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Abstract. Let R be a prime ring of characteristic different from 2, Qr be its right
Martindale quotient ring and C be its extended centroid. Suppose that G is a non-zero
generalized skew derivation of R and f(x1, . . . , xn) is a non-central multilinear polynomial
over C with n non-commuting variables. If there exists a non-zero element a of R such
that a[G(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0 for all r1, . . . , rn ∈ R, then one of the following
holds:

(a) there exists λ ∈ C such that G(x) = λx for all x ∈ R;
(b) there exist q ∈ Qr and λ ∈ C such that G(x) = (q + λ)x + xq for all x ∈ R and

f(x1, . . . , xn)2 is central-valued on R.

1. Introduction. Let R be a prime ring with center Z(R) and d be a
non-zero derivation ofR. The well-known theorem of Posner [P] states that if
[d(x), x] ∈ Z(R) for all x ∈ R, then R must be commutative. Starting from
this result, several authors studied the relationship between the structure
of prime ring R and the behavior of an additive mapping f which satisfies
the Engel-type condition [f(x), x]k = 0. The Engel condition is defined by
[f(x), x]k = [[f(x), x]k−1, x] for all x ∈ R and all k > 1.

In [Lan], Lanski showed that if d is a derivation of R such that [d(x), x]k
= 0 for all x in a Lie ideal L of R, then either L is central in R or
char(R) = 2 and R satisfies the standard polynomial identity S4(x1, . . . , x4)
of degree 4.

On the other hand, for a prime ring R of characteristic different from 2,
any non-central Lie ideal contains the set {[x1, x2] : x1, x2 ∈ I} of all evalu-
ations of the polynomial [x1, x2] in a two-sided ideal I of R. For this reason,
many researchers in this area analyzed in detail the case when the Lie ideal
is replaced by the set of all evaluations of a polynomial f(x1, . . . , xn) and
[d(f(x1, . . . , xn)), f(x1, . . . , xn)]k is a differential identity for a certain ideal
of R.
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In particular, we refer the reader to the results obtained by P.-H. Lee and
T.-K. Lee in [L2] and [LL]. They proved that if f(x1, . . . , xn) is a multilinear
polynomial, then it must be central-valued in R unless char(R) = 2 and R
satisfies S4(x1, . . . , x4).

In a recent paper [DD], another related generalization is considered
by the first author and Di Vincenzo. They describe what happens if the
derivation d is replaced by an additive mapping δ satisfying the condition
δ(xy) = δ(x)y+ xg(y) for all x, y ∈ R and for some derivation g of R. Such
a mapping δ is called a generalized derivation of R with associated deriva-
tion d. Obviously, any derivation of R and any mapping of R of the form
f(x) = ax + xb, for some a, b ∈ R, are generalized derivations. The latter
are usually called inner generalized derivations and play a leading role in
the development of the theory of generalized derivations.

Basing on these definitions, the first author obtained in [D1] a related
result with a specific annihilator condition on a generalized derivation acting
on a multilinear polynomial. Let R be a prime ring of characteristic different
from 2, U be its symmetric Utumi quotient ring and C be its extended
centroid. Let f(x1, . . . , xn) be a non-central multilinear polynomial over C
with n non-commuting variables and 0 6= a ∈ R. Suppose that G : R → R
is a non-zero generalized derivation satisfying the condition

a[G(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0 for all r1, . . . , rn ∈ R.
Then either there exists λ ∈ C such that G(x) = λx for all x ∈ R, or there
exist q ∈ U and λ ∈ C such that G(x) = (q + λ)x + xq for all x ∈ R and
f(x1, . . . , xn)2 is central-valued on R. Furthermore, the first author also
addressed in [D2] the question of when the composition of two generalized
derivations can be a generalized derivation. He described the forms of two
generalized derivations F and G of a prime ring R, in the case when FG acts
as a generalized derivation on the elements of the subset f(R), where f(R)
is the set of all evaluations in R of a non-central polynomial f(x1, . . . , xn)
over C with n non-commuting variables.

