, . . . , zk) ≥ C1(y1 − z1)−

k
∑

i=2

Ci|yi − zi|

if yi, zi ∈ I, i = 1, . . . , k and y1 ≥ z1.

Our requirements are much weaker than (H2)–(H3) in [12], because
(H2′)–(H3′) allowG not to be monotonic, for example,G(y1, y2) =

3

2
y1−

1

2
y22.

By constructing a uniformly convergent sequence of functions we prove that
there is a unique solution of (1.4) near an approximate solution.
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2. Some lemmas. Let C(I) consist of all continuous functions on I.
Then C(I) is a Banach space equipped with the norm ‖f‖ = maxx∈I |f(x)|.
We can imitate [16] and [18] to prove the following lemma but do not need
to require that f and g be both Lipschitzian as in [16] and [18].

Lemma 2.1. Suppose that f, g : I → I are continuous mappings and
Lip(f) ≤M where M is a positive constant. Then

‖fk − gk‖ ≤

k−1
∑

j=0

M j‖f − g‖, ∀k = 1, 2, . . .(2.9)

Furthermore we need the following two lemmas to construct a certain
convergent sequence of functions.

Lemma 2.2. Suppose that P : I → I is a Lipschitzian mapping fixing
the end-points of I with Lip(P ) ≤ M where M > 0 is a constant. If the

reals Cj , j = 1, . . . , k, satisfy C1 >
∑k
i=2CiM

ni−1 then the function LP
defined by

LP (x) = G(Pn1−1(x), . . . , Pnk−1(x))(2.10)

is an orientation-preserving homeomorphism of I onto itself , and

Lip((LP )−1) ≤ 1/
(

C1 −

k
∑

i=2

CiM
ni−1
)

.(2.11)

Proof. Clearly, P i : I → I is also a Lipschitzian mapping such that
P i(a) = a, P i(b) = b and Lip(P i) ≤M i, i = 2, 3, . . . , so by hypothesis (H1),
LP (a) = a, LP (b) = b. Let

ξ = C1 −

k
∑

i=2

CiM
ni−1(2.12)

for short. For any x1, x2 ∈ I with x2 > x1,

(2.13) LP (x2)− LP (x1)

= G(Pn1−1(x2), . . . , P
nk−1(x2))−G(P

n1−1(x1), . . . , P
nk−1(x1))

≥ C1(P
n1−1(x2)− P

n1−1(x1))−

k
∑

i=2

Ci|P
ni−1(x2)− P

ni−1(x1)|

≥ C1(x2 − x1)− (x2 − x1)

k
∑

i=2

CiM
ni−1 ≥ ξ(x2 − x1) > 0,

since n1 = 1. This implies that LP is strictly increasing and invertible on
I. Thus LP is an orientation-preserving homeomorphism of I onto itself.
Moreover, (2.11) follows from (2.13) immediately.
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Lemma 2.3. Suppose that P0, F : I → I are both Lipschitzian mappings
fixing the end-points of I such that Lip(P0) ≤ M and Lip(F ) ≤ M0 for
positive constants M and M0. If the reals Cj , j = 1, . . . , k, satisfy C1 ≥

M0/M +
∑k
i=2CiM

ni−1, then both

LPk−1(x) := G(P
n1−1
k−1 (x), . . . , P

nk−1
k−1 (x))(2.14)

and

Pk := (LPk−1)
−1 ◦ F(2.15)

are well defined and Pk : I → I is a Lipschitzian mapping fixing the end-
points of I with Lip(Pk) ≤M , k = 1, 2, . . .

Proof. By Lemma 2.2, LP0(x) := G(P
n1−1
0
(x), . . . , Pnk−1

0
(x)) is well de-

fined and maps I onto itself homeomorphically with LP0(a) = a, LP0(b) = b
and Lip((LP0)

−1) ≤ 1/ξ, where ξ is defined in (2.12). Thus P1(x) :=
(LP0)

−1◦F (x) is meaningful and P1(a) = a, P1(b) = b. Moreover, Lip(P1) ≤
Lip((LP0)

−1) · Lip(F ) ≤ (1/ξ)M0 ≤M, by the assumptions on Cj .

For the inductive proof we assume that the conclusion of Lemma 2.3 is
true for the integer k. By Lemma 2.2, LPk(x) := G(P

n1−1
k (x), . . . , Pnk−1k (x))

is also well defined and maps I onto itself homeomorphically with LPk(a)
= a, LPk(b) = b and Lip((LPk)

−1) ≤ 1/ξ. Similarly we see that Pk+1(x) :=
(LPk)

−1 ◦ F (x) is also meaningful and Pk+1(a) = a, Pk+1(b) = b. Moreover,
Lip(Pk+1) ≤ Lip((LPk)

−1) · Lip(F ) ≤ (1/ξ)M0 ≤ M. This implies that the
conclusion of Lemma 2.3 is also true for k + 1 and completes the proof of
Lemma 2.3.

