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REMARKS AND EXAMPLES CONCERNING

DISTANCE ELLIPSOIDS

BY

DIRK PRAETORIUS (Wien)

Abstract. We provide for every 2 ≤ k ≤ n an n-dimensional Banach space E with
a unique distance ellipsoid E such that there are precisely k linearly independent contact
points between E and BE . The corresponding result holds for spaces with non-unique
distance ellipsoids as well. We construct n-dimensional Banach spaces E such that one
distance ellipsoid has precisely k linearly independent contact points and all other distance
ellipsoids have less than k − 1 such points.

1. Preliminaries & introduction. We consider finite-dimensional Ba-
nach spaces over the field K ∈ {R,C}. For technical reasons we always treat
Km for m ≤ n as a subspace of Kn embedded on the first m coordinates. Let
E = (Kn, ‖ · ‖E) be a Banach space and BE be its (closed) unit ball. Given
any compact, absolutely convex subset B ⊆ Kn having 0 as an interior point,
the Minkowski functional

|x|B := inf{λ > 0 | x ∈ λB} (x ∈ Kn)
is a norm on Kn with unit ball B, i.e., B = BE with E = (K

n, | · |B).
For the Kn equipped with the ℓp-norm we denote the unit ball by B

n
p :=

{x ∈ Kn | ‖x‖p ≤ 1}. An ellipsoid E in E = (Kn, ‖·‖E) is the image u(Bn2 ) of
the Euclidean ball under an arbitrary isomorphism u ∈ L(ℓn2 , E). Thus, the
Minkowski functional | · |E is a Hilbert norm and the corresponding scalar
product is denoted by 〈·, ·〉E .
Well known and important examples of ellipsoids in Banach space the-

ory are the John ellipsoid DmaxE and the Loewner ellipsoid DminE of a Banach
space E = (Kn, ‖ · ‖E) (see [DJT, T, Pi]): DmaxE is the unique ellipsoid of
maximal volume contained in the unit ballBE of E andDminE is the unique el-
lipsoid of minimal volume containing BE , where we take the 2n-dimensional
Lebesgue measure in the case K = C. Both ellipsoids can be characterized
geometrically: An ellipsoid E in E is the John ellipsoid DmaxE (resp. the
Loewner ellipsoid DminE ) if and only if there are weights d1, . . . , dN > 0 and
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so called contact points x1, . . . , xN ∈ E such that
(J1)
∑N
j=1 dj = n,

(J2) ‖xj‖E = 1 = |xj |E for all 1 ≤ j ≤ N ,
(J3) x =

∑N
j=1 dj〈x, xj〉Exj for all x ∈ E,

(J4) E ⊆ BE (resp. BE ⊆ E).
In this case one can choose N ∈ N with N ≤ 1

2
n(n+1) for K = R and N ≤ n2

for K = C and both estimates were shown to be sharp by Pełczyński and
Tomczak-Jaegermann [PT].
Our aim was to study Banach spaces whose John and Loewner ellipsoids

are homothetic, i.e., there is a scalar d > 0 with DminE = dDmaxE . In view of
Lemma 2.3 this leads to the subsequently discussed distance ellipsoids.

Definition 1.1. For n-dimensional Banach spaces E and F we denote
by

d(F,E) = inf ‖u‖ · ‖u−1‖
the Banach–Mazur distance where the infimum is taken over all isomor-
phisms u ∈ L(F,E). By compactness the infimum is attained for some u
with ‖u‖ = 1, ‖u−1‖ = d(F,E). In the case F = ℓn2 we write dE = d(ℓn2 , E)
for the Euclidean (Banach–Mazur) distance. One can describe dE as the
smallest positive d for which there exists an ellipsoid E with E ⊆ BE ⊆ dE .
Every ellipsoid for which both inclusions hold with d = dE is called a dis-
tance ellipsoid .

Clearly, for every n-dimensional Banach space E and every subspace F
of E we have the lower estimate

dF ≤ dE .(1.1)

The distance ellipsoid of the Hilbert space ℓn2 is obviously unique. Moreover,
the aforementioned Lemma 2.3 shows that in case DminE = dDmaxE the John
ellipsoid is the unique distance ellipsoid and dE = d. This holds in particular
for spaces with enough symmetries [T, Sections 15, 16].
In general, distance ellipsoids are not unique. In Section 2 we will show

how to construct spaces with non-unique distance ellipsoids. A theorem of
Maurey [M] shows that such spaces contain proper subspaces with the same
Euclidean distance. In Section 3 we construct a Banach space with a unique
distance ellipsoid having this “Maurey property” and show that the spaces
with non-unique distance ellipsoids are dense in the set of all such spaces.