In the current paper we continue the study of the set

S = {[G(f(x1, . . . , xn)), f(x1, . . . , xn)] | x1, . . . , xn ∈ R}
for a generalized skew derivation G of R instead of a generalized derivation.

We now recall the relevant definition. Let R be an associative ring and
α be an automorphism of R. An additive mapping d : R → R is called a
skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R; then α is called the associated automorphism of d. An
additive mapping G : R → R is said to be a generalized skew derivation of
R if there exists a skew derivation d of R with associated automorphism α
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such that

G(xy) = G(x)y + α(x)d(y)

for all x, y ∈ R; d is said to be the associated skew derivation of G and α
is the associated automorphism of G. This definition unifies the notions of
skew derivation and generalized derivation, which are considered as classical
additive mappings of non-associative algebras, and have been investigated
by many researchers from various points of view (see [Cha1]–[Cha4], [CW],
[L3], [Liu]).

One standard approach in studying the aforementioned set S is to ex-
amine its size. For this, it is reasonable to study its left annihilator in R. In
fact we will prove:

Main Theorem 1.1. Let R be a prime ring of characteristic different
from 2, Qr be its right Martindale quotient ring and C be its extended cen-
troid. Suppose that G is a non-zero generalized skew derivation of R and
f(x1, . . . , xn) is a non-central multilinear polynomial over C with n non-
commuting variables. If there exists a non-zero element a of R such that
a[G(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0 for all r1, . . . , rn ∈ R, then one of the
following holds:

(a) there exists λ ∈ C such that G(x) = λx for all x ∈ R;
(b) there exist q ∈ Qr and λ ∈ C such that

G(x) = (q + λ)x+ xq for all x ∈ R

and f(x1, . . . , xn)2 is central-valued on R.

We should remark that in case G is a usual (non-skew) derivation, the
conclusion of Theorem 1 follows directly from the results of [DD] (where G
is an ordinary derivation) and [D1] (where G is a generalized derivation).

In what follows, let Qr be the right Martindale quotient ring of R, Q be
the two-sided Martindale quotient ring of R and C = Z(Q) = Z(Qr) the
center of Q and Qr; C is usually called the extended centroid of R and is a
field when R is a prime ring. It should be remarked that Q is a centrally
closed prime C-algebra. We refer the reader to [BMM] for the definitions and
the related properties of these objects.

It is well known that automorphisms, derivations and skew derivations of
R can be extended to both Q and Qr. Chang [Cha1] extended the definition
of generalized skew derivation to the right Martindale quotient ring Qr of
R as follows: by a (right) generalized skew derivation we mean an additive
mapping G : Qr → Qr such that G(xy) = G(x)y + α(x)d(y) for all x, y ∈ Q,
where d is a skew derivation of R and α is an automorphism of R. Moreover,
there exists G(1) = a ∈ Qr such that G(x) = ax + d(x) for all x ∈ R.
Furthermore, if G(1) ∈ Q, then G can be extended to Q. We will adopt the
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following notation:

f(x1, . . . , xn) = x1 . . . xn +
∑

σ∈Sn, σ 6=id

ασxσ(1) . . . xσ(n)

for some ασ ∈ C. The polynomial f(x1, . . . , xn) ∈ C 〈x1, . . . , xn〉 is said to
be central-valued on R if f(x1, . . . , xn) ∈ Z(R) for all x1, . . . , xn ∈ R. The
polynomial f(x1, . . . , xn) ∈ C 〈x1, . . . , xn〉 is called non-central if it is not
central-valued on R (or equivalently on the central closure CR of R). We
always suppose that char(R) 6= 2 and f(x1, . . . , xn) is non-central-valued
on R.

2. The case of inner generalized skew derivations. Throughout
this section we always denote the ring of m×m matrices over an algebraic
set A by Mm(A). Here A may be a field, a ring or an algebra in different
contexts.

