COLLOQUIUM MATHEMATICUM

REMARKS AND EXAMPLES CONCERNING DISTANCE ELLIPSOIDS

By

DIRK PRAETORIUS (Wien)

Abstract

We provide for every $2 \leq k \leq n$ an n-dimensional Banach space E with a unique distance ellipsoid \mathcal{E} such that there are precisely k linearly independent contact points between \mathcal{E} and B_{E}. The corresponding result holds for spaces with non-unique distance ellipsoids as well. We construct n-dimensional Banach spaces E such that one distance ellipsoid has precisely k linearly independent contact points and all other distance ellipsoids have less than $k-1$ such points.

1. Preliminaries \& introduction. We consider finite-dimensional Banach spaces over the field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. For technical reasons we always treat \mathbb{K}^{m} for $m \leq n$ as a subspace of \mathbb{K}^{n} embedded on the first m coordinates. Let $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ be a Banach space and B_{E} be its (closed) unit ball. Given any compact, absolutely convex subset $B \subseteq \mathbb{K}^{n}$ having 0 as an interior point, the Minkowski functional

$$
|x|_{B}:=\inf \{\lambda>0 \mid x \in \lambda B\} \quad\left(x \in \mathbb{K}^{n}\right)
$$

is a norm on \mathbb{K}^{n} with unit ball B, i.e., $B=B_{E}$ with $E=\left(\mathbb{K}^{n},|\cdot|_{B}\right)$. For the \mathbb{K}^{n} equipped with the ℓ_{p}-norm we denote the unit ball by $B_{p}^{n}:=$ $\left\{x \in \mathbb{K}^{n} \mid\|x\|_{p} \leq 1\right\}$. An ellipsoid \mathcal{E} in $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ is the image $u\left(B_{2}^{n}\right)$ of the Euclidean ball under an arbitrary isomorphism $u \in L\left(\ell_{2}^{n}, E\right)$. Thus, the Minkowski functional $|\cdot|_{\mathcal{E}}$ is a Hilbert norm and the corresponding scalar product is denoted by $\langle\cdot, \cdot\rangle_{\mathcal{E}}$.

Well known and important examples of ellipsoids in Banach space theory are the John ellipsoid $\mathcal{D}_{E}^{\max }$ and the Loewner ellipsoid $\mathcal{D}_{E}^{\min }$ of a Banach space $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ (see [DJT, T, Pi]): $\mathcal{D}_{E}^{\max }$ is the unique ellipsoid of maximal volume contained in the unit ball B_{E} of E and $\mathcal{D}_{E}^{\min }$ is the unique ellipsoid of minimal volume containing B_{E}, where we take the $2 n$-dimensional Lebesgue measure in the case $\mathbb{K}=\mathbb{C}$. Both ellipsoids can be characterized geometrically: An ellipsoid \mathcal{E} in E is the John ellipsoid $\mathcal{D}_{E}^{\max }$ (resp. the Loewner ellipsoid $\mathcal{D}_{E}^{\min }$) if and only if there are weights $d_{1}, \ldots, d_{N}>0$ and

[^0]so called contact points $x_{1}, \ldots, x_{N} \in E$ such that
(J1) $\sum_{j=1}^{N} d_{j}=n$,
(J2) $\left\|x_{j}\right\|_{E}=1=\left|x_{j}\right|_{\mathcal{E}}$ for all $1 \leq j \leq N$,
(J3) $x=\sum_{j=1}^{N} d_{j}\left\langle x, x_{j}\right\rangle_{\mathcal{E}} x_{j}$ for all $x \in E$,
(J4) $\mathcal{E} \subseteq B_{E}\left(\right.$ resp. $\left.B_{E} \subseteq \mathcal{E}\right)$.
In this case one can choose $N \in \mathbb{N}$ with $N \leq \frac{1}{2} n(n+1)$ for $\mathbb{K}=\mathbb{R}$ and $N \leq n^{2}$ for $\mathbb{K}=\mathbb{C}$ and both estimates were shown to be sharp by Pełczyński and Tomczak-Jaegermann [PT].

Our aim was to study Banach spaces whose John and Loewner ellipsoids are homothetic, i.e., there is a scalar $d>0$ with $\mathcal{D}_{E}^{\min }=d \mathcal{D}_{E}^{\max }$. In view of Lemma 2.3 this leads to the subsequently discussed distance ellipsoids.

Definition 1.1. For n-dimensional Banach spaces E and F we denote by

$$
d(F, E)=\inf \|u\| \cdot\left\|u^{-1}\right\|
$$

the Banach-Mazur distance where the infimum is taken over all isomorphisms $u \in L(F, E)$. By compactness the infimum is attained for some u with $\|u\|=1,\left\|u^{-1}\right\|=d(F, E)$. In the case $F=\ell_{2}^{n}$ we write $d_{E}=d\left(\ell_{2}^{n}, E\right)$ for the Euclidean (Banach-Mazur) distance. One can describe d_{E} as the smallest positive d for which there exists an ellipsoid \mathcal{E} with $\mathcal{E} \subseteq B_{E} \subseteq d \mathcal{E}$. Every ellipsoid for which both inclusions hold with $d=d_{E}$ is called a distance ellipsoid.

Clearly, for every n-dimensional Banach space E and every subspace F of E we have the lower estimate

$$
\begin{equation*}
d_{F} \leq d_{E} . \tag{1.1}
\end{equation*}
$$

The distance ellipsoid of the Hilbert space ℓ_{2}^{n} is obviously unique. Moreover, the aforementioned Lemma 2.3 shows that in case $\mathcal{D}_{E}^{\min }=d \mathcal{D}_{E}^{\max }$ the John ellipsoid is the unique distance ellipsoid and $d_{E}=d$. This holds in particular for spaces with enough symmetries [T, Sections 15, 16].

In general, distance ellipsoids are not unique. In Section 2 we will show how to construct spaces with non-unique distance ellipsoids. A theorem of Maurey $[\mathrm{M}]$ shows that such spaces contain proper subspaces with the same Euclidean distance. In Section 3 we construct a Banach space with a unique distance ellipsoid having this "Maurey property" and show that the spaces with non-unique distance ellipsoids are dense in the set of all such spaces.

In connection with the John and Loewner ellipsoids, it seemed to be of interest to study the geometric properties of distance ellipsoids. A theorem of Lewis [L] implies that there are at least two linearly independent contact points of \mathcal{E} and B_{E}, where \mathcal{E} is an arbitrary distance ellipsoid of E. As our main result, we show in Section 4 that the geometric properties of distance
ellipsoids are much worse than those of the John and Loewner ellipsoids. We construct Banach spaces $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ such that the distance ellipsoids and the unit ball B_{E} have precisely k linearly independent contact points, where $2 \leq k \leq n$ is arbitrary. In particular, there are n-dimensional Banach spaces such that the best distance ellipsoid has only 2 linearly independent contact points with the unit ball, i.e., Lewis' theorem is sharp.