In connection with the John and Loewner ellipsoids, it seemed to be of
interest to study the geometric properties of distance ellipsoids. A theorem
of Lewis [L] implies that there are at least two linearly independent contact
points of E and BE , where E is an arbitrary distance ellipsoid of E. As our
main result, we show in Section 4 that the geometric properties of distance
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ellipsoids are much worse than those of the John and Loewner ellipsoids. We
construct Banach spaces E = (Kn, ‖ · ‖E) such that the distance ellipsoids
and the unit ball BE have precisely k linearly independent contact points,
where 2 ≤ k ≤ n is arbitrary. In particular, there are n-dimensional Banach
spaces such that the best distance ellipsoid has only 2 linearly independent
contact points with the unit ball, i.e., Lewis’ theorem is sharp.

2. Spaces with non-unique distance ellipsoids

Theorem 2.1 (Maurey [M]). If an n-dimensional Banach space E has
two different distance ellipsoids one can find two distance ellipsoids E1, E2
with E1  E2.
Lemma 2.2. Let 2 ≤ m < n be integers and F an m-dimensional Ba-

nach space with dF > 1. Assume without loss of generality that the Euclidean
ball Bm2 is a distance ellipsoid of F and define an n-dimensional Banach
space E by BE := abs conv(B

n
2 , BF ). Then F is a subspace of E, dE = dF ,

and Bn2 and E are distance ellipsoids of E with E  Bn2 , where

E :=
{
x ∈ Kn

∣∣∣∣
m∑

j=1

|x2j |+ d2F
n∑

j=m+1

|x2j | ≤ 1
}
.(2.1)

Proof. Since Bm2 is a distance ellipsoid of F we have B
m
2 ⊆ BF ⊆ dFBm2 .

We infer that

BE ∩ Km = abs conv(Bm2 , BF ) = BF ,(2.2)

i.e., F is a subspace of E. In particular, we get dF ≤ dE and the other
estimate follows from Bn2 ⊆ BE ⊆ dFBn2 , i.e., Bn2 is a distance ellipsoid of
E. Because E  Bn2 it remains to prove BE ⊆ dFE . But this holds since
BF ⊆ dFBm2 ⊆ dFE and Bn2 ⊆ dFE .
Lemma 2.3. Let E be an n-dimensional Banach space whose John and

Loewner ellipsoids are homothetic, i.e., DminE = dDmaxE with a scalar d ≥ 1.
Then the John ellipsoid is the unique distance ellipsoid and the Euclidean

distance is given by dE = d.

Proof. From the inclusions E ⊆ BE ⊆ dEE we get
dn vol(E) ≤ dn vol(DmaxE ) = vol(dDmaxE ) = vol(DminE )(2.3)

≤ vol(dEE) = dnE vol(E),
hence d ≤ dE (for K = R), and DmaxE ⊆ BE ⊆ DminE = dDmaxE gives the
reverse estimate. Now, d = dE and (2.3) implies the equality vol(E) =
vol(DmaxE ). Due to the uniqueness of the John ellipsoid, we get E = DmaxE .
Note that in the case K = C formula (2.3) holds with exponent 2n instead
of n.
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Example 2.4. Let 3≤ n be an integer , 1<d ≤
√
2, and E = (Kn, ‖ · ‖E)

given by BE := abs conv(B
n
2 ,±de1,±de2), where ej ∈ Kn denote the unit

vectors. Let F := (K2, ‖ · ‖E) denote the canonical 2-dimensional subspace
and define the ellipsoids

D := d E , E :=
{
x ∈ Kn

∣∣∣∣ |x
2
1|+ |x22|+ d2

n∑

j=3

|x2j | ≤ 1
}
.(2.4)

Then the Banach space E has the following properties:

(i) dE = d = dF ,

(ii) E  Bn2 ⊆ BE ⊆ dE  dBn2 , i.e., E and the Euclidean ball Bn2 are
distance ellipsoids,

(iii) DmaxF = B22 , DmaxE = Bn2 ,

(iv) DminF = dB22 , DminE = D,
(v) dimK spanK

{x ∈ Kn | |x|E = 1 = ‖x‖E} = 2,
(vi) dimK spanK

{x ∈ Kn | ‖x‖2 = 1 = ‖x‖E} = n.
Proof. (iii) We use the fact that the John ellipsoid of ℓn1 is (1/

√
n)Bn2 .