In this section we will deal with the case when G is an inner generalized
skew derivation induced by elements b, c ∈ R and α ∈ Aut(R), that is,
G(x) = bx+ α(x)c for all x ∈ R. Our aim is to prove the following:

Proposition 2.1. Let R be a prime ring of characteristic different from
2 and f(x1, . . . , xn) be a non-central multilinear polynomial over C with n
non-commuting variables. Let a, b, c ∈ R with a 6= 0 and α ∈ Aut(R) such
that G(x) = bx+ α(x)c for all x ∈ R. If

a[bf(r1, . . . , rn) + α(f(r1, . . . , rn))c, f(r1, . . . , rn)] = 0

for all r1, . . . , rn ∈ R, then one of the following holds:

(a) there exists λ ∈ C such that G(x) = λx for all x ∈ R;
(b) c − b ∈ C, G(x) = bx + xc for all x ∈ R, and f(x1, . . . , xn)2 is

central-valued on R.

2.1. The matrix case. Let us first consider the case whenR=Mm(K),
where K is a field of characteristic different from 2. Note that the set f(R) =
{f(r1, . . . , rn) | r1, . . . , rn ∈ R} is invariant under the action of all inner
automorphisms ofR. Let us write r = (r1, . . . , rn) ∈ R×· · ·×R = Rn. Then
for any inner automorphism ϕ of Mm(K), we get r = (ϕ(r1), . . . , ϕ(rn)) ∈
Rn and ϕ(f(r)) = f(r) ∈ f(R). As usual, we denote by eij the matrix unit
having 1 in the (i, j)-entry and zero elsewhere.

Let us recall some results from [L1] and [Ler]. Let T be a ring with 1
and let eij ∈ Mm(T ) (i, j = 1, . . . ,m) be the matrix units. For a sequence
u = (A1, . . . ,An) in Mm(T ), the value of u is defined to be the product
|u| = A1 · · · An and u is non-vanishing if |u| 6= 0. For a permutation σ of
{1, . . . , n}, we write uσ = (Aσ(1), . . . ,Aσ(n)). We call u simple if it is of the
form u = (a1ei1j1 , . . . , aneinjn), where ai ∈ T . A simple sequence u is called
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even if for some σ, |uσ| = beii 6= 0, and odd if for some σ, |uσ| = beij 6= 0,
where i 6= j. We have:

Fact 2.2 ([L1, Lemma]). Let T be a K-algebra with 1 and let R =
Mm(T ), m ≥ 2. Suppose that g(x1, . . . , xn) is a multilinear polynomial over
K such that g(u) = 0 for all odd simple sequences u. Then g(x1, . . . , xn) is
central-valued on R.

Fact 2.3 ([Ler, Lemma 2]). Let T be a K-algebra with 1 and let R =
Mm(T ), m ≥ 2. Suppose that g(x1, . . . , xn) is a multilinear polynomial
over K. Let u = (A1, . . . ,An) be a simple sequence from R.

(1) If u is even, then g(u) is a diagonal matrix.
(2) If u is odd, then g(u) = aepq for some a ∈ T and p 6= q.

Remark 2.4. Since f(x1, . . . , xn) is not central-valued on R, by Fact
2.2 there exists an odd simple sequence r = (r1, . . . , rn) from R such that
f(r) = f(r1, . . . , rn) 6= 0. By Fact 2.3, f(r) = βepq, where 0 6= β ∈ C
and p 6= q. Since f(x1, . . . , xn) is a multilinear polynomial and C is a field,
we may assume that β = 1. Now, for distinct i, j, let σ ∈ Sn be such
that σ(p) = i and σ(q) = j, and let ψ be the automorphism of R defined
by ψ(

∑
s,t ξstest) =

∑
s,t ξsteσ(s)σ(t). Then f(ψ(r)) = f(ψ(r1), . . . , ψ(rn)) =

ψ(f(r)) = βeij = eij .

Let us recall several known results:

Lemma 2.5 (Proposition 1 in [D1]). Let R be a prime ring of char-
acteristic different from 2, f(x1, . . . , xn) be a non-central multilinear poly-
nomial over C with n non-commuting variables and a, b, c ∈ R, a 6= 0. If
a[bf(r1, . . . , rn) + f(r1, . . . , rn)c, f(r1, . . . , rn)] = 0 for all r1, . . . , rn ∈ R,
then one of the following holds:

(a) b, c ∈ C;
(b) c− b ∈ C, and f(x1, . . . , xn)2 is central-valued on R.