2. Spaces with non-unique distance ellipsoids

Theorem 2.1 (Maurey [M]). If an n-dimensional Banach space E has two different distance ellipsoids one can find two distance ellipsoids $\mathcal{E}_{1}, \mathcal{E}_{2}$ with $\mathcal{E}_{1} \nsubseteq \mathcal{E}_{2}$.

Lemma 2.2. Let $2 \leq m<n$ be integers and F an m-dimensional $B a$ nach space with $d_{F}>1$. Assume without loss of generality that the Euclidean ball B_{2}^{m} is a distance ellipsoid of F and define an n-dimensional Banach space E by $B_{E}:=\operatorname{abs} \operatorname{conv}\left(B_{2}^{n}, B_{F}\right)$. Then F is a subspace of $E, d_{E}=d_{F}$, and B_{2}^{n} and \mathcal{E} are distance ellipsoids of E with $\mathcal{E} \varsubsetneqq B_{2}^{n}$, where

$$
\begin{equation*}
\mathcal{E}:=\left\{x \in \mathbb{K}^{n}\left|\sum_{j=1}^{m}\right| x_{j}^{2}\left|+d_{F}^{2} \sum_{j=m+1}^{n}\right| x_{j}^{2} \mid \leq 1\right\} \tag{2.1}
\end{equation*}
$$

Proof. Since B_{2}^{m} is a distance ellipsoid of F we have $B_{2}^{m} \subseteq B_{F} \subseteq d_{F} B_{2}^{m}$. We infer that

$$
\begin{equation*}
B_{E} \cap \mathbb{K}^{m}=\operatorname{absconv}\left(B_{2}^{m}, B_{F}\right)=B_{F} \tag{2.2}
\end{equation*}
$$

i.e., F is a subspace of E. In particular, we get $d_{F} \leq d_{E}$ and the other estimate follows from $B_{2}^{n} \subseteq B_{E} \subseteq d_{F} B_{2}^{n}$, i.e., B_{2}^{n} is a distance ellipsoid of E. Because $\mathcal{E} \varsubsetneqq B_{2}^{n}$ it remains to prove $B_{E} \subseteq d_{F} \mathcal{E}$. But this holds since $B_{F} \subseteq d_{F} B_{2}^{m} \subseteq d_{F} \mathcal{E}$ and $B_{2}^{n} \subseteq d_{F} \mathcal{E}$.

Lemma 2.3. Let E be an n-dimensional Banach space whose John and Loewner ellipsoids are homothetic, i.e., $\mathcal{D}_{E}^{\min }=d \mathcal{D}_{E}^{\max }$ with a scalar $d \geq 1$. Then the John ellipsoid is the unique distance ellipsoid and the Euclidean distance is given by $d_{E}=d$.

Proof. From the inclusions $\mathcal{E} \subseteq B_{E} \subseteq d_{E} \mathcal{E}$ we get

$$
\begin{align*}
d^{n} \operatorname{vol}(\mathcal{E}) & \leq d^{n} \operatorname{vol}\left(\mathcal{D}_{E}^{\max }\right)=\operatorname{vol}\left(d \mathcal{D}_{E}^{\max }\right)=\operatorname{vol}\left(\mathcal{D}_{E}^{\min }\right) \tag{2.3}\\
& \leq \operatorname{vol}\left(d_{E} \mathcal{E}\right)=d_{E}^{n} \operatorname{vol}(\mathcal{E})
\end{align*}
$$

hence $d \leq d_{E}$ (for $\mathbb{K}=\mathbb{R}$), and $\mathcal{D}_{E}^{\max } \subseteq B_{E} \subseteq \mathcal{D}_{E}^{\min }=d \mathcal{D}_{E}^{\max }$ gives the reverse estimate. Now, $d=d_{E}$ and (2.3) implies the equality $\operatorname{vol}(\mathcal{E})=$ $\operatorname{vol}\left(\mathcal{D}_{E}^{\max }\right)$. Due to the uniqueness of the John ellipsoid, we get $\mathcal{E}=\mathcal{D}_{E}^{\max }$. Note that in the case $\mathbb{K}=\mathbb{C}$ formula (2.3) holds with exponent $2 n$ instead of n.

EXAMPLE 2.4. Let $3 \leq n$ be an integer, $1<d \leq \sqrt{2}$, and $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ given by $B_{E}:=\operatorname{abs} \operatorname{conv}\left(B_{2}^{n}, \pm d e_{1}, \pm d e_{2}\right)$, where $e_{j} \in \mathbb{K}^{n}$ denote the unit vectors. Let $F:=\left(\mathbb{K}^{2},\|\cdot\|_{E}\right)$ denote the canonical 2-dimensional subspace and define the ellipsoids

$$
\begin{equation*}
\mathcal{D}:=d \mathcal{E}, \quad \mathcal{E}:=\left\{x \in \mathbb{K}^{n}| | x_{1}^{2}\left|+\left|x_{2}^{2}\right|+d^{2} \sum_{j=3}^{n}\right| x_{j}^{2} \mid \leq 1\right\} \tag{2.4}
\end{equation*}
$$

Then the Banach space E has the following properties:
(i) $d_{E}=d=d_{F}$,
(ii) $\mathcal{E} \varsubsetneqq B_{2}^{n} \subseteq B_{E} \subseteq d \mathcal{E} \varsubsetneqq d B_{2}^{n}$, i.e., \mathcal{E} and the Euclidean ball B_{2}^{n} are distance ellipsoids,
(iii) $\mathcal{D}_{F}^{\max }=B_{2}^{2}, \mathcal{D}_{E}^{\max }=B_{2}^{n}$,
(iv) $\mathcal{D}_{F}^{\min }=d B_{2}^{2}, \mathcal{D}_{E}^{\min }=\mathcal{D}$,
(v) $\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{\left.x \in \mathbb{K}^{n}| | x\right|_{\mathcal{E}}=1=\|x\|_{E}\right\}=2$,
(vi) $\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{x \in \mathbb{K}^{n} \mid\|x\|_{2}=1=\|x\|_{E}\right\}=n$.