From Bn2 ⊆ BE ⊆
√
nBn1 we infer that DmaxE = Bn2 . Also, direct calcu-

lation shows that B := {w1, w2, e3, . . . , en} is a Bn2 -orthonormal basis sat-
isfying ‖e‖E = 1 for e ∈ B where wj := (1/

√
2)(e1 ± e2) and ej denote

the standard unit vectors. Now one derives Bn2 = DmaxE from the geometric
characterization (J1)–(J4) of the John ellipsoid. The same argument shows
B22 = DmaxF .
(iv) The ellipsoid D is associated with the scalar product

〈x, y〉D =
x1y1
d2
+
x2y2
d2
+

n∑

j=3

xjyj (x, y ∈ Kn).(2.5)

Hence, B := {de1, de2, e3, . . . , e4} ⊆ BE defines a D-orthonormal basis. From
B ⊆ BE ⊆ D we infer that 1 = |e|D ≤ ‖e‖E ≤ 1 for all e ∈ B. The geometric
characterization of the Loewner ellipsoid implies D = DminE and analogously
dB22 = DminF .
(i) Lemma 2.3 implies d = dF and Lemma 2.2 shows (i) and (ii).

(v) Let x ∈ Kn with |x|E = 1 = ‖x‖E . From E  Bn2 ⊆ BE we infer that
‖x‖2 = 1, i.e.,

0 = |x|2E − ‖x‖22 = (d2 − 1)
n∑

j=3

|x2j |,(2.6)

whence x ∈ K2. The lower estimate of (v) and the equality in (vi) follow
immediately from (iii) and the geometric characterization of the John ellip-
soid.
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3. The Maurey property

Definition 3.1. An n-dimensional Banach space E is said to have the
Maurey property if it contains an (n− 1)-dimensional subspace F with the
same Euclidean distance, i.e., dE = dF ≤

√
n− 1.

Theorem 3.1 (Maurey [M]). Every n-dimensional Banach space E with
non-unique distance ellipsoids has the Maurey property.

Corollary 3.2. (i) The distance ellipsoid of an n-dimensional Banach
space E is unique if dE >

√
n− 1. In particular , the distance ellipsoid of a

2-dimensional Banach space is unique.
(ii) If E is of maximal distance, i.e., dE =

√
n, then the John and

Loewner ellipsoids are homothetic, i.e., DminE =
√
nDmaxE , since both ellip-

soids give the Euclidean distance.

The converse of Maurey’s theorem is obviously false, e.g., the n-dimen-
sional Hilbert space E = ℓn2 has the Maurey property. Less trivial examples
are given below by almost rotation invariant spaces. The next result shows
that the Banach spaces with non-unique distance ellipsoids are dense in the
Banach–Mazur distance in the set of spaces with the Maurey property.

Proposition 3.3. Let E be an n-dimensional Banach space with the
Maurey property , n ≥ 3. For every λ > 1 we can find a Banach space
E′ with non-unique distance ellipsoids and d(E,E′) ≤ λ. For dE > 1, the
construction leads to dE = dE′.

Proof. We may assume that the Euclidean ball Bn2 is a distance ellipsoid
of E and the subspace F = (Kn−1, ‖ ·‖E) satisfies dE = dF . The case dE = 1
is already proved in Example 2.4. We consider the case dE > 1 and assume
1 < λ ≤ dE . Define E′ by

BE′ := abs conv(B
n
2 , BF , (1/λ)BE).(3.1)

Obviously, we have BE′ ⊆ BE ⊆ λBE′ , hence d(E,E′) ≤ λ. Further, the
construction implies Bn2 ⊆ BE′ ⊆ dEBn2 , whence dE′ ≤ dE, since the Eu-
clidean balls are distance ellipsoids of E and F . Also, BE′ ∩ Kn−1 = BF
shows that F is a subspace of E′ and Lemma 2.2 leads to dE = dF ≤ dE′ . In
particular, the Euclidean ball Bn2 is a distance ellipsoid of E