Lemma 2.6 ([Cha2, Lemma 2]). Let R be a dense subring of the ring
of linear transformations of a vector space V over a division ring D with
dimD V ≥ 2 and suppose R contains some non-zero linear transformations
of finite rank. Let α be an automorphism of R and a, b, c ∈ R. Suppose that

G : R → R, x 7→ bx+ α(x)c,

is a mapping from R into itself satisfying the condition a[G(x), x]k = 0
for all x ∈ R, where k is a fixed positive integer. Then either a = 0 or
α is the identical mapping on R and b, c,∈ Z(R) unless dimD V = 2 and
D = GF (2), the Galois field of two elements.

We start with the following lemma:
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Lemma 2.7. Let H be an infinite field and m≥2 an integer. If A1, . . . ,Ak
are not scalar matrices in Mm(H), then there exists an invertible matrix
B ∈ Mm(H) such that each matrix BA1B−1, . . . ,BAkB−1 has all entries
non-zero.

Proof. Let us first show that if A ∈ Mm(H) is not scalar, then there
exists a conjugate BAB−1 having a non-zero entry in any particular posi-
tion.

Assume that A is not diagonal. Then for some i 6= j the (i, j)-entry Aij
of A is non-zero. If p 6= q, then there exists a permutation σ ∈ Sm such that
σ(i) = p and σ(j) = q. Consider the automorphism ϕσ on Mm(H) defined
by ϕσ(ers) = eσ(r)σ(s) for all matrix unit ers. Let B ∈ Mm(H) be the
permutation matrix which induces the automorphism ϕσ in Mm(H). Thus
the (p, q)-entry of BAB−1 is Aij . Assume now that p = q. By the previous
argument, for s 6= p, some conjugate A′ of A has non-zero (p, s)-entry. Let
λ ∈ H, and put A′λ = (I + λesp)A′(I − λesp). Then the (p, p)-entry of A′λ is
A′pp − λA′ps. Of course, we can choose λ in H such that A′pp − λA′ps is not
zero. This proves our claim in the case when A is not diagonal.

If A is a diagonal matrix which is not scalar, there exist i 6= j such that
Aii 6= Ajj . The (i, j)-entry of the conjugate A′′ = (I + eij)A(I − eij) is
Ajj −Aii, which is not zero. Hence A′′ is not diagonal and by the previous
case we are done.

Let us consider the set {xij : 1 ≤ i, j ≤ m} of n2 commutative inde-
terminates and let Mm(H[xij ]) be the algebra of m ×m matrices over the
polynomial ring H[xij ]. Let E =

∑
ij xijeij be the generic matrix and con-

sider El = E · Al · adj(E) for l = 1, . . . , k. Any substitution of cij ∈ H for the
indeterminates xij induces a homomorphism ϕ : Mm(H[xij ]) → Mm(H).
If ϕ(E) is an invertible matrix B, then ϕ(El) is a non-zero scalar multiple of
BAlB−1. Clearly, any matrix B ∈Mm(H) is the image of E under the action
of some such homomorphism. Since each entry of adj(E) is a homogeneous
polynomial in {xij}, the entries of El are homogeneous polynomials in {xij}
without constant terms. None of these entries is zero by our observation
above: in any particular position some conjugate of Al has a non-zero entry.
The determinant det(E) is a non-zero polynomial of H[xij ]. Let W(xij) be
the product of det(E) and all entries of El for l = 1, . . . , k. It is not dif-
ficult to observe that W(xij) is a non-zero polynomial. Since the field H
is infinite, some evaluation of W(xij) is not zero in H. As above, let ϕ be
the homomorphism induced by this evaluation, then B = ϕ(E) is invert-
ible and BAlB−1 = 1

det(B)ϕ(El) is a matrix with all entries non-zero, for

l = 1, . . . , k.

Lemma 2.8. Let H be an infinite field, m ≥ 2 an integer and R =
Mm(H). If there exist b, c, q ∈ R such that q is an invertible matrix and
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[bu+ quq−1c, u] = 0 for all u ∈ f(R), then one of the following holds:

(a) q−1c, b+ c ∈ Z(R);
(b) q, c− b ∈ Z(R) and u2 ∈ Z(R) for all u ∈ f(R).

