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Abstract. For a sequence = € {1 \ coo, one can consider the set E(z) of all subsums
of the series 3 2, x(n). Guthrie and Nymann proved that E(x) is one of the following
types of sets: (Z) a finite union of closed intervals; (C) homeomorphic to the Cantor set;
(MC) homeomorphic to the set T' of subsums of Y>> | b(n) where b(2n — 1) = 3/4™ and
b(2n) = 2/4". Denote by Z, C and MC the sets of all sequences = € ¢1 \ coo such that
E(x) has the property (Z), (C) and (MC), respectively. We show that Z and C are strongly
c-algebrable and MC is c-lineable. We also show that C is a dense Gs-set in ¢1 and Z is a
true F,-set. Finally we show that Z is spaceable while C is not.

1. Introduction

1.1. Subsums of series. Let © € /¢;. The set of all subsums of
> o2, z(n), meaning the set of sums of all subseries of > 2, x(n), is de-

fined by
E(x) = {aER:HACN Zx(n):a}.
neA
Some authors call it the achievement set of x. The following theorem is due
to Kakeya.
THEOREM 1.1 ([Ka]). Let z € ¢;.

(1) If = & coo, then E(x) is a perfect compact set.
(2) If
|z(n)| > Z |z(?)|  for almost all n,

i>n

then E(z) is homeomorphic to the Cantor set.

3) [
®) ¥ |z(n)] < Z |z(7)|  for n sufficiently large,
i>n
then E(x) is a finite union of closed intervals. If x is non-increasing,
the converse also holds.
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Moreover, Kakeya conjectured that E(z) is either nowhere dense or a
finite union of intervals. Probably, the first counterexample to this conjec-
ture was given (without proof) by Weinstein and Shapiro [WS] and, with a
correct proof, by Ferens [F]|. Guthrie and Nymann |[GN]| showed that, for the
sequence b given by the formulas b(2n — 1) = 3/4™ and b(2n) = 2/4", the
set T'= E(b) is not a finite union of intervals but it has nonempty interior.
In the same paper they formulated the following theorem:

THEOREM 1.2 (|GN]). Let x € 01 \ coo. Then E(x) is of one of the
following types:

(i) a finite union of closed intervals;
(ii) homeomorphic to the Cantor set;
(iii) homeomorphic to the set T.

A correct proof of the Guthrie and Nymann trichotomy was given by
Nymann and Saenz [NS|. The sets homeomorphic to T are called Cantorvals
(more precisely: M-Cantorvals). Note that Theorem can be formulated
as follows: The space 1 is a disjoint union of cog, Z, C and MC where Z
consists of all sequences = with E(x) equal to a finite union of intervals, C
consists of all z with E(z) homeomorphic to the Cantor set, and MC of all
x with E(x) being an M-Cantorval.

For z € ¢1, let 2’ be an arbitrary finite modification of z, and let || denote
the sequence y € ¢1 such that y(n) = |z(n)|. Thenz € Z & |z| e T & 2/ € T.
The same equivalences hold for C and MC.

1.2. Lineability, algebrability and spaceability. Having an algebra
A and its subset £ C A one can ask if £ U {0} contains a subalgebra A" of
A. Roughly speaking, if the answer is positive, then F' is algebrable. It is a
recent trend in mathematical analysis to establish the algebrability of sets
FE which are far from being linear, that is, z,y € E does not generally imply
x +y € E. Such algebrability results were obtained in sequence spaces (see
[BG1], [BGP] and [BG2]) and in function spaces (see [ACPS|, [AS], [APGS],
[GMS] and [GPS]).

Assume that V is a linear space (resp. an algebra). A subset £ C V
is called lineable (resp. algebrable) whenever E U {0} contains an infinite-
dimensional linear space (infinitely generated algebra, respectively) (see
[AGS], [B] and [GQ)). For a cardinal k > w, the set E is k-algebrable (i.e. it
contains a k-generated algebra) if and only if it contains an algebra which is
a rk-dimensional linear space (see [BGI|). Moreover, we say that a subset F
of a commutative algebra V' is strongly k-algebrable ([BGI]) if there exists a
r-generated free algebra A contained in £E'U {0}.

Note that X = {z, : @« < Kk} C E is a set of free generators of a free
algebra A C E if and only if the set X’ of elements of the form xlgj ...xhn

1 tan
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is linearly independent and all linear combinations of elements from X’ are
in E'U{0}. It is easy to see that free algebras have no divisors of zero.