′. Define another
ellipsoid E  Bn2 by

E :=
{
x ∈ Kn

∣∣∣∣
n−1∑

j=1

|x2j |+ λ|x2n| ≤ 1
}
.(3.2)

To see that E is a distance ellipsoid of E′ it remains to prove the inclusion
BE′ ⊆ dEE . But this follows immediately from BF ⊆ dEBn−12 ⊆ dEE , and

Bn2 ⊆ dEE and (1/λ)BE ⊆ (dE/λ)Bn2 ⊆ dEE ,(3.3)

where we have used λ/dE ≤ 1.
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Definition 3.2. (i) An n-dimensional Banach space E is sign invariant
if the diagonal operators ∆ := diag(ε), ε ∈ {±1}n, are isometries of E.
(ii) Further, E is almost rotation invariant if the norm ‖ · ‖E is invariant

in the last n− 1 components under unitary matrices, i.e.,
‖x‖E = ‖Ux‖E for all x ∈ Kn(3.4)

and unitary matrices U ∈ Kn×n with Ue1 = e1.
Geometrically, the ball BE is determined by its 2-dimensional section BF =
BE ∩ K2 and given by rotation around the x1-axis.
Proposition 3.4. The distance ellipsoid E of an almost rotation in-

variant Banach space E = (Kn, ‖ · ‖E) is unique. Let F ′ = (K2, ‖ · ‖E) and
F = (R2, ‖ · ‖E). Then the unique distance ellipsoid EF of F is given by

EF = {x ∈ R2 | x21/a21 + x22/a22 ≤ 1}(3.5)

for some scalars a1, a2 > 0, the unique distance ellipsoid of E is

E =
{
x ∈ Kn

∣∣∣ |x21|/a21 +
n∑

j=2

|x2j |/a22 ≤ 1
}
,(3.6)

and the unique distance ellipsoid of F ′ is just the intersection E ∩K2. More-
over , the Euclidean distances of E, F ′ and the (real) Euclidean distance of
F are equal , i.e., dE = dF ′ = dF . In particular , E has the Maurey property.

The proof uses the following lemma, whose elementary proof is left to
the reader.

Lemma 3.5. Let E ⊆ Kn be an ellipsoid which is sign invariant , i.e.,
∆(E) = E for all ε∈ {±1}n, ∆ := diag(ε). Then E = {x ∈ Kn |

∑n
j=1 |x2j |/a2j

≤ 1} for some suitable aj > 0.
Proof of Proposition 3.4. Notice that the norm ‖ · ‖E is sign invariant.

By Lemma 3.5, the unique distance ellipsoid of the 2-dimensional subspace
F ′ is given by

EF ′ = {x ∈ K2 | |x21|/b21 + |x22|/b22 ≤ 1}(3.7)

for some bj > 0. The same argument shows that the unique distance ellipsoid
EF of F is as in (3.5). First, we see that D := EF ′ ∩ R2 is an ellipsoid in
R2 with D ⊆ BF ⊆ dF ′D, hence dF ≤ dF ′ . Further, we define an ellipsoid
D′ in K2 extending EF and get D′ ⊆ BF ′ ⊆ dFD′. Thus, dF = dF ′ and
the uniqueness of the distance ellipsoid yields EF = D and EF ′ = D′, i.e.,
aj = bj . Since F

′ is a subspace of E we get dF = dF ′ ≤ dE . On the other
hand, E from (3.6) satisfies E ⊆ BE ⊆ dF ′E since E and E are almost
rotation invariant. Hence, dE = dF and E is a distance ellipsoid of E.
To see that E is unique we fix a distance ellipsoid E ′ of E. For every

unitary matrix U ∈ Kn×n with Ue1 = e1 we consider the 2-dimensional
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subspace F ′U := spanK
{e1, Ue2}. Since E is almost rotation invariant, U is

an isometry from F ′ onto F ′U . Thus, U(EF ′) = E ∩ F ′U = E ′ ∩ F ′U since all
give the unique distance ellipsoid of F ′U . This leads to E = E ′.