Proof. If either q−1c ∈ Z(R) or q ∈ Z(R), then the conclusion follows
from Lemma 2.5. Thus we may assume that neither q−1c nor q is a scalar ma-
trix and proceed to obtain a contradiction. By Lemma 2.7, there exists some
invertible matrix B ∈ Mm(H) such that each matrix B(q−1c)B−1,BqB−1
has all entries non-zero. Denote by ϕ(x) = BxB−1 the inner automorphism
induced by B. Since f(R) is invariant under the action of all inner automor-
phisms of R, we have [ϕ(b)u+ϕ(q)uϕ(q−1c), u] = 0 for all u ∈ f(R). Let us
write

ϕ(q) =
∑
hl

qhlehl, ϕ(q−1c) =
∑
hl

chlehl for 0 6= qhl, 0 6= chl ∈ H.

Since eij ∈ f(R) for all i 6= j, for any i 6= j we have

X = [ϕ(b)eij + ϕ(q)eijϕ(q−1c), eij ]eij = 0.

In particular, the (i, j)-entry of X is qjicji = 0, which is a contradiction.

Lemma 2.9. Let H be an infinite field, m ≥ 2 an integer and R =
Mm(H). If there exist a, b, c, q ∈ R with a 6= 0 such that q is an invertible
matrix and a[bu+ quq−1c, u] = 0 for all u ∈ f(R), then one of the following
holds:

(a) q−1c, b+ c ∈ Z(R);
(b) q, c− b ∈ Z(R) and u2 ∈ Z(R) for all u ∈ f(R).

Proof. Assume that a ∈ Z(R). Since a 6= 0, we get [bu+ quq−1c, u] = 0
for all u ∈ f(R) and we are done by Lemma 2.8. Hence we may assume that
a is not central and as above neither q−1c nor q is a scalar matrix. Again
by Lemma 2.7, there exists some invertible matrix B ∈ Mm(H) such that
each matrix BaB−1,B(q−1c)B−1,BqB−1 has all entries non-zero. Denote by
ϕ(x) = BxB−1 the inner automorphism induced by B. Mimicking the above
proof we will write ϕ(a) =

∑
hl ahlehl, ϕ(q) =

∑
hl qhlehl and ϕ(q−1c) =∑

hl chlehl, for 0 6= ahl, 0 6= qhl, 0 6= chl ∈ B. Moreover, for eij ∈ f(R),

Y = ϕ(a)[ϕ(b)eij + ϕ(q)eijϕ(q−1c), eij ]eij = ϕ(a)eijϕ(q)eijϕ(q−1c)eij = 0.

In particular, the (j, j)-entry of Y is ajiqjicji = 0, which is a contradiction.

Thus either q−1c ∈ Z(R) and a[(b + c)u, u] = 0 for all u ∈ f(R), or
q ∈ Z(R) and a[(b+c)u, u] = 0 for all u ∈ f(R). In both cases the conclusion
follows from Lemma 2.5.

Lemma 2.10. Let K be a field of characteristic different from 2, m ≥ 2
an integer and R = Mm(K). If there exist 0 6= a, b, c, q ∈ R such that q is
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an invertible matrix and a[bu+ quq−1c, u] = 0 for all u ∈ f(R) then one of
the following holds:

(1) q−1c, b+ c ∈ Z(R);
(2) q, c− b ∈ Z(R) and u2 ∈ Z(R) for all u ∈ f(R).

Proof. If one assumes that K is infinite, the conclusion is a consequence
of Lemma 2.9.

Now let H be an infinite field which is an extension of the field K and let
R =Mm(H) ∼= R⊗KH. Note that the multilinear polynomial f(x1, . . . , xn)
is central-valued on R if and only if it is central-valued on R. We observe
that the generalized polynomial

Φ(x1, . . . , xn) = a[bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1b, f(x1, . . . , xn)]

is a generalized polynomial identity for R. Moreover, Φ(x1, . . . , xn) is multi-
homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn. On
the other hand, the complete linearization of Φ(x1, . . . , xn+1) leads to a
multilinear generalized polynomial Θ(x1, . . . , xn, y1, . . . , yn), which is of the
form

Θ(x1, . . . , xn, x1, . . . , xn) = 2nP (x1, . . . , xn).

