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Abstract. For a sequence x ∈ `1 \ c00, one can consider the set E(x) of all subsums
of the series

∑∞
n=1 x(n). Guthrie and Nymann proved that E(x) is one of the following

types of sets: (I) a finite union of closed intervals; (C) homeomorphic to the Cantor set;
(MC) homeomorphic to the set T of subsums of

∑∞
n=1 b(n) where b(2n− 1) = 3/4n and

b(2n) = 2/4n. Denote by I, C and MC the sets of all sequences x ∈ `1 \ c00 such that
E(x) has the property (I), (C) and (MC), respectively. We show that I and C are strongly
c-algebrable andMC is c-lineable. We also show that C is a dense Gδ-set in `1 and I is a
true Fσ-set. Finally we show that I is spaceable while C is not.

1. Introduction

1.1. Subsums of series. Let x ∈ `1. The set of all subsums of∑∞
n=1 x(n), meaning the set of sums of all subseries of

∑∞
n=1 x(n), is de-

fined by
E(x) =

{
a ∈ R : ∃A ⊂ N

∑
n∈A

x(n) = a
}
.

Some authors call it the achievement set of x. The following theorem is due
to Kakeya.

Theorem 1.1 ([Ka]). Let x ∈ `1.
(1) If x 6∈ c00, then E(x) is a perfect compact set.
(2) If

|x(n)| >
∑
i>n

|x(i)| for almost all n,

then E(x) is homeomorphic to the Cantor set.
(3) If

|x(n)| ≤
∑
i>n

|x(i)| for n sufficiently large,

then E(x) is a finite union of closed intervals. If x is non-increasing,
the converse also holds.
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Moreover, Kakeya conjectured that E(x) is either nowhere dense or a
finite union of intervals. Probably, the first counterexample to this conjec-
ture was given (without proof) by Weinstein and Shapiro [WS] and, with a
correct proof, by Ferens [F]. Guthrie and Nymann [GN] showed that, for the
sequence b given by the formulas b(2n − 1) = 3/4n and b(2n) = 2/4n, the
set T = E(b) is not a finite union of intervals but it has nonempty interior.
In the same paper they formulated the following theorem:

Theorem 1.2 ([GN]). Let x ∈ `1 \ c00. Then E(x) is of one of the
following types:

(i) a finite union of closed intervals;
(ii) homeomorphic to the Cantor set;
(iii) homeomorphic to the set T .

A correct proof of the Guthrie and Nymann trichotomy was given by
Nymann and Sáenz [NS]. The sets homeomorphic to T are called Cantorvals
(more precisely: M-Cantorvals). Note that Theorem 1.2 can be formulated
as follows: The space `1 is a disjoint union of c00, I, C and MC where I
consists of all sequences x with E(x) equal to a finite union of intervals, C
consists of all x with E(x) homeomorphic to the Cantor set, andMC of all
x with E(x) being an M-Cantorval.

For x ∈ `1, let x′ be an arbitrary finite modification of x, and let |x| denote
the sequence y ∈ `1 such that y(n) = |x(n)|. Then x ∈ I ⇔ |x| ∈ I ⇔ x′ ∈ I.
The same equivalences hold for C andMC.

1.2. Lineability, algebrability and spaceability. Having an algebra
A and its subset E ⊂ A one can ask if E ∪ {0} contains a subalgebra A′ of
A. Roughly speaking, if the answer is positive, then E is algebrable. It is a
recent trend in mathematical analysis to establish the algebrability of sets
E which are far from being linear, that is, x, y ∈ E does not generally imply
x+ y ∈ E. Such algebrability results were obtained in sequence spaces (see
[BG1], [BGP] and [BG2]) and in function spaces (see [ACPS], [AS], [APGS],
[GMS] and [GPS]).

Assume that V is a linear space (resp. an algebra). A subset E ⊂ V
is called lineable (resp. algebrable) whenever E ∪ {0} contains an infinite-
dimensional linear space (infinitely generated algebra, respectively) (see
[AGS], [B] and [GQ]). For a cardinal κ > ω, the set E is κ-algebrable (i.e. it
contains a κ-generated algebra) if and only if it contains an algebra which is
a κ-dimensional linear space (see [BG1]). Moreover, we say that a subset E
of a commutative algebra V is strongly κ-algebrable ([BG1]) if there exists a
κ-generated free algebra A contained in E ∪ {0}.

Note that X = {xα : α < κ} ⊂ E is a set of free generators of a free
algebra A ⊂ E if and only if the set X ′ of elements of the form xk1α1

. . . xknαn
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is linearly independent and all linear combinations of elements from X ′ are
in E ∪ {0}. It is easy to see that free algebras have no divisors of zero.

In practice, to prove κ-algebrability of a set E ⊂ V we have to findX ⊆ E
of cardinality κ such that for any polynomial P in n variables and any distinct
x1, . . . , xn ∈ X we have either P (x1, . . . , xn) ∈ E or P (x1, . . . , xn) = 0. To
prove the strong κ-algebrability of E we have to find X ⊂ E, |X| = κ, such
that for any non-zero polynomial P and distinct x1, . . . , xn ∈ X we have
P (x1, . . . , xn) ∈ E.

In general, there are subsets of algebras which are algebrable but not