Example 3.6. Let n ≥ 2, 1 ≤ λ, and E = (Kn, ‖ · ‖E) with BE :=
abs conv(Bn2 ,±λe1). Then E is an almost rotation invariant Banach space
with John ellipsoid DmaxE = Bn2 and Loewner ellipsoid DminE = {x ∈ Kn |
|x21|/λ2 +

∑n
j=2 |x2j | ≤ 1}. The Euclidean distance is dE =

√
2− 1/λ2 and

(1/dE)DminE is the unique distance ellipsoid.

Proof. To determine DmaxE and DminE one can use the same argument
as in Example 2.4. To determine the distance ellipsoid E of E we use
Proposition 3.4 and get (3.6). Moreover, λe1, e2, . . . , en ∈ BE ⊆ dE E yields
DminE ⊆ dE E . Thus (1/dE)DminE ⊆ E ⊆ BE ⊆ DminE and this shows that DminE
is the unique distance ellipsoid of E. The calculation of dE is elementary
since we only have to consider the 2-dimensional real case.

Remark 3.1. Lemma 2.3 is optimal in the following sense: Example 2.4
gives a Banach space whose Euclidean distance is attained for the John and
Loewner ellipsoids although the two ellipsoids are not homothetic, i.e.,

(1/dE)DminE  DmaxE ⊆ BE ⊆ DminE  dEDmaxE .(3.8)

Example 3.6 provides a Banach E space whose unique distance ellipsoid is
the Loewner ellipsoid, although the John and Loewner ellipsoids are not
homothetic. By duality the unique distance ellipsoid of the dual space E∗ is
its John ellipsoid and the two ellipsoids, i.e., the John and Loewner ellipsoids,
are not homothetic.

Remark 3.2. In general, a result analogous to Proposition 3.4 does not
hold even for the John or Loewner ellipsoid: Consider the ellipsoid D :=
{x ∈ Rn | x21/a21 +

∑n
j=1 x

2
j/a
2
2 ≤ 1} and the real Banach space E =

(Rn, ‖ · ‖E) given by BE := abs conv(Bn2 ,D) with a1 :=
√
9/10, a2 :=√

11/10, n ≥ 3. An elementary calculation for the subspace F = (R2, ‖ · ‖E)
shows DmaxF = B22 . In spite of this vol(D) > vol(Bn2 ), hence DmaxE 6= Bn2
although E is almost rotation invariant. A counterexample for the Loewner
ellipsoid follows by duality.

4. Lewis’ Theorem about contact points

Theorem 4.1 (Lewis [L]). Let E and F be n-dimensional Banach spa-
ces and u ∈ L(F,E) be an isomorphism with ‖u‖ = 1, ‖u−1‖ = d(F,E).
Then

dimK spanK
{x ∈ Kn | ‖x‖F = 1 = ‖ux‖E} ≥ 2.(4.1)
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Corollary 4.2. For any n-dimensional Banach space E with distance
ellipsoid E , we have

dimK spanK
{x ∈ Kn | |x|E = 1 = ‖x‖E} ≥ 2.

Remark 4.1. Corollary 4.2 in combination with Theorem 2.1 of Maurey
gives another proof that the distance ellipsoid of a 2-dimensional Banach
space is unique.

Theorem 4.3. For every 2 ≤ k < n and 1 < d ≤
√
k, there are n-

dimensional Banach spaces Enk = (K
n, ‖ · ‖E), Ênk = (Kn, ‖ · ‖Ê) such that

(a) the Euclidean ball Bn2 is the unique distance ellipsoid of E
n
k and

dimK spanK
{x ∈ Kn | ‖x‖2 = 1 = ‖x‖E} = k,(4.2)

(b) the distance ellipsoid of Ênk is not unique, B
n
2 is a distance ellipsoid

which satisfies

dimK spanK
{x ∈ Kn | ‖x‖2 = 1 = ‖x‖Ê} = k,(4.3)

and E ⊆ Bn2 for any other distance ellipsoid of Ênk . Therefore,
dimK spanK

{x ∈ Kn | |x|E = 1 = ‖x‖Ê} < k(4.4)

for every distance ellipsoid E 6= Bn2 of Ênk . Also, the explicit construction
of Enk and Ê

n
k leads to the following properties:

(i) dEnk = d = dÊnk
,

(ii) Enk , Ê
n
k are sign invariant ,

(iii) Enk and Ê
n
k have the Maurey property.

We give the proof by explicit construction of the unit balls of Enk and Ê
n
k .