Clearly, the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a general-
ized polynomial identity for R and R too. Since char(K) 6= 2, we obtain
Φ(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R, and the conclusion follows from
Lemma 2.9.

2.2. The proof of Proposition 2.1. Suppose first that α is an X-
inner automorphism of R, that is, there exists an element q ∈ Q such that
α(x) = qxq−1 for all x ∈ R. It is not difficult to see that the generalized
polynomial

Φ(x1, . . . , xn) = a[bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c, f(x1, . . . , xn)]

is a generalized polynomial identity for R. If {1, q−1c} are C-linearly inde-
pendent, then Φ(x1, . . . , xn) is a non-trivial generalized polynomial identity
for R. It follows from [Chu1] that Φ(x1, . . . , xn) is a non-trivial generalized
polynomial identity for Q. By the well-known Martindale theorem [M], Q is
a primitive ring having non-zero socle with the field C as its associated di-
vision ring. By [J, p. 75], Q is isomorphic to a dense subring of the ring of
linear transformations of a vector space V over C, containing some non-zero
linear transformations of finite rank. Assume first that dimC V = ∞. As in
Lemma 2 of [W], the set f(R) = {f(r1, . . . , rn) | ri ∈ R} is dense in R.
Since Φ(r1, . . . , rn) = 0 is a generalized polynomial identity of R, we know
that R satisfies the generalized polynomial identity

a[bx1 − qx1q−1c, x1].
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This implies that a[G(x), x] = 0 for all x ∈ R. In this case, the desired
conclusion is due to Lemma 2.6. On the other hand, if dimC V = k ≥ 2 is
a finite positive integer, then Q ∼= Mk(C) and the conclusion follows from
Lemma 2.10.

In case {1, q−1c} are C-linearly dependent, that is, q−1c ∈ C, the ring R
satisfies

Φ(x1, . . . , xn) = a[bf(x1, . . . , xn)− cf(x1, . . . , xn), f(x1, . . . , xn)]

and we are done by Lemma 2.5.
So we may assume that α is X-outer. In view of [Chu2] we know that

R and Q satisfy the same generalized polynomial identities with automor-
phisms. Therefore

Φ(x1, . . . , xn) = a[bf(x1, . . . , xn) + α(f(x1, . . . , xn))c, f(x1, . . . , xn)]

is also satisfied by Q. Moreover, Q is a centrally closed prime C-algebra.
Note that if c = 0 we are done by Lemma 2.5. We now suppose that both
c 6= 0 and a 6= 0. In this case, it follows from [Chu3, Main Theorem] that
Φ(x1, . . . , xn) is a non-trivial generalized identity for R and for Q. By [K,
Theorem 1] we deduce that RC has non-zero socle and Q is primitive. Since
α is an outer automorphism and any (xi)

α-word degree in Φ(x1, . . . , xn) is
equal to 1, by [Chu3, Theorem 3], Q satisfies the generalized polynomial
identity

a[bf(x1, . . . , xn) + f(y1, . . . , yn)c, f(x1, . . . , xn)].

In particular, Q (and so also R) satisfies the generalized polynomial identity

a[bf(x1, . . . , xn) + f(x1, . . . , xn)c, f(x1, . . . , xn)].

In view of Lemma 2.5, we obtain the required results.

3. The proof of Main Theorem 1.1. Let us first recall the following:

Fact 3.1 ([D1, Theorem 1]). Let R be a prime ring of characteristic
different from 2, U be its two-sided Utumi quotient ring and C be its extended
centroid. Let δ be a non-zero generalized derivation of R and f(x1, . . . , xn) be
a non-central multilinear polynomial over C with n non-commuting variables.
If there exists an element a ∈ R such that a[δ(f(r1, . . . , rn)), f(r1, . . . , rn)]
= 0 for all r1, . . . , rn ∈ R, then one of the following holds:

(a) a = 0;
(b) there exists λ ∈ C such that δ(x) = λx for all x ∈ R;
(c) there exist q ∈ U and λ ∈ C such that δ(x) = (q + λ)x + xq for

all x ∈ R and f(x1, . . . , xn)2 is central-valued on R.