In practice, to prove k-algebrability of a set E C V we haveto find X C F
of cardinality x such that for any polynomial P in n variables and any distinct
Z1,...,Tn € X we have either P(xy,...,2,) € F or P(x1,...,z,) = 0. To
prove the strong k-algebrability of E we have to find X C E, | X| = &, such
that for any non-zero polynomial P and distinct z1,...,z, € X we have
P(z1,...,zy) € E.

In general, there are subsets of algebras which are algebrable but not
strongly algebrable. Let cog be the subset of ¢y consisting of all sequences
with real terms that are eventually zero. Then the set cqg is algebrable in cgy
but is not strongly 1-algebrable [BGI].

Let X be a Banach space. A subset M of X is spaceable if M U{0} con-
tains an infinite-dimensional closed subspace Y of X. Since every infinite-
dimensional Banach space contains a linearly independent set of cardinality
continuum, spaceability implies ¢-lineability. However, spaceability is a much
stronger property. The notions of spaceability and c-algebrability are incom-
parable. We will show that even c-algebrable dense Gs-sets in £1 may not be
spaceable. On the other hand, there are sets in ¢y which are spaceable but

not 1l-algebrable (see [BGI]).

2. Algebraic substructures in C, Z and MC. In a very nice paper
[J] Jones gives the following example. Let z(n) = 1/2" and y(n) = 1/3".
Then clearly z € Z and y € C. Moreover, z +y € C and z —y € Z. Since
z = (z+y)—yand y = —(x—y)+z, neither Z nor C is closed under pointwise
addition. However, in the present paper we show that the sets C, Z and MC
each contain large (c-generated) algebraic structures. To prove the strong
c-algebrability of C and Z, we will combine Theorem and the method of
linearly independent exponents, which was successful in [BGP| and [BGI]. In
the next theorem we construct generators as powers of one geometric series
zq (z4(n) = ¢") for 0 < ¢ < 1/2. Clearly, 4 € C by Theorem [L1]

THEOREM 2.1. C is strongly c-algebrable.

Proof. Fix ¢ € (0,1/2). Let {ro : a < ¢} be a linearly independent (over
the rationals) set of reals greater than 1. Let x4(n) = ¢"*". We will show
that the set {z, : @ < ¢} generates a free algebra A which, except for the
null sequence, is contained in C.

To do this, we will show that for any (i,...,8, € R\ {0}, any matrix
(kitli<m,i<j of natural numbers with nonzero distinct rows, and any a; <
- < o < ¢, the sequence x given by

z(n) = P(Tay,- - Za,;)(0),
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where
P(z1,...,25) = ﬁlzfll "'Zjlflj 4. _i_ﬁmzfml y 'z‘;f'mj’
is in C. We have
l‘(n) — /qun(ral k11+---+raj k1j) NS ﬂmqn(ralkmlJr...Jrraj kmj).
Since rqy, - - s Ty are linearly independent and the rows of [kil]igm,zg ; are

distinct, the numbers ry 1= ro, k11 + -+ + 1o, k155 -+ Tm 1= Tagkm1 + - +
Ta;kmj are distinct. We may assume that r < -+ <rp,. Then

[z()]  _ 1Bg"™ A 4 B
Zi>n |$(’L)| Zi>n ‘ﬁlqwl + -+ quwm|
|51qm1 + -+ qunrm’ . qunrl +-+ qumm|
- i itm) (n+1)r (nt+1)rm
Zi>n(|51|qlrl + + |Bm|qw ) % 4+ .+ %
1—qgm
1.
q

Therefore there is ng such that |z(n)| > >, |z(i)| for all n > ng. Hence,
by Theorem [I.1} we conclude that z € C. =

It is obvious that the geometric sequence x4, even for ¢ > 1/2, is not
useful to construct the generators of an algebra contained in Z. Indeed, for
a sufficiently large exponent k, the sequence 33’; belongs to C. So, in the next
theorem we use the harmonic series.

THEOREM 2.2. 7 is strongly c-algebrable.