This is done in several steps.

Assertion 1. Define the concave function f : [−1, 1] → [0, 1], f(t) :=√
1− t2 + αt2 with some fixed α > 0 satisfying 1 + α ≤ min{

√
2, d}. Set

A0 := abs conv{(f(t), t), (−f(t), t) | −1 ≤ t ≤ 1}.
Then E0 := (R

2, | · |A0) defines a 2-dimensional sign invariant Banach space
with

(i) B22 ⊆ A0 ⊆ dB22 , A0 ⊆ B2∞,
(ii) K0 := {x ∈ R2 | ‖x‖2 = 1 = |x|A0} = {±e1,±e2},
(iii) every ellipsoid E ⊆ A0 with ±e1 ∈ E can be written as

E = Eλ := {x ∈ R2 | x21 + x22/λ2 ≤ 1}(4.5)

for a suitable scalar 0 < λ ≤ 1,
(iv) for β := min{

√
3/2,
√
(d2 + 1)/2} > 1, α = β − 1, and λ = 1/β we

have

Eλ  B22 ⊆ A0 ⊆ dEλ  dB22 .(4.6)
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Proof. From α ≤
√
2−1 we infer that A0 is closed and absolutely convex

and (i)–(iv) follow by direct calculation using the fact that α ≤ d− 1.
Assertion 2. A1,β := abs conv(A0, βe2), 1 < β ≤ d, E1,β := (R2,

| · |A1,β) defines a sign invariant Banach space which shares properties (i),
(iii), and (iv) with E0, but only ±e1 are contact points between A1,β and B22 ,
i.e., K1 := {x ∈ R2 | ‖x‖2 = 1 = |x|A1,β} = {±e1}.
Remark 4.2. For the construction of Enk we will use arbitrary 1 <

1 + α ≤ min{
√
2, d} and β = d, whereas Ênk is constructed with β :=

min{
√
3/2,
√
(d2 + 1)/2}, α = β − 1. See Assertions 6 and 7 below.

We shall use the following obvious lemma to obtain the next assertion.

Lemma 4.4. Let F = (R2, ‖ · ‖F ) be a sign invariant real Banach space
and define

E := (Kn, ‖ · ‖E) via ‖x‖E := ‖(|x1|, ‖(xj)nj=2‖2)‖F (x ∈ Kn).(4.7)

Then:

(i) E is an almost rotation invariant Banach space and the real subspace
span

R
{e1, e} with arbitrary e ∈ spanR

{e2, . . . , en} is isometric to F (via
rotation),
(ii) if for some λ > 0 the ellipsoid Eλ from (4.5) satisfies Eλ ⊆ BF ⊆ dEλ,

then E ′λ ⊆ BE ⊆ dE ′λ, where

E ′λ :=
{
x ∈ Kn

∣∣∣∣ |x
2
1|+

1

λ2

n∑

j=2

|x2j |
}
.(4.8)

Assertion 3. Define E2,β = (K
n, ‖·‖E2) as in Lemma 4.4 with F =E1,β.

Denote by A2,β the ball of E2,β. Then the Banach space E2,β is sign invari-
ant and has the following properties:

(i) Bn2 ⊆ A2,β ⊆ dBn2 ,
(ii) K2 := {x ∈ Kn | ‖x‖2 = 1 = |x|A2,β} = {λe1 | λ ∈ SK},
(iii) for any e ∈ span

R
{e2, . . . , en}, the real subspace spanR

{e1, e} is iso-
metric to E1,β.

The next step will use the following simple interpolation lemma, whose
proof is left to the reader.

Lemma 4.5. Let E = (Km, ‖ · ‖E) and F = (Kn, ‖ · ‖F ) be finite-dimen-
sional Banach spaces with m ≤ n and X = (Km, ‖ · ‖X) and Y = (Kn, ‖ · ‖Y )
defined by BX := BE ∩BF and BY := conv(BE , BF ). Then the norms of X
resp. Y are given by

‖x‖X =max{‖x‖E , ‖x‖F } (x ∈ Km),(4.9)

‖y‖Y =min{‖e‖E + ‖f‖F | e∈Km, f ∈Kn, y= e+ f} (y ∈ Kn).(4.10)
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Assertion 4. A3,β := A2,β ∩ (Bk2 × dBn−k2 ) yields a sign invariant Ba-
nach space E3,β := (K

n, | · |A3,β ) with the following properties:
(i) Bn2 ⊆ A3,β ⊆ dBn2 , A3,β ∩ Kk = Bk2 ,
(ii) K3 := {x ∈ Kn | ‖x‖2 = 1 = |x|A3,β} = Bk2 ,
(iii) the real subspaces span

R
{e1, e} with e ∈ spanR

{ek+1, . . . , en} are
isometric to E1,β.