3. Main result

Theorem. Suppose that equation (1.4) satisfies the hypotheses (H1),
(H2′) and (H3′) and that F : I → I is a Lipschitzian mapping fixing the
end-points of I with Lip(F ) ≤ M0 for a positive constant M0. If g : I → I
is a Lipschitzian mapping fixing the end-points of I with Lip(g) ≤ M such
that

|F (x)−G(gn1(x), . . . , gnk(x))| ≤ δ, ∀x ∈ I,(3.16)

for a constant δ > 0, then there exists a unique continuous solution f : I → I
of equation (1.4) such that

|f(x)− g(x)| ≤ γδ, ∀x ∈ I,(3.17)

where

γ =
(

C1 −

k
∑

i=2

CiM
ni−1 −max

{

k
∑

i=2

Ci

ni−2
∑

j=0

M j ,

k
∑

i=2

Bi

ni−2
∑

j=0

M j
})

−1

,
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provided

C1 >

k
∑

i=2

CiM
ni−1+max

{

M0/M,

k
∑

i=2

Ci

ni−2
∑

j=0

M j ,

k
∑

i=2

Bi

ni−2
∑

j=0

M j
}

.(3.18)

This Theorem implies that equation (1.4) satisfies Hyers–Ulam stability
if the constants in (1.7) and (1.8) satisfy (3.18).

In this Theorem we free both F and f from the requirement of increasing
monotonicity, which were imposed in [12]–[14]. So the form of equation in
this paper is more general. Additionally, unlike [16] and [12] we do not
restrict our discussion to the subset

(3.19) X(I; 0,M) := {f : I → I | f(a) = a, f(b) = b,

0 ≤ f(x2)− f(x1) ≤M(x2 − x1), ∀x1, x2 ∈ I with x2 > x1}

For example, for

F (x) =















2x, 0 ≤ x ≤ 1
4
,

−1
2
x+ 5

8
, 1

4
< x ≤ 5

8
,

11

6
x− 5

6
, 5

8
< x ≤ 1,

consider the equation

21

20
f(x)−

1

20
(f2(x))2 = F (x), x ∈ I = [0, 1].(3.20)

Let G(y1, y2) =
21

20
y1 −

1

20
y22. So, G(0, 0) = 0, G(1, 1) = 1. If yi, zi ∈ I,

i = 1, 2, we have

|G(y1, y2)−G(z1, z2)| ≤
21

20
|y1 − z1|+

1

20
|y2 + z2| · |y2 − z2|(3.21)

≤
21

20
|y1 − z1|+

1

10
|y2 − z2|.

Moveover, if y1 ≥ z1, we have

G(y1, y2)−G(z1, z2) ≥
21

20
(y1 − z1)−

1

10
|y2 − z2|.(3.22)

Thus the hypotheses (H1)–(H2′) and (H3′) are satisfied, where C1 =
21

20
and

C2 =
1

10
. Clearly, the function

g(x) =

{

3

5
x, 0 ≤ x ≤ 5

6
,

3x− 2, 5

6
< x ≤ 1,

satisfies the inequality
∣

∣

∣

∣

F (x)−

(

21

20
g(x)−

1

20
(g2(x))2

)∣

∣

∣

∣

≤ 0.343,
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i.e., g is a δ-approximate solution where δ = 0.343. Clearly Lip(F ) = 2 and
Lip(g) = 3. We can check that condition (3.18) is satisfied. By our Theorem,
equation (3.20) satisfies Hyers–Ulam stability.

4. Proof of Theorem. For simplicity, we apply the notation ξ as in
(2.12) and

η = max
{

k
∑

i=2

Ci

ni−2
∑

j=0

M j ,

k
∑

i=2

Bi

ni−2
∑

j=0

M j
}

.(4.23)

Construct a sequence {Pk(x)} of functions as follows. Take P0(x) = g(x)
first and then define Pk(x) by (2.15) inductively. By Lemma 2.3, both
LPk−1(x) and Pk(x) are well defined for k > 1. Lemmas 2.2 and 2.3 also im-
ply that Pk(a) = a, Pk(b) = b, Lip(Pk) ≤M and that LPk is an orientation-
preserving homeomorphism of I onto itself with Lip((LPk)

−1) ≤ 1/ξ.

Now we claim that

|Pk(x)− Pk−1(x)| ≤
1

ξ

(

η

ξ

)k−1

δ,(4.24)

|F (x)− LPk ◦ Pk(x)| ≤

(

η

ξ

)k

δ,(4.25)

for all x ∈ I and k = 1, 2, . . .