Proof. Let K be a linearly independent subset of (1,00) of cardinality c.
For a € K, let z, be the sequence given by z,(n) = 1/n%. We will show
that the set {z4 : @ € K} generates a free algebra A which is contained in
Z U {0}. To do this, we will show that for any f1,...,8, € R\ {0}, any
matrix [Kili<m,i1<; of natural numbers with nonzero distinct rows, and any
ap < --- <« , the sequence x defined by

r=P(Zay,- - Ta,)
ki, k2, Fom
= 51$§111 .. .xoéj + ngljfll .. .xoéj + -+ ﬁmx’;’l’“ .- Ta J

belongs to Z. We have

r(n) = P(Tay, .-, Ta,;)(n)
B 1 1
=P ey T P e ey

1 1
=Pt B
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Note that p1,...,pm are distinct. Assume that p; < -+ < pp,. We have

()| |Bugsr + Begms o+ B |
Zk>n|x(k)‘ B Zk>n|61k%1+ﬁ2k%2 +ﬁmﬁ‘
Bir + Bomas + -+ + B |
- Zm (IBrr| = |Begz | =+ = B |)
|B1b + Borks ++ + B |
B S dr — Bl § Az dr — - — Bl § o da
|81 + Bo e 4+ + By ok
ey N N
n3>00<1.

Observe that the first inequality holds for n large enough. Therefore there
is ng such that |z(n)| <3, |2(9)| for any n > ng. Hence, by Theorem
we conclude that z € Z. u

The method described in the next lemma belongs to the mathematical
folklore and was used to construct sequences x with E(z) being Cantorvals.
We present its proof since we have not found it explicitly formulated in the
literature.

LEMMA 2.3. Let x € {1 be such that

(i) E(z) contains an interval;

(i) |z(n)| > 3 s, [2(@)] for infinitely many n;
(iii) |xn| > |Tnt1] for almost all n.

Then x € MC.

Proof. By (ii)—(iii), the point x does not belong to Z. By (i), the point x
does not belong to C. Hence, by Theorem [1.2] we get x € MC. =

Until quite recently, only a few examples were known of sequences belong-
ing to MC. These examples were not very useful to construct a large number
of linearly independent sequences. Recently, Jones [J| has constructed a one-
parameter family of sequences in MC. We shall use a modification of his
example in the proof of our next theorem.

THEOREM 2.4. MC is c-lineable.
Proof. Let
zq, = (4,3,2,4q,3q,2q,4¢%, 3¢, 2¢%, 4¢°>, . . .)
and

v =(1,1,1,1,1,9,9,9,9.9.¢°, ¢*, ¢*, >, *. ¢, . ..)
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for ¢ € [1/6,2/11). Observe that the sequences x4, ¢ € [1/6,2/11), are lin-
early independent. We need to show that each non-zero linear combination
of these sequences x, satisfies assumptions (i)—(iii) of Lemma [2.3| and there-
fore it is in MC. To prove this, let us fix ¢ > -+ > ¢, € [1/6,2/11),
B1, .-, Bm € R and define sequences x and y by

z(n) = B12g,(n) + -+ + BmTq,, (1)
and
y(n) = Bryg, (n) + -+ + Bmyg,, ().
First, we will check that for almost all n,
(2.1) 2181q7 + -+ B > 9 ) 1B1gE + - + Bnd -

k>n
We have

218147 4 - + Bl S 2|B1at + -+ + By
9> hon(B1ay + -+ + Bmdl)) = 9D e (181 + -+ - + |Bmdli])

_ Bt A Bl 2 1-g 2 1-2/11
- n+1 n+1 -
9(‘/31131_(]1 +...+‘5m|1q:nqm) n—oo 9 @ 9 2/11

Note that if n is not divisible by 3, then |z(n)| > |z(n + 1)|. On the other
hand, if n = 3[, then

[2(n)] = 21B1g} + - + Byl
and

(n+ 1] =381 + -+ Budht | <9 1Bt + - + B
k>l

Hence by (2.1) we obtain |z(n)| > |z(n + 1)| for almost all n. By (2.1)) we
also have |z(n)| > >, ,, [z(4)| for infinitely many n.
Now we will show that

(2.2) Brgl + - + B <5 1B1ah + -+ + Bl |-
k>n

We have

18147 + Bagh + -+ + B
5 jon |B1F + Bods + -+ + Brndh|
18147 + B2gs + -+ + By
T OB Y B1dE A+ Bods + -+ Brndlh]
_ 61+ Ba(2)" - ()"
- i n j m \ T )
BIB1 Y im0 @1+ B2(2)" Ciso @b+ + B (42)" i i
1 1—q 1 1-1/6
— . . —
noo 5 q 5 1/6

1.