Proof. Obviously, A3,β is an absolutely convex, compact set which satis-
fies (i) and (iii). Thus, | · |A3,β is a norm and Bk2 ⊆ K3. Simple interpolation
yields

|x|A3,β = max{|x|A2,β , ‖(xj)kj=1‖2, ‖x‖∞/d} (x ∈ Kn).(4.11)

To get the reverse inclusion in (ii) let x ∈ Kn with |x|A3,β = 1 = ‖x‖2. In
particular, |xj| ≤ 1 for all 1 ≤ j ≤ n, whence ‖x‖∞/d < 1. We consider the
other two cases. If |x|A2,β = 1 Assertion 3 implies x = λe1 with a suitable
λ ∈ SK. Otherwise, ‖(xj)kj=1‖2 = 1 leads to xj = 0 for k + 1 ≤ j ≤ n.
Due to (i) the Banach space E3,β has Euclidean distance dE3,β ≤ d. The

easiest way to get equality is to embed a subspace F with distance dF = d.
This is the last step of our construction.

Assertion 5. Define

A4,β := abs conv(A3,β, B) with B := abs conv

(
Bk2 ,

d√
k
Bk∞

)
.

Then Enk,β := (K
n, |·|A4,β) is a sign invariant Banach space with the following

properties:

(i) dEnk,β = d and the Euclidean ball is a distance ellipsoid of E
n
k,β,

(ii) every distance ellipsoid E is contained in Bn2 , i.e., E ⊆ Bn2 , and
satisfies E ∩ Kk = Bk2 ,
(iii) K4 := {x ∈ Kn | ‖x‖2 = 1 = |x|A4,β} ⊆ Bk2 , dimK spanK

K4 = k,
(iv) the real subspace span

R
{e1, e} with e ∈ spanR

{ek+1, . . . , en} is iso-
metric to E1,β,
(v) Enk,β has the Maurey property , since dEnk,β = d = dF with F :=

(Kk, ‖ · ‖E) = (Kk, | · |B).
Proof. For abbreviation we write E = Enk,β. Again, it is trivial that

BE = A4,β is a sign invariant Banach space with B
n
2 ⊆ BE ⊆ dBn2 and

BE ∩ Kk = B ⊆ Bk∞. In particular, F := (Kk, ‖ · ‖E) = (Kk, | · |B) has
enough symmetries and dF ≤ dE ≤ d. DmaxF is the unique distance el-
lipsoid of F . From Bk2 ⊆ B ⊆ Bk∞ we infer that DmaxF = Bk2 . Hence we
deduce that dF = d and obtain the equality d = dF = dE . In particu-
lar, the uniqueness of the distance ellipsoid of F implies E ∩ Kk = Bk2 for
every distance ellipsoid E of E. Up to now, (i), (v), and part of (ii) are
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shown. The geometric characterization of the John ellipsoid DmaxF implies
Kk ⊆ span

K
K4 and together with Bn2 ⊆ A3,β ⊆ BE , hence K4 ⊆ K3 = Bk2 ,

we obtain (iii).

For the remaining part of (ii) we apply induction on n and 2 ≤ k < n.
To start the induction we consider arbitrary n ≥ 3 and k = n−1. Let E be a
distance ellipsoid of E. We have already seen that E ∩Kn−1 = Bn−1

2
. Thus,

we can find a vector w ∈ Kn such that {e1, . . . , en−1, w} is an E-orthonormal
basis. To see that w is a multiple of en we assume that wj 6= 0 for some
1 ≤ j ≤ n− 1. Without loss of generality let w1 > 0, 0 ≤ µ ≤ 4w1/(w21 +4),
and ν := 1− µw1/2 > 1− µw1 > 0. By the choice of µ we infer that