Fact 3.2 ([CL2, Theorem 1]). Let R be a prime ring, D be an X-
outer skew derivation of R and α be an X-outer automorphism of R. If
Φ(xi,D(xi), α(xi)) is a generalized polynomial identity for R, then R also
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satisfies the generalized polynomial identity Φ(xi, yi, zi), where xi, yi and zi
are distinct indeterminates.

3.1. The proof of Main Theorem 1.1. As remarked in the Intro-
duction, we can write G(x) = bx + d(x) for all x ∈ R, where b ∈ Qr
and d is a skew derivation of R (see [Cha1]). Let us put f(x1, . . . , xn) =∑

σ∈Sn
γσxσ(1) · · ·xσ(n), where γσ ∈ C. By [CL2, Theorem 2] we know that

R and Qr satisfy the same generalized polynomial identities with a single
skew derivation. Thus Qr satisfies

Φ(x1, . . . , xn, d(x1), . . . , d(xn))

= a[bf(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)].

If d is X-inner, then there exist c ∈ Qr and α ∈ Aut(Qr) such that
d(x) = cx + α(x)c for all x ∈ R. In this case G(x) = (b + c)x + α(x)c and
by Proposition 2.1 either G(x) = λx for some λ ∈ C, or f(x1, . . . , xn)2 is
central-valued on R and G(x) = (b+ c)x+ xc for all x ∈ R, where b ∈ C.

Suppose that d is X-outer and that α ∈ Aut(Qr) is the associated au-
tomorphism of d. When α is the identity mapping on R, then d is a usual
derivation of R. And hence G becomes a generalized derivation of R. In
this case, the required results are due to Fact 3.1. Hence in what follows
we always assume that 1R 6= α ∈ Aut(R). We denote by fd(x1, . . . , xn)
the polynomial obtained from f(x1, . . . , xn) by replacing each coefficient γσ
with d(γσ). It should be remarked that

d(γσxσ(1) · · ·xσ(n)) = d(γσ)xσ(1) · · ·xσ(n)

+ α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

So we have

d(f(x1, . . . , xn)) = fd(x1, . . . , xn)

+
∑
σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

Since Qr satisfies Φ(x1, . . . , xn, d(x1), . . . , d(xn)), it also satisfies

a[bf(x1, . . . , xn) + fd(x1, . . . , xn), f(x1, . . . , xn)

+a
[∑
σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n), f(x1, . . . , xn)
]
.

By [CL2, Theorem 1] it follows that Qr satisfies Φ(x1, . . . , xn, y1, . . . , yn),
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that is,

a[bf(x1, . . . , xn) + fd(x1, . . . , xn), f(x1, . . . , xn)]

+ a
[∑
σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n), f(x1, . . . , xn)
]
.

In particular, for any i = 1, . . . , n, Qr satisfies

(3.1) a
[∑
σ∈Sn

α(γσ)α(xσ(1) · · ·xσ(i−1))yσ(i)xσ(i+1) · · ·xσ(n), f(x1, . . . , xn)
]
.

Here we divide the argument into two subcases. Let us first consider the
case when α is an inner automorphism of R. Then there exists an invertible
element q ∈ Q such that α(x) = qxq−1 for all x ∈ R. Since 1R 6= α ∈
Aut(R), we may assume that q /∈ C. Moreover, it is clear that α(γσ) = γσ
for all coefficients involved in f(x1, . . . , xn). Replacing each yσ(i) with qxσ(i)
in (3.1), we find that Qr satisfies

a
[
q
∑
σ∈Sn

γσxσ(1) · xσ(2) · · ·xσ(i−1)xσ(i)xσ(i+1) · · ·xσ(n), f(x1, . . . , xn)
]
,

that is,

a[qf(x1, . . . , xn), f(x1, . . . , xn)].