IN
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By we find that |y(n)| < >, [y(k)| for almost all n. Therefore by
Theorem the set F(y) is a finite union of closed intervals. Thus E(y)
has non-empty interior.

To end the proof we need to show that F(z) has non-empty interior. We
will prove that

22(5&? + -+ Bman) + E(y) C E(z).
n=0

Let
te2> (Bigt + -+ Bndp) + E(y)-
n=0

Note that any element s of E(y) is of the form

s =ko(B1+ -+ Bm) + k1(Brqr + - - + Bmam)
+ ko (Braf + -+ Bnd) + -+
where k, € {0,1,2,3,4,5}. Thus ¢ is of the form

t=2> (Bigl + - + B

n=0
+ [ko(B1 + -+ + Bm) + k1(Brar + -+ + BmGm)
+ka(Brgi + -+ Bmdi) + -]

= (2+ko)(Br+ -+ Bm) + 2+ k1) (Brar + -+ + Bmam)
+ (24 E2) (gl + - + Bni) + - -

Note that each number from {2,3,4,5,6,7}, that is, every number of the
form 2+ k,, can be written as a sum of numbers 4, 3,2. Hence ¢t € F(z) and
E(zx) has non-empty interior. So x € MC. =

3. The topological size and Borel class of C, 7 and MC. Let us
observe that the sets cqg, C, Z and MC are all dense in 1. Moreover, cyg is an
Fo-set of the first category. We are interested in the topological size and Borel
class of these sets. For this, let us consider the hyperspace H(R) of all non-
empty compact subsets of reals, equipped with the Vietoris topology (see [Ke),
4F, pp. 24-28|). Recall that the Vietoris topology is generated by the subbase
of sets of the form {K € HR): K C U} and {K € H(R) : KNU # (0} for
all open sets U in R. This topology is metrizable by the Hausdorff metric dy
given by the formula

dir(A, B) = max { max d(t, B), maxd(s, A)}

where d is the natural metric in R. It is known that the set N of all nowhere
dense compact sets is a Gs-set in H(R) and the set F' of all compact sets
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with a finite number of connected components is an F,-set. To see this, it is
enough to observe that

e K is nowhere dense if and only if for any set U,, from a fixed countable
base of the natural topology in R there exists a set U,, from this base
such that cl(Up,) C Uy and K C (cl(Uy,))%

e K has more than k components if and only if there exist pairwise
disjoint open intervals Ji, ..., Jg11 such that K C JyU---U Jg1q and
KNnJi#Ofori=1,...,k+1.

Now, let us observe that if we assign the set E(x) to the sequence = € /1,
we actually define a function E : {; — H(R).

LEMMA 3.1. The function E is Lipschitz with Lipschitz constant L = 1,
hence it is continuous.

Proof. Let t € E(z). Then there exists a subset A of N such that ¢t =
Y neaz(n). We have

alt, Bw)) < d(t, Y ym) = | 3 (@n) = y(m)| < 3 fon) = y(n)
neA neA neN
=z -yl
where || - ||; denotes the norm in ¢1. Hence, dg(E(z), E(y)) < ||z — y[|1. =

THEOREM 3.2. The set C is a dense Gs-set (and hence residual), T is a
true F,-set (i.e. it is F, but not Gs) of the first category, and MC is in the
class (Fys N Gs5) \ Gs.-

Proof. Let us observe that CUcop = E71[N] and ZUcoy = E~L[F] where
N, F, E are defined as before. Hence C U ¢yg is Gs and Z U ¢qq is F,. Thus C
is Gs (because cqp is F,) and ZUMC is F,. Moreover, Z = (ZUcgp)N(ZUMC)
is Fy, too. By the density of C, C is residual. Since Z is dense of the first
category, it cannot be Gg. For the same reason, MC cannot be Gs. Since MC
is a difference of two JF,-sets, it is in the class F,5 N Gsy. w

REMARK 3.3. In [BGI| the following similar result was shown by quite
different methods: the set of bounded sequences, with the set of limit points
homeomorphic to the Cantor set, is strongly c-algebrable and residual in £n.

4. Spaceability. In this section we will show that Z is spaceable while
C is not. This shows that there is a subset M of ¢; containing a dense
Gs-subset and a linear subspace of dimension ¢, but Y \ M # @ for any
infinite-dimensional closed subspace Y of /7.