First (4.24) and (4.25) are obvious when k = 1. Assume that they are
true for the integer k. Then

|Pk+1(x)− Pk(x)| = |(LPk)
−1 ◦ F (x)− (LPk)

−1 ◦ (LPk) ◦ Pk(x)|(4.26)

≤
1

ξ
|F (x)− (LPk) ◦ Pk(x)|

≤
1

ξ

(

η

ξ

)k

δ,

by (4.25). Moreover,

(4.27) F (x)− LPk+1 ◦ Pk+1(x)

= G(Pk+1(x), P
n2−1
k ◦ Pk+1(x), . . . , P

nk−1
k ◦ Pk+1(x))

−G(Pk+1(x), P
n2
k+1(x), . . . , P

nk
k+1(x))

≥ −

k
∑

i=2

Ci|P
ni−1
k − Pni−1k | ≥ −

k
∑

i=2

CiM
ni−1|Pk − Pk+1|,

by (1.8), and



HYERS–ULAM STABILITY 7

(4.28) F (x)− LPk+1 ◦ Pk+1(x)

= G(Pk+1(x), P
n2−1
k ◦ Pk+1(x), . . . , P

nk−1
k ◦ Pk+1(x))

−G(Pk+1(x), P
n2
k+1(x), . . . , P

nk
k+1(x))

≤

k
∑

i=2

Bi|P
ni−1
k − Pni−1k | ≤

k
∑

i=2

BiM
ni−1|Pk − Pk+1|,

by (1.7). It follows that

(4.29) |F (x)− LPk+1 ◦ Pk+1(x)|

≤ |Pk − Pk+1|max
{

k
∑

i=2

Ci

ni−2
∑

j=0

M j ,

k
∑

i=2

Bi

ni−2
∑

j=0

M j
}

≤ η

(

1

ξ

(

η

ξ

)k

δ

)

=

(

η

ξ

)k+1

δ,

by hypotheses (H2′)–(H3′) and (4.26). Thus (4.24) and (4.25) are proved by
induction.

For any positive integers k and s with k > s,

|Pk(x)− Ps(x)| ≤ |Pk(x)− Pk−1(x)|+ |Pk−1(x)− Pk−2(x)|(4.30)

+ . . .+ |Ps+1(x)− Ps(x)|

≤
1

ξ

(

η

ξ

)k−1

δ +
1

ξ

(

η

ξ

)k−2

δ + . . .+
1

ξ

(

η

ξ

)s

δ

=
δ

ξ
·
(η/ξ)s − (η/ξ)k

1− η/ξ
,

by (4.24). Note from (3.18) that ξ > η. It follows from (4.30) that

|Pk(x)− Ps(x)| → 0 as k > s→∞.(4.31)

As a Cauchy sequence, {Pk(x)} converges uniformly in the Banach space
C(I). Let

lim
k→∞
Pk(x) = f(x).(4.32)

Clearly, f : I → I is also a Lipschitzian mapping with Lip(f) ≤ M . From
(4.25),

|F (x)− Lf ◦ f(x)| = lim
k→∞
|F (x)− LPk ◦ Pk(x)|(4.33)

≤ lim
k→∞
(η/ξ)kδ = 0,

i.e., f is a solution of equation (1.4). Furthermore, from (4.24),
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(4.34) |f(x)− g(x)| = lim
k→∞
|Pk(x)− P0(x)|

≤ lim
k→∞
{|Pk(x)− Pk−1(x)|+ |Pk−1(x)− Pk−2(x)|

+ . . .+ |P1(x)− P0(x)|}

≤ lim
k→∞

{

1

ξ

(

η

ξ

)k−1

δ +
1

ξ

(

η

ξ

)k−2

δ + . . .+
1

ξ
δ

}

=
1

ξ − η
δ.

This proves (3.17).
Concerning uniqueness, we assume that there is another continuous so-

lution φ : I → I for equation (1.4), which may not be Lipschitzian, such
that

|φ(x)− g(x)| ≤ ε

where ε > 0 only depends on δ. Then

G(fn1(x), . . . , fnk(x)) = G(φn1(x), . . . , φnk(x)).(4.35)

It follows from Lemma 2.1 and hypothesis (H3′) that

C1(f
n1(x)− φn1(x))−

k
∑

i=2

Ci|f
ni(x)− φni(x)| ≤ 0(4.36)

that is,
(

C1 −

k
∑

i=2

Ci

ni−1
∑

j=0

M j
)

‖f − φ‖ ≤ 0.(4.37)

However, C1 >
∑k
i=2Ci

∑ni−1
j=0 M

j by (3.18). This implies that ‖f −φ‖ = 0,
i.e., f ≡ φ.
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