Proof. (iii) We use the fact that the John ellipsoid of ℓ_{1}^{n} is $(1 / \sqrt{n}) B_{2}^{n}$. From $B_{2}^{n} \subseteq B_{E} \subseteq \sqrt{n} B_{1}^{n}$ we infer that $\mathcal{D}_{E}^{\max }=B_{2}^{n}$. Also, direct calculation shows that $\mathcal{B}:=\left\{w_{1}, w_{2}, e_{3}, \ldots, e_{n}\right\}$ is a B_{2}^{n}-orthonormal basis satisfying $\|e\|_{E}=1$ for $e \in \mathcal{B}$ where $w_{j}:=(1 / \sqrt{2})\left(e_{1} \pm e_{2}\right)$ and e_{j} denote the standard unit vectors. Now one derives $B_{2}^{n}=\mathcal{D}_{E}^{\max }$ from the geometric characterization (J1)-(J4) of the John ellipsoid. The same argument shows $B_{2}^{2}=\mathcal{D}_{F}^{\max }$.
(iv) The ellipsoid \mathcal{D} is associated with the scalar product

$$
\begin{equation*}
\langle x, y\rangle_{\mathcal{D}}=\frac{x_{1} \bar{y}_{1}}{d^{2}}+\frac{x_{2} \bar{y}_{2}}{d^{2}}+\sum_{j=3}^{n} x_{j} \bar{y}_{j} \quad\left(x, y \in \mathbb{K}^{n}\right) \tag{2.5}
\end{equation*}
$$

Hence, $\mathcal{B}:=\left\{d e_{1}, d e_{2}, e_{3}, \ldots, e_{4}\right\} \subseteq B_{E}$ defines a \mathcal{D}-orthonormal basis. From $\mathcal{B} \subseteq B_{E} \subseteq \mathcal{D}$ we infer that $1=|e|_{\mathcal{D}} \leq\|e\|_{E} \leq 1$ for all $e \in \mathcal{B}$. The geometric characterization of the Loewner ellipsoid implies $\mathcal{D}=\mathcal{D}_{E}^{\min }$ and analogously $d B_{2}^{2}=\mathcal{D}_{F}^{\min }$.
(i) Lemma 2.3 implies $d=d_{F}$ and Lemma 2.2 shows (i) and (ii).
(v) Let $x \in \mathbb{K}^{n}$ with $|x|_{\mathcal{E}}=1=\|x\|_{E}$. From $\mathcal{E} \varsubsetneqq B_{2}^{n} \subseteq B_{E}$ we infer that $\|x\|_{2}=1$, i.e.,

$$
\begin{equation*}
0=|x|_{\mathcal{E}}^{2}-\|x\|_{2}^{2}=\left(d^{2}-1\right) \sum_{j=3}^{n}\left|x_{j}^{2}\right| \tag{2.6}
\end{equation*}
$$

whence $x \in \mathbb{K}^{2}$. The lower estimate of (v) and the equality in (vi) follow immediately from (iii) and the geometric characterization of the John ellipsoid.

3. The Maurey property

Definition 3.1. An n-dimensional Banach space E is said to have the Maurey property if it contains an $(n-1)$-dimensional subspace F with the same Euclidean distance, i.e., $d_{E}=d_{F} \leq \sqrt{n-1}$.

Theorem 3.1 (Maurey [M]). Every n-dimensional Banach space E with non-unique distance ellipsoids has the Maurey property.

Corollary 3.2. (i) The distance ellipsoid of an n-dimensional Banach space E is unique if $d_{E}>\sqrt{n-1}$. In particular, the distance ellipsoid of a 2-dimensional Banach space is unique.
(ii) If E is of maximal distance, i.e., $d_{E}=\sqrt{n}$, then the John and Loewner ellipsoids are homothetic, i.e., $\mathcal{D}_{E}^{\min }=\sqrt{n} \mathcal{D}_{E}^{\max }$, since both ellipsoids give the Euclidean distance.

The converse of Maurey's theorem is obviously false, e.g., the n-dimensional Hilbert space $E=\ell_{2}^{n}$ has the Maurey property. Less trivial examples are given below by almost rotation invariant spaces. The next result shows that the Banach spaces with non-unique distance ellipsoids are dense in the Banach-Mazur distance in the set of spaces with the Maurey property.

Proposition 3.3. Let E be an n-dimensional Banach space with the Maurey property, $n \geq 3$. For every $\lambda>1$ we can find a Banach space E^{\prime} with non-unique distance ellipsoids and $d\left(E, E^{\prime}\right) \leq \lambda$. For $d_{E}>1$, the construction leads to $d_{E}=d_{E^{\prime}}$.

Proof. We may assume that the Euclidean ball B_{2}^{n} is a distance ellipsoid of E and the subspace $F=\left(\mathbb{K}^{n-1},\|\cdot\|_{E}\right)$ satisfies $d_{E}=d_{F}$. The case $d_{E}=1$ is already proved in Example 2.4. We consider the case $d_{E}>1$ and assume $1<\lambda \leq d_{E}$. Define E^{\prime} by

$$
\begin{equation*}
B_{E^{\prime}}:=\operatorname{abs} \operatorname{conv}\left(B_{2}^{n}, B_{F},(1 / \lambda) B_{E}\right) \tag{3.1}
\end{equation*}
$$

Obviously, we have $B_{E^{\prime}} \subseteq B_{E} \subseteq \lambda B_{E^{\prime}}$, hence $d\left(E, E^{\prime}\right) \leq \lambda$. Further, the construction implies $B_{2}^{n} \subseteq B_{E^{\prime}} \subseteq d_{E} B_{2}^{n}$, whence $d_{E^{\prime}} \leq d_{E}$, since the Euclidean balls are distance ellipsoids of E and F. Also, $B_{E^{\prime}} \cap \mathbb{K}^{n-1}=B_{F}$ shows that F is a subspace of E^{\prime} and Lemma 2.2 leads to $d_{E}=d_{F} \leq d_{E^{\prime}}$. In particular, the Euclidean ball B_{2}^{n} is a distance ellipsoid of E^{\prime}. Define another ellipsoid $\mathcal{E} \varsubsetneqq B_{2}^{n}$ by

$$
\begin{equation*}
\mathcal{E}:=\left\{x \in \mathbb{K}^{n}\left|\sum_{j=1}^{n-1}\right| x_{j}^{2}|+\lambda| x_{n}^{2} \mid \leq 1\right\} \tag{3.2}
\end{equation*}
$$

To see that \mathcal{E} is a distance ellipsoid of E^{\prime} it remains to prove the inclusion $B_{E^{\prime}} \subseteq d_{E} \mathcal{E}$. But this follows immediately from $B_{F} \subseteq d_{E} B_{2}^{n-1} \subseteq d_{E} \mathcal{E}$, and

$$
\begin{equation*}
B_{2}^{n} \subseteq d_{E} \mathcal{E} \quad \text { and } \quad(1 / \lambda) B_{E} \subseteq\left(d_{E} / \lambda\right) B_{2}^{n} \subseteq d_{E} \mathcal{E} \tag{3.3}
\end{equation*}
$$

where we have used $\lambda / d_{E} \leq 1$.

Definition 3.2. (i) An n-dimensional Banach space E is sign invariant if the diagonal operators $\Delta:=\operatorname{diag}(\varepsilon), \varepsilon \in\{ \pm 1\}^{n}$, are isometries of E.
(ii) Further, E is almost rotation invariant if the norm $\|\cdot\|_{E}$ is invariant in the last $n-1$ components under unitary matrices, i.e.,

$$
\|x\|_{E}=\|U x\|_{E} \quad \begin{array}{ll}
\text { for all } x \in \mathbb{K}^{n} \tag{3.4}\\
& \text { and unitary matrices } U \in \mathbb{K}^{n \times n} \text { with } U e_{1}=e_{1}
\end{array}
$$

Geometrically, the ball B_{E} is determined by its 2-dimensional section $B_{F}=$ $B_{E} \cap \mathbb{K}^{2}$ and given by rotation around the x_{1}-axis.

Proposition 3.4. The distance ellipsoid \mathcal{E} of an almost rotation invariant Banach space $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ is unique. Let $F^{\prime}=\left(\mathbb{K}^{2},\|\cdot\|_{E}\right)$ and $F=\left(\mathbb{R}^{2},\|\cdot\|_{E}\right)$. Then the unique distance ellipsoid \mathcal{E}_{F} of F is given by

$$
\begin{equation*}
\mathcal{E}_{F}=\left\{x \in \mathbb{R}^{2} \mid x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2} \leq 1\right\} \tag{3.5}
\end{equation*}
$$

for some scalars $a_{1}, a_{2}>0$, the unique distance ellipsoid of E is

$$
\begin{equation*}
\mathcal{E}=\left\{x \in \mathbb{K}^{n}| | x_{1}^{2}\left|/ a_{1}^{2}+\sum_{j=2}^{n}\right| x_{j}^{2} \mid / a_{2}^{2} \leq 1\right\} \tag{3.6}
\end{equation*}
$$

and the unique distance ellipsoid of F^{\prime} is just the intersection $\mathcal{E} \cap \mathbb{K}^{2}$. Moreover, the Euclidean distances of E, F^{\prime} and the (real) Euclidean distance of F are equal, i.e., $d_{E}=d_{F^{\prime}}=d_{F}$. In particular, E has the Maurey property.

The proof uses the following lemma, whose elementary proof is left to the reader.

Lemma 3.5. Let $\mathcal{E} \subseteq \mathbb{K}^{n}$ be an ellipsoid which is sign invariant, i.e., $\Delta(\mathcal{E})=\mathcal{E}$ for all $\varepsilon \in\{ \pm 1\}^{n}, \Delta:=\operatorname{diag}(\varepsilon)$. Then $\mathcal{E}=\left\{x \in \mathbb{K}^{n}\left|\sum_{j=1}^{n}\right| x_{j}^{2} \mid / a_{j}^{2}\right.$ $\leq 1\}$ for some suitable $a_{j}>0$.

Proof of Proposition 3.4. Notice that the norm $\|\cdot\|_{E}$ is sign invariant. By Lemma 3.5, the unique distance ellipsoid of the 2-dimensional subspace F^{\prime} is given by

$$
\begin{equation*}
\mathcal{E}_{F^{\prime}}=\left\{x \in \mathbb{K}^{2}| | x_{1}^{2}\left|/ b_{1}^{2}+\left|x_{2}^{2}\right| / b_{2}^{2} \leq 1\right\}\right. \tag{3.7}
\end{equation*}
$$

for some $b_{j}>0$. The same argument shows that the unique distance ellipsoid \mathcal{E}_{F} of F is as in (3.5). First, we see that $\mathcal{D}:=\mathcal{E}_{F^{\prime}} \cap \mathbb{R}^{2}$ is an ellipsoid in \mathbb{R}^{2} with $\mathcal{D} \subseteq B_{F} \subseteq d_{F^{\prime}} \mathcal{D}$, hence $d_{F} \leq d_{F^{\prime}}$. Further, we define an ellipsoid \mathcal{D}^{\prime} in \mathbb{K}^{2} extending \mathcal{E}_{F} and get $\mathcal{D}^{\prime} \subseteq B_{F^{\prime}} \subseteq d_{F} \mathcal{D}^{\prime}$. Thus, $d_{F}=d_{F^{\prime}}$ and the uniqueness of the distance ellipsoid yields $\mathcal{E}_{F}=\mathcal{D}$ and $\mathcal{E}_{F^{\prime}}=\mathcal{D}^{\prime}$, i.e., $a_{j}=b_{j}$. Since F^{\prime} is a subspace of E we get $d_{F}=d_{F^{\prime}} \leq d_{E}$. On the other hand, \mathcal{E} from (3.6) satisfies $\mathcal{E} \subseteq B_{E} \subseteq d_{F^{\prime}} \mathcal{E}$ since E and \mathcal{E} are almost rotation invariant. Hence, $d_{E}=d_{F}$ and \mathcal{E} is a distance ellipsoid of E.

To see that \mathcal{E} is unique we fix a distance ellipsoid \mathcal{E}^{\prime} of E. For every unitary matrix $U \in \mathbb{K}^{n \times n}$ with $U e_{1}=e_{1}$ we consider the 2-dimensional
subspace $F_{U}^{\prime}:=\operatorname{span}_{\mathbb{K}}\left\{e_{1}, U e_{2}\right\}$. Since E is almost rotation invariant, U is an isometry from F^{\prime} onto F_{U}^{\prime}. Thus, $U\left(\mathcal{E}_{F^{\prime}}\right)=\mathcal{E} \cap F_{U}^{\prime}=\mathcal{E}^{\prime} \cap F_{U}^{\prime}$ since all give the unique distance ellipsoid of F_{U}^{\prime}. This leads to $\mathcal{E}=\mathcal{E}^{\prime}$.

Example 3.6. Let $n \geq 2,1 \leq \lambda$, and $E=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right)$ with $B_{E}:=$ $\operatorname{abs} \operatorname{conv}\left(B_{2}^{n}, \pm \lambda e_{1}\right)$. Then E is an almost rotation invariant Banach space with John ellipsoid $\mathcal{D}_{E}^{\max }=B_{2}^{n}$ and Loewner ellipsoid $\mathcal{D}_{E}^{\min }=\left\{x \in \mathbb{K}^{n} \mid\right.$ $\left.\left|x_{1}^{2}\right| / \lambda^{2}+\sum_{j=2}^{n}\left|x_{j}^{2}\right| \leq 1\right\}$. The Euclidean distance is $d_{E}=\sqrt{2-1 / \lambda^{2}}$ and $\left(1 / d_{E}\right) \mathcal{D}_{E}^{\min }$ is the unique distance ellipsoid.

Proof. To determine $\mathcal{D}_{E}^{\max }$ and $\mathcal{D}_{E}^{\min }$ one can use the same argument as in Example 2.4. To determine the distance ellipsoid \mathcal{E} of E we use Proposition 3.4 and get (3.6). Moreover, $\lambda e_{1}, e_{2}, \ldots, e_{n} \in B_{E} \subseteq d_{E} \mathcal{E}$ yields $\mathcal{D}_{E}^{\min } \subseteq d_{E} \mathcal{E}$. Thus $\left(1 / d_{E}\right) \mathcal{D}_{E}^{\min } \subseteq \mathcal{E} \subseteq B_{E} \subseteq \mathcal{D}_{E}^{\min }$ and this shows that $\mathcal{D}_{E}^{\min }$ is the unique distance ellipsoid of E. The calculation of d_{E} is elementary since we only have to consider the 2-dimensional real case.

Remark 3.1. Lemma 2.3 is optimal in the following sense: Example 2.4 gives a Banach space whose Euclidean distance is attained for the John and Loewner ellipsoids although the two ellipsoids are not homothetic, i.e.,

$$
\begin{equation*}
\left(1 / d_{E}\right) \mathcal{D}_{E}^{\min } \varsubsetneqq \mathcal{D}_{E}^{\max } \subseteq B_{E} \subseteq \mathcal{D}_{E}^{\min } \varsubsetneqq d_{E} \mathcal{D}_{E}^{\max } \tag{3.8}
\end{equation*}
$$

Example 3.6 provides a Banach E space whose unique distance ellipsoid is the Loewner ellipsoid, although the John and Loewner ellipsoids are not homothetic. By duality the unique distance ellipsoid of the dual space E^{*} is its John ellipsoid and the two ellipsoids, i.e., the John and Loewner ellipsoids, are not homothetic.

Remark 3.2. In general, a result analogous to Proposition 3.4 does not hold even for the John or Loewner ellipsoid: Consider the ellipsoid $\mathcal{D}:=$ $\left\{x \in \mathbb{R}^{n} \mid x_{1}^{2} / a_{1}^{2}+\sum_{j=1}^{n} x_{j}^{2} / a_{2}^{2} \leq 1\right\}$ and the real Banach space $E=$ $\left(\mathbb{R}^{n},\|\cdot\|_{E}\right)$ given by $B_{E}:=\operatorname{abs} \operatorname{conv}\left(B_{2}^{n}, \mathcal{D}\right)$ with $a_{1}:=\sqrt{9 / 10}, a_{2}:=$ $\sqrt{11 / 10}, n \geq 3$. An elementary calculation for the subspace $F=\left(\mathbb{R}^{2},\|\cdot\|_{E}\right)$ shows $\mathcal{D}_{F}^{\max }=B_{2}^{2}$. In spite of this $\operatorname{vol}(\mathcal{D})>\operatorname{vol}\left(B_{2}^{n}\right)$, hence $\mathcal{D}_{E}^{\max } \neq B_{2}^{n}$ although E is almost rotation invariant. A counterexample for the Loewner ellipsoid follows by duality.

4. Lewis' Theorem about contact points

Theorem 4.1 (Lewis [L]). Let E and F be n-dimensional Banach spaces and $u \in L(F, E)$ be an isomorphism with $\|u\|=1,\left\|u^{-1}\right\|=d(F, E)$. Then

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{x \in \mathbb{K}^{n} \mid\|x\|_{F}=1=\|u x\|_{E}\right\} \geq 2 \tag{4.1}
\end{equation*}
$$

Corollary 4.2. For any n-dimensional Banach space E with distance ellipsoid \mathcal{E}, we have

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{\left.x \in \mathbb{K}^{n}| | x\right|_{\mathcal{E}}=1=\|x\|_{E}\right\} \geq 2
$$

Remark 4.1. Corollary 4.2 in combination with Theorem 2.1 of Maurey gives another proof that the distance ellipsoid of a 2-dimensional Banach space is unique.

Theorem 4.3. For every $2 \leq k<n$ and $1<d \leq \sqrt{k}$, there are n dimensional Banach spaces $E_{k}^{n}=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right), \widehat{E}_{k}^{n}=\left(\mathbb{K}^{n},\|\cdot\|_{\widehat{E}}\right)$ such that
(a) the Euclidean ball B_{2}^{n} is the unique distance ellipsoid of E_{k}^{n} and

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{x \in \mathbb{K}^{n} \mid\|x\|_{2}=1=\|x\|_{E}\right\}=k \tag{4.2}
\end{equation*}
$$

(b) the distance ellipsoid of \widehat{E}_{k}^{n} is not unique, B_{2}^{n} is a distance ellipsoid which satisfies

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{x \in \mathbb{K}^{n} \mid\|x\|_{2}=1=\|x\|_{\widehat{E}}\right\}=k \tag{4.3}
\end{equation*}
$$

and $\mathcal{E} \subseteq B_{2}^{n}$ for any other distance ellipsoid of \widehat{E}_{k}^{n}. Therefore,

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{\left.x \in \mathbb{K}^{n}| | x\right|_{\mathcal{E}}=1=\|x\|_{\widehat{E}}\right\}<k \tag{4.4}
\end{equation*}
$$

for every distance ellipsoid $\mathcal{E} \neq B_{2}^{n}$ of \widehat{E}_{k}^{n}. Also, the explicit construction of E_{k}^{n} and \widehat{E}_{k}^{n} leads to the following properties:
(i) $d_{E_{k}^{n}}=d=d_{\widehat{E}_{k}^{n}}$,
(ii) $E_{k}^{n}, \widehat{E}_{k}^{n}$ are sign invariant,
(iii) E_{k}^{n} and \widehat{E}_{k}^{n} have the Maurey property.

We give the proof by explicit construction of the unit balls of E_{k}^{n} and \widehat{E}_{k}^{n}. This is done in several steps.

AsSERTION 1. Define the concave function $f:[-1,1] \rightarrow[0,1], f(t):=$ $\sqrt{1-t^{2}}+\alpha t^{2}$ with some fixed $\alpha>0$ satisfying $1+\alpha \leq \min \{\sqrt{2}, d\}$. Set

$$
A_{0}:=\operatorname{abs} \operatorname{conv}\{(f(t), t),(-f(t), t) \mid-1 \leq t \leq 1\}
$$

Then $E_{0}:=\left(\mathbb{R}^{2},|\cdot|_{A_{0}}\right)$ defines a 2 -dimensional sign invariant Banach space with
(i) $B_{2}^{2} \subseteq A_{0} \subseteq d B_{2}^{2}, A_{0} \subseteq B_{\infty}^{2}$,
(ii) $\mathcal{K}_{0}:=\left\{x \in \mathbb{R}^{2}\left|\|x\|_{2}=1=|x|_{A_{0}}\right\}=\left\{ \pm e_{1}, \pm e_{2}\right\}\right.$,
(iii) every ellipsoid $\mathcal{E} \subseteq A_{0}$ with $\pm e_{1} \in \mathcal{E}$ can be written as

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{\lambda}:=\left\{x \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2} / \lambda^{2} \leq 1\right\} \tag{4.5}
\end{equation*}
$$

for a suitable scalar $0<\lambda \leq 1$,
(iv) for $\beta:=\min \left\{\sqrt{3 / 2}, \sqrt{\left(d^{2}+1\right) / 2}\right\}>1, \alpha=\beta-1$, and $\lambda=1 / \beta$ we have

$$
\begin{equation*}
\mathcal{E}_{\lambda} \varsubsetneqq B_{2}^{2} \subseteq A_{0} \subseteq d \mathcal{E}_{\lambda} \varsubsetneqq d B_{2}^{2} \tag{4.6}
\end{equation*}
$$

Proof. From $\alpha \leq \sqrt{2}-1$ we infer that A_{0} is closed and absolutely convex and (i)-(iv) follow by direct calculation using the fact that $\alpha \leq d-1$.

AsSERTION 2. $A_{1, \beta}:=\operatorname{abs} \operatorname{conv}\left(A_{0}, \beta e_{2}\right), 1<\beta \leq d, E_{1, \beta}:=\left(\mathbb{R}^{2}\right.$, $\left.|\cdot|_{A_{1, \beta}}\right)$ defines a sign invariant Banach space which shares properties (i), (iii), and (iv) with E_{0}, but only $\pm e_{1}$ are contact points between $A_{1, \beta}$ and B_{2}^{2}, i.e., $\mathcal{K}_{1}:=\left\{x \in \mathbb{R}^{2}\left|\|x\|_{2}=1=|x|_{A_{1, \beta}}\right\}=\left\{ \pm e_{1}\right\}\right.$.

REmark 4.2. For the construction of E_{k}^{n} we will use arbitrary $1<$ $1+\alpha \leq \min \{\sqrt{2}, d\}$ and $\beta=d$, whereas \widehat{E}_{k}^{n} is constructed with $\beta:=$ $\min \left\{\sqrt{3 / 2}, \sqrt{\left(d^{2}+1\right) / 2}\right\}, \alpha=\beta-1$. See Assertions 6 and 7 below.

We shall use the following obvious lemma to obtain the next assertion.
Lemma 4.4. Let $F=\left(\mathbb{R}^{2},\|\cdot\|_{F}\right)$ be a sign invariant real Banach space and define

$$
\begin{equation*}
E:=\left(\mathbb{K}^{n},\|\cdot\|_{E}\right) \quad \text { via } \quad\|x\|_{E}:=\left\|\left(\left|x_{1}\right|,\left\|\left(x_{j}\right)_{j=2}^{n}\right\|_{2}\right)\right\|_{F} \quad\left(x \in \mathbb{K}^{n}\right) \tag{4.7}
\end{equation*}
$$

Then:
(i) E is an almost rotation invariant Banach space and the real subspace $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e\right\}$ with arbitrary $e \in \operatorname{span}_{\mathbb{R}}\left\{e_{2}, \ldots, e_{n}\right\}$ is isometric to F (via rotation),
(ii) if for some $\lambda>0$ the ellipsoid \mathcal{E}_{λ} from (4.5) satisfies $\mathcal{E}_{\lambda} \subseteq B_{F} \subseteq d \mathcal{E}_{\lambda}$, then $\mathcal{E}_{\lambda}^{\prime} \subseteq B_{E} \subseteq d \mathcal{E}_{\lambda}^{\prime}$, where

$$
\begin{equation*}
\mathcal{E}_{\lambda}^{\prime}:=\left\{\left.x \in \mathbb{K}^{n}| | x_{1}^{2}\left|+\frac{1}{\lambda^{2}} \sum_{j=2}^{n}\right| x_{j}^{2} \right\rvert\,\right\} \tag{4.8}
\end{equation*}
$$

Assertion 3. Define $E_{2, \beta}=\left(\mathbb{K}^{n},\|\cdot\|_{E_{2}}\right)$ as in Lemma 4.4 with $F=E_{1, \beta}$. Denote by $A_{2, \beta}$ the ball of $E_{2, \beta}$. Then the Banach space $E_{2, \beta}$ is sign invariant and has the following properties:
(i) $B_{2}^{n} \subseteq A_{2, \beta} \subseteq d B_{2}^{n}$,
(ii) $\mathcal{K}_{2}:=\left\{x \in \mathbb{K}^{n}\left|\|x\|_{2}=1=|x|_{A_{2, \beta}}\right\}=\left\{\lambda e_{1} \mid \lambda \in S_{\mathbb{K}}\right\}\right.$,
(iii) for any $e \in \operatorname{span}_{\mathbb{R}}\left\{e_{2}, \ldots, e_{n}\right\}$, the real subspace $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e\right\}$ is isometric to $E_{1, \beta}$.

The next step will use the following simple interpolation lemma, whose proof is left to the reader.

Lemma 4.5. Let $E=\left(\mathbb{K}^{m},\|\cdot\|_{E}\right)$ and $F=\left(\mathbb{K}^{n},\|\cdot\|_{F}\right)$ be finite-dimensional Banach spaces with $m \leq n$ and $X=\left(\mathbb{K}^{m},\|\cdot\|_{X}\right)$ and $Y=\left(\mathbb{K}^{n},\|\cdot\|_{Y}\right)$ defined by $B_{X}:=B_{E} \cap B_{F}$ and $B_{Y}:=\operatorname{conv}\left(B_{E}, B_{F}\right)$. Then the norms of X resp. Y are given by

$$
\begin{align*}
\|x\|_{X} & =\max \left\{\|x\|_{E},\|x\|_{F}\right\} \quad\left(x \in \mathbb{K}^{m}\right) \tag{4.9}\\
\|y\|_{Y} & =\min \left\{\|e\|_{E}+\|f\|_{F} \mid e \in \mathbb{K}^{m}, f \in \mathbb{K}^{n}, y=e+f\right\} \quad\left(y \in \mathbb{K}^{n}\right)
\end{align*}
$$

AsSERTION 4. $A_{3, \beta}:=A_{2, \beta} \cap\left(B_{2}^{k} \times d B_{2}^{n-k}\right)$ yields a sign invariant $B a$ nach space $E_{3, \beta}:=\left(\mathbb{K}^{n},|\cdot|_{A_{3, \beta}}\right)$ with the following properties:
(i) $B_{2}^{n} \subseteq A_{3, \beta} \subseteq d B_{2}^{n}, A_{3, \beta} \cap \mathbb{K}^{k}=B_{2}^{k}$,
(ii) $\mathcal{K}_{3}:=\left\{x \in \mathbb{K}^{n}\left|\|x\|_{2}=1=|x|_{A_{3, \beta}}\right\}=B_{2}^{k}\right.$,
(iii) the real subspaces $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e\right\}$ with $e \in \operatorname{span}_{\mathbb{R}}\left\{e_{k+1}, \ldots, e_{n}\right\}$ are isometric to $E_{1, \beta}$.