THEOREM 4.1. Let Iq be the subset of T which consists of those x € £y
for which E(x) is an interval. Then Iy is spaceable.
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Proof. Let Ay, Aa,... be a partition of N into infinitely many infinite
subsets. Let A, = {k} < k2 < ---}. Define x,, € ¢1 by x,(k},) = 277 and
(i) =01if ¢ ¢ A,. Then ||x,|1 = 1 and {z,, : x € N} forms a normalised
basic sequence. Let Y be a closed linear space generated by {z, : x € N}.
Then

yeyY & Itel (y = Zt(n)xn>
n=1
Since E(zy,) = [0,1], we have E(> .7, t(n)xn) = Up—, In where I, is an
interval with endpoints 0 and ¢(n). Put t*(n) = max{t(n),0} and ¢t~ (n) =
min{—¢(n),0}. Then E(> 2, t(n)xy) = D ore it (n),> oo t7(n)] and the
result follows. m

Let us mention the very recent result by Bernal-Gonzélez and Ordénez
Cabrera |[BOL Theorem 2.2|, who gave sufficient conditions for spaceability
of sets in Banach spaces. Using that result, one can prove the spaceability
of Z, but it cannot be used to prove Theorem [£.1] since the assumptions are
not satisfied.

However, we do not know other results giving sufficient conditions for
a set in a Banach space not to be spaceable. An interesting example of a
non-spaceable set was given in the classical paper |G| by Gurariy where
it was proved that the set of all differentiable functions from C]0, 1] is not
spaceable. It is well known that the set of all differentiable functions in C'[0, 1]
is dense but meager. We will prove that even dense Gs-sets in Banach spaces
may not be spaceable.

THEOREM 4.2. Let Y be an infinite-dimensional closed subspace of 0.
Then there is y € Y such that E(y) contains an interval.

Proof. Let e, \( 0. Let x; be any non-zero element of Y with ||z1||1 =
1+ 1. Since x1 € #1, there is nq with Eff:nlﬂ |z1(n)| < e1. Let Ej consist
of all finite sums "' | §,z1(n) where §; € {0,1}. Then E is a finite set with
min By = Y 'L 27 (n), max By = Y 'L 2 (n) and 1 < max By — min By <
1+¢;.

Let Yi=YN{zel:z(n)=0foreveryn <ni}. As{x €l :x(n) =0
for every n < m1} has a finite codimension, Y7 is infinite-dimensional. Let
x9 be any non-zero element of Y7 with ||z2|l1 = 1 + e2. Since zo € /4y,
there is no > n; with Efj’:nﬁl |zi(n)| < e2, i =1,2. Let Ey consist of all
finite sums Y2 | dpw2(n), where 6; € {0, 1}. Then Ej is a finite set with
minEy = Y02 @y (n), maxEy = Y02 xf(n) and 1 < max E) —
min Fy <1+ e9.

Proceeding inductively, we define natural numbers n; < no < --- and
infinite-dimensional closed spaces Y D Y7 D Y2 D -+ - such that Yy, ={z €Y :
x(n) = 0 for every n < ny}, non-zero elements zy € Yj_1 with ||zx|1 = 1+¢
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and >3 ° . |zi(n)| <eg, i =1,...,k, and finite sets Ej consisting of all
sums y ko Opxg(n) where §; € {0,1}. Note that 1 < diam(Ey) <
1+ eg. Consider y = > 72 | 7x/2%. We claim that F(y) contains the interval
I := [min F;, max F1].

Note that for any ¢ € I there is t; € Ey with [t —¢1| < (1 +£1)/2. Since
1 < diam(E3) < 1+ &3, there is ty € By + $E» with |t — to < (1 + &3)/2%
Hence, there is ¢ € E(z1 + x2/2) with [t — | < (1 + £2)/22 + &1. Since
1 < diam(Fj) < 14 ¢, inductively we can find t, € Fy + %Eg%—- cot Zk—l_lEk
with [t — ] < (14 ex)/2%. Hence, there is t € E(x1 +x9/2 4 - - -+ 2 /2F71)
with

t—1] < (1+er) /254 epn+ep1/2+ - +er1/250 < (1+e,) /28 + 2641

Since E(y) is closed and contains E(xy + x9/2 + - - + 23, /2871), it follows
that t € E(y) and consequently I C E(y). =

Immediately we get the following.

COROLLARY 4.3. The set C is not spaceable.

We end the paper with some open questions on the set MC.
PROBLEM 4.4.

(i) Is MC c-algebrable?
(ii) Is MC an F,-subset of €17
(iii) Is MC spaceable?
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