ν2+µ2 = 1−µw1+
1

4
µ2w21+µ

2 = 1+
µ

4
(−4w1 + µ(w21 + 4)︸ ︷︷ ︸

≤0

) ≤ 1.(4.12)

Hence, the vector x := νe1 + µw ∈ Kn satisfies |x|2E = ν2 + µ2 ≤ 1, i.e.,
x ∈ E , and x1 = ν + µw1 > 1. But our construction of BE = A4,β leads to
BE ∩ Kk ⊆ Bk∞, whence |xj| ≤ 1. This contradiction implies w = λen for a
suitable scalar λ 6= 0 and from Parseval’s equality we infer that

E = {x ∈ Kn | |x|2E ≤ 1} =
{
x ∈ K3

∣∣∣ |x2n|/|λ2|+
n−1∑

j=1

|x2j | ≤ 1
}
.(4.13)

We can assume that λ > 0. Thus, E ∩ span
R
{e1, en} is an ellipsoid in the

real space span
R
{e1, en}, which is isometric to E1,β. Hence, λ must satisfy

0 < λ ≤ 1 by Assertion 2 and Assertion 1(iii). This leads to E ⊆ Bn2 .
Now consider arbitrary n ≥ 3 and 2 ≤ k < n. Since the case k =

n − 1 has already been shown, we may assume 2 ≤ k ≤ n − 2. Let X :=
span

K
{en−1, en} and Fx := spanK

{e1, . . . , en−2, x} for fixed x ∈ X. Notice
that by construction of BE = A4,β we have Fen−1 = E

n−1
k,β and that all

subspaces Fx are isometric to Fen−1 via a rotation of the last two coordinates.
Hence, the induction hypothesis shows that for fixed x ∈ Fx every distance
ellipsoid E of E satisfies

E ∩ Fx ⊆ Bn2 ∩ Fx ⊆ Bn2 ,(4.14)

since E ∩Fx is a distance ellipsoid of Fx. Let e ∈ E be written as e = λx+µy
with suitable x ∈ X, y ∈ Kn−2 and scalars λ, µ ∈ K. Then e ∈ E∩Fx ⊆ Bn2 .
Assertion 6. For arbitrary 1 < 1 + α ≤ min{

√
2, d} and β = d the

Banach space Enk = E
n
k,β satisfies the claim of Theorem 4.3.

Proof. It only remains to prove that the Euclidean ball Bn2 is the unique
distance ellipsoid of Enk . Let E be another distance ellipsoid. We already
know that E ⊆ Bn2 ⊆ BEnk ⊆ dE and E ∩ K

k = Bk2 . Further, dej ∈ BEnk
for k + 1 ≤ j ≤ n by construction, whence ej ∈ E . Thus, the n linearly
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independent contact points of E and Bn2 together with the one-way inclusion
imply the equality E = Bn2 .
Assertion 7. For β := min{

√
3/2,
√
(d2 + 1)/2} and α = β − 1 the

Banach space Ênk := E
n
k,β satisfies the second part of Theorem 4.3.

Proof. Define the ellipsoid

E :=
{
x ∈ Kn

∣∣∣∣
k∑

j=1

|x2j |+
1

λ2

n∑

j=k+1

|x2j | ≤ 1
}

(4.15)

with λ = 1/β. Since E  Bn2 ⊆ BÊnk it only remains to show BÊnk ⊆ dE .
Assertion 2 states

A1,β ⊆ d {x ∈ R2 | x21 + x22/λ2 ≤ 1}
and therefore via rotation

A2,β ⊆ d
{
x ∈ Kn

∣∣∣∣ |x
2
1|+

1

λ2

n∑

j=2

|x2j | ≤ 1
}
⊆ dE .

From A3,β = A2,β ∩ (Bk2 × dBn−k∞ ) we infer that
A3,β ⊆ A2,β ⊆ dE .

Due to B ⊆ dBk2 ⊆ dE with B defined in Assertion 5, we conclude that
A4,β = abs conv(A3,β, B) ⊆ dE .

Thus, E 6= Bn2 is another distance ellipsoid of Ênk .
Remark 4.3. Theorem 4.3 shows that Lewis’ Theorem 4.1 is optimal.

Moreover, for k = n there are also spaces Enk resp. Ê
n
k satisfying (4.2)

resp. (4.3). Consider, e.g., Banach spaces with enough symmetries resp. the
space provided by Example 2.4.
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