Proof. Obviously, $A_{3, \beta}$ is an absolutely convex, compact set which satisfies (i) and (iii). Thus, $|\cdot|_{A_{3, \beta}}$ is a norm and $B_{2}^{k} \subseteq \mathcal{K}_{3}$. Simple interpolation yields

$$
\begin{equation*}
|x|_{A_{3, \beta}}=\max \left\{|x|_{A_{2, \beta}},\left\|\left(x_{j}\right)_{j=1}^{k}\right\|_{2},\|x\|_{\infty} / d\right\} \quad\left(x \in \mathbb{K}^{n}\right) \tag{4.11}
\end{equation*}
$$

To get the reverse inclusion in (ii) let $x \in \mathbb{K}^{n}$ with $|x|_{A_{3, \beta}}=1=\|x\|_{2}$. In particular, $\left|x_{j}\right| \leq 1$ for all $1 \leq j \leq n$, whence $\|x\|_{\infty} / d<1$. We consider the other two cases. If $|x|_{A_{2, \beta}}=1$ Assertion 3 implies $x=\lambda e_{1}$ with a suitable $\lambda \in S_{\mathbb{K}}$. Otherwise, $\left\|\left(x_{j}\right)_{j=1}^{k}\right\|_{2}=1$ leads to $x_{j}=0$ for $k+1 \leq j \leq n$. ■

Due to (i) the Banach space $E_{3, \beta}$ has Euclidean distance $d_{E_{3, \beta}} \leq d$. The easiest way to get equality is to embed a subspace F with distance $d_{F}=d$. This is the last step of our construction.

Assertion 5. Define

$$
A_{4, \beta}:=\operatorname{absconv}\left(A_{3, \beta}, B\right) \quad \text { with } \quad B:=\operatorname{absconv}\left(B_{2}^{k}, \frac{d}{\sqrt{k}} B_{\infty}^{k}\right)
$$

Then $E_{k, \beta}^{n}:=\left(\mathbb{K}^{n},|\cdot|_{A_{4, \beta}}\right)$ is a sign invariant Banach space with the following properties:
(i) $d_{E_{k, \beta}^{n}}=d$ and the Euclidean ball is a distance ellipsoid of $E_{k, \beta}^{n}$,
(ii) every distance ellipsoid \mathcal{E} is contained in B_{2}^{n}, i.e., $\mathcal{E} \subseteq B_{2}^{n}$, and satisfies $\mathcal{E} \cap \mathbb{K}^{k}=B_{2}^{k}$,
(iii) $\mathcal{K}_{4}:=\left\{x \in \mathbb{K}^{n}\left|\|x\|_{2}=1=|x|_{A_{4, \beta}}\right\} \subseteq B_{2}^{k}, \operatorname{dim}_{\mathbb{K}} \operatorname{span}_{\mathbb{K}} \mathcal{K}_{4}=k\right.$,
(iv) the real subspace $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e\right\}$ with $e \in \operatorname{span}_{\mathbb{R}}\left\{e_{k+1}, \ldots, e_{n}\right\}$ is isometric to $E_{1, \beta}$,
(v) $E_{k, \beta}^{n}$ has the Maurey property, since $d_{E_{k, \beta}^{n}}=d=d_{F}$ with $F:=$ $\left(\mathbb{K}^{k},\|\cdot\|_{E}\right)=\left(\mathbb{K}^{k},|\cdot|_{B}\right)$.

Proof. For abbreviation we write $E=E_{k, \beta}^{n}$. Again, it is trivial that $B_{E}=A_{4, \beta}$ is a sign invariant Banach space with $B_{2}^{n} \subseteq B_{E} \subseteq d B_{2}^{n}$ and $B_{E} \cap \mathbb{K}^{k}=B \subseteq B_{\infty}^{k}$. In particular, $F:=\left(\mathbb{K}^{k},\|\cdot\|_{E}\right)=\left(\mathbb{K}^{k},|\cdot|_{B}\right)$ has enough symmetries and $d_{F} \leq d_{E} \leq d$. $\mathcal{D}_{F}^{\max }$ is the unique distance ellipsoid of F. From $B_{2}^{k} \subseteq B \subseteq B_{\infty}^{k}$ we infer that $\mathcal{D}_{F}^{\max }=B_{2}^{k}$. Hence we deduce that $d_{F}=d$ and obtain the equality $d=d_{F}=d_{E}$. In particular, the uniqueness of the distance ellipsoid of F implies $\mathcal{E} \cap \mathbb{K}^{k}=B_{2}^{k}$ for every distance ellipsoid \mathcal{E} of E. Up to now, (i), (v), and part of (ii) are
shown. The geometric characterization of the John ellipsoid $\mathcal{D}_{F}^{\max }$ implies $\mathbb{K}^{k} \subseteq \operatorname{span}_{\mathbb{K}} \mathcal{K}_{4}$ and together with $B_{2}^{n} \subseteq A_{3, \beta} \subseteq B_{E}$, hence $\mathcal{K}_{4} \subseteq \mathcal{K}_{3}=B_{2}^{k}$, we obtain (iii).

For the remaining part of (ii) we apply induction on n and $2 \leq k<n$. To start the induction we consider arbitrary $n \geq 3$ and $k=n-1$. Let \mathcal{E} be a distance ellipsoid of E. We have already seen that $\mathcal{E} \cap \mathbb{K}^{n-1}=B_{2}^{n-1}$. Thus, we can find a vector $w \in \mathbb{K}^{n}$ such that $\left\{e_{1}, \ldots, e_{n-1}, w\right\}$ is an \mathcal{E}-orthonormal basis. To see that w is a multiple of e_{n} we assume that $w_{j} \neq 0$ for some $1 \leq j \leq n-1$. Without loss of generality let $w_{1}>0,0 \leq \mu \leq 4 w_{1} /\left(w_{1}^{2}+4\right)$, and $\nu:=1-\mu w_{1} / 2>1-\mu w_{1}>0$. By the choice of μ we infer that

$$
\begin{equation*}
\nu^{2}+\mu^{2}=1-\mu w_{1}+\frac{1}{4} \mu^{2} w_{1}^{2}+\mu^{2}=1+\frac{\mu}{4}(\underbrace{-4 w_{1}+\mu\left(w_{1}^{2}+4\right)}_{\leq 0}) \leq 1 . \tag{4.12}
\end{equation*}
$$

Hence, the vector $x:=\nu e_{1}+\mu w \in \mathbb{K}^{n}$ satisfies $|x|_{\mathcal{E}}^{2}=\nu^{2}+\mu^{2} \leq 1$, i.e., $x \in \mathcal{E}$, and $x_{1}=\nu+\mu w_{1}>1$. But our construction of $B_{E}=A_{4, \beta}$ leads to $B_{E} \cap \mathbb{K}^{k} \subseteq B_{\infty}^{k}$, whence $\left|x_{j}\right| \leq 1$. This contradiction implies $w=\lambda e_{n}$ for a suitable scalar $\lambda \neq 0$ and from Parseval's equality we infer that

$$
\begin{equation*}
\mathcal{E}=\left\{\left.x \in \mathbb{K}^{n}| | x\right|_{\mathcal{E}} ^{2} \leq 1\right\}=\left\{x \in \mathbb{K}^{3}| | x_{n}^{2}\left|/\left|\lambda^{2}\right|+\sum_{j=1}^{n-1}\right| x_{j}^{2} \mid \leq 1\right\} . \tag{4.13}
\end{equation*}
$$

We can assume that $\lambda>0$. Thus, $\mathcal{E} \cap \operatorname{span}_{\mathbb{R}}\left\{e_{1}, e_{n}\right\}$ is an ellipsoid in the real space $\operatorname{span}_{\mathbb{R}}\left\{e_{1}, e_{n}\right\}$, which is isometric to $E_{1, \beta}$. Hence, λ must satisfy $0<\lambda \leq 1$ by Assertion 2 and Assertion 1(iii). This leads to $\mathcal{E} \subseteq B_{2}^{n}$.

Now consider arbitrary $n \geq 3$ and $2 \leq k<n$. Since the case $k=$ $n-1$ has already been shown, we may assume $2 \leq k \leq n-2$. Let $X:=$ $\operatorname{span}_{\mathbb{K}}\left\{e_{n-1}, e_{n}\right\}$ and $F_{x}:=\operatorname{span}_{\mathbb{K}}\left\{e_{1}, \ldots, e_{n-2}, x\right\}$ for fixed $x \in X$. Notice that by construction of $B_{E}=A_{4, \beta}$ we have $F_{e_{n-1}}=E_{k, \beta}^{n-1}$ and that all subspaces F_{x} are isometric to $F_{e_{n-1}}$ via a rotation of the last two coordinates. Hence, the induction hypothesis shows that for fixed $x \in F_{x}$ every distance ellipsoid \mathcal{E} of E satisfies

$$
\begin{equation*}
\mathcal{E} \cap F_{x} \subseteq B_{2}^{n} \cap F_{x} \subseteq B_{2}^{n} \tag{4.14}
\end{equation*}
$$

since $\mathcal{E} \cap F_{x}$ is a distance ellipsoid of F_{x}. Let $e \in \mathcal{E}$ be written as $e=\lambda x+\mu y$ with suitable $x \in X, y \in \mathbb{K}^{n-2}$ and scalars $\lambda, \mu \in \mathbb{K}$. Then $e \in \mathcal{E} \cap F_{x} \subseteq B_{2}^{n}$.

Assertion 6. For arbitrary $1<1+\alpha \leq \min \{\sqrt{2}, d\}$ and $\beta=d$ the Banach space $E_{k}^{n}=E_{k, \beta}^{n}$ satisfies the claim of Theorem 4.3.

Proof. It only remains to prove that the Euclidean ball B_{2}^{n} is the unique distance ellipsoid of E_{k}^{n}. Let \mathcal{E} be another distance ellipsoid. We already know that $\mathcal{E} \subseteq B_{2}^{n} \subseteq B_{E_{k}^{n}} \subseteq d \mathcal{E}$ and $\mathcal{E} \cap \mathbb{K}^{k}=B_{2}^{k}$. Further, $d e_{j} \in B_{E_{k}^{n}}$ for $k+1 \leq j \leq n$ by construction, whence $e_{j} \in \mathcal{E}$. Thus, the n linearly
independent contact points of \mathcal{E} and B_{2}^{n} together with the one-way inclusion imply the equality $\mathcal{E}=B_{2}^{n}$.

Assertion 7. For $\beta:=\min \left\{\sqrt{3 / 2}, \sqrt{\left(d^{2}+1\right) / 2}\right\}$ and $\alpha=\beta-1$ the Banach space $\widehat{E}_{k}^{n}:=E_{k, \beta}^{n}$ satisfies the second part of Theorem 4.3.

Proof. Define the ellipsoid

$$
\begin{equation*}
\mathcal{E}:=\left\{\left.x \in \mathbb{K}^{n}\left|\sum_{j=1}^{k}\right| x_{j}^{2}\left|+\frac{1}{\lambda^{2}} \sum_{j=k+1}^{n}\right| x_{j}^{2} \right\rvert\, \leq 1\right\} \tag{4.15}
\end{equation*}
$$

with $\lambda=1 / \beta$. Since $\mathcal{E} \nsubseteq B_{2}^{n} \subseteq B_{\widehat{E}_{k}^{n}}$ it only remains to show $B_{\widehat{E}_{k}^{n}} \subseteq d \mathcal{E}$. Assertion 2 states

$$
A_{1, \beta} \subseteq d\left\{x \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2} / \lambda^{2} \leq 1\right\}
$$

and therefore via rotation

$$
A_{2, \beta} \subseteq d\left\{\left.x \in \mathbb{K}^{n}| | x_{1}^{2}\left|+\frac{1}{\lambda^{2}} \sum_{j=2}^{n}\right| x_{j}^{2} \right\rvert\, \leq 1\right\} \subseteq d \mathcal{E}
$$

From $A_{3, \beta}=A_{2, \beta} \cap\left(B_{2}^{k} \times d B_{\infty}^{n-k}\right)$ we infer that

$$
A_{3, \beta} \subseteq A_{2, \beta} \subseteq d \mathcal{E}
$$

Due to $B \subseteq d B_{2}^{k} \subseteq d \mathcal{E}$ with B defined in Assertion 5 , we conclude that

$$
A_{4, \beta}=\operatorname{absconv}\left(A_{3, \beta}, B\right) \subseteq d \mathcal{E}
$$

Thus, $\mathcal{E} \neq B_{2}^{n}$ is another distance ellipsoid of \widehat{E}_{k}^{n}.
Remark 4.3. Theorem 4.3 shows that Lewis' Theorem 4.1 is optimal. Moreover, for $k=n$ there are also spaces E_{k}^{n} resp. \widehat{E}_{k}^{n} satisfying (4.2) resp. (4.3). Consider, e.g., Banach spaces with enough symmetries resp. the space provided by Example 2.4.

Acknowledgements. The main part of this paper was written while the author was a member of the Graduiertenkolleg 357 "Effiziente Algorithmen und Mehrskalenmethoden" at University of Kiel. He thankfully acknowledges support from the DFG and thanks Prof. H. König, University of Kiel, and Prof. M. Junge, University of Illinois, for fruitful discussions and advice.

REFERENCES

[B] K. Ball, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata 41 (1992), 241-250.
[DJT] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995.
[L] D. R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.
[M] B. Maurey, Unique distance ellipsoids, unpublished, 1996.
[Pe] A. Pełczyński, Remarks on John's theorem on the ellipsoid of maximal volume inscribed into a convex symmetric body in \mathbb{R}^{n}, Note Mat. 10 (1990), 395-410.
[PT] A. Pełczyński and N. Tomczak-Jaegermann, On the length of faithful nuclear representations of finite rank operators, Mathematika 35 (1988), 126-143.
[Pi] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, 1989.
[T] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman and Wiley, 1989.

Institute for Applied Mathematics and Numerical Analysis
Vienna University of Technology
Wiedner Hauptstrasse 8-10
A-1040 Wien, Austria
E-mail: Dirk.Praetorius@tuwien.ac.at
Received 20 April 2001;
revised 20 August 2001

[^0]: 2000 Mathematics Subject Classification: 46B04, 46B20.
 Key words and phrases: John ellipsoid, Loewner ellipsoid, ellipsoids, Banach-Mazur distance.