Note that q /∈ C and f(x1, . . . , xn) is not central-valued on Qr. Combining
these facts with Fact 2.5 yields a = 0. We now assume that α is X-outer.
In light of Fact 3.2 and the relation (3.1), Qr satisfies the generalized poly-
nomial identity

(3.2) a
[∑
σ∈Sn

α(γσ)zσ(1) · · · zσ(i−1))yσ(i)xσ(i+1) · · ·xσ(n), f(x1, . . . , xn)
]

for all i = 1, . . . , n. In particular, we choose:

• for all i ≥ 2, yσ(i) = 0;
• for all i ≥ 2, zσ(i) = 0.

Therefore by (3.2), Qr satisfies the generalized polynomial identity

(3.3) a
[
y1

∑
σ∈Sn−1

α(γσ)xσ(2) · · ·xσ(n), f(x1, . . . , xn)
]
.

Let us write
∑

σ∈Sn−1
α(γσ)xσ(2) · · ·xσ(n) = t1(x2, . . . , xn). Then Qr satisfies

the generalized polynomial identity

(3.4) a[y1t1(x2, . . . , xn), f(x1, . . . , xn)].

Applying [CL1, Lemma 3] to (3.4) we see that

[y1t1(x2, . . . , xn), f(x1, . . . , xn)]



72 V. DE FILIPPIS AND F. WEI

is a generalized polynomial identity for Qr. Therefore there exists a suitable
field K and an integer t ≥ 1 such that Qr and the matrix ringMt(K) satisfy
the same polynomial identities. In particular,Mt(K) satisfies the generalized
polynomial identity [y1t1(x2, . . . , xn), f(x1, . . . , xn)]. Since f(x1, . . . , xn) is
not central-valued on Qr, we may assume t ≥ 2. In this situation, by Fact
2.2, Fact 2.3 and Remark 2.4, for all i 6= j, there exist r1 . . . , rn ∈ Mt(K)
such that f(r1, . . . , rn) = eij 6= 0 and

(3.5) [y1t1(r2, . . . , rn), eij ] = 0

for all y1 ∈ Mt(K). Here we also denote by fα(x1, . . . , xn) the polyno-
mial obtained from f(x1, . . . , xn) through replacing each coefficient γσ with
α(γσ). Note that fα(r1, . . . , rn) 6= 0. By (3.5), for y1 = eiiX and for any
X ∈Mt(K), we have eiiXt1(r2, . . . , rn)eij = 0, that is, t1(r2, . . . , rn)eij = 0.
In view of (3.5) we get

0 = y1t1(r2, . . . , rn)eij − eijy1t1(r2, . . . , rn) = −eijy1t1(r2, . . . , rn),

which implies t1(r2, . . . , rn) = 0. Let us start again from (3.2) and fix an
index j ∈ {1, . . . , n}. We choose:

• for all i 6= j, yσ(i) = 0;
• for all i 6= j, zσ(i) = 0.

Therefore by (3.2) we deduce that Qr satisfies the generalized polynomial
identity

(3.6) a
[
yj

∑
σ∈Sn−1

α(γσ)xσ(1) · · ·xσ(j−1)xσ(j+1) · · ·xσ(n), f(x1, . . . , xn)
]
.

Let us adopt a new notation for later discussion:∑
σ∈Sn−1

α(γσ)xσ(1) · · ·xσ(j−1)xσ(j+1) · · ·xσ(n) = tj(x1, . . . , xj−1, xj+1, . . . , xn).

Thus Qr satisfies the generalized polynomial identity

a[yjtj(x1, . . . , xj−1, xj+1, . . . , xn), f(x1, . . . , xn)].

Moreover, we know that there exist r1, . . . , rn∈Mt(K) such that f(r1, . . . , rn)
= eij 6= 0, and using the above argument, tj(r1, . . . , rj−1, rj+1, . . . , rn) = 0.
Finally notice that

fα(x1, . . . , xn) =
∑
j

xjtj(x1, . . . , xj−1, xj+1, . . . , xn),

where each tj is a multilinear polynomial of degree n− 1 and xj appears in
no monomial of tj . This leads to the contradiction fα(r1, . . . , rn) = 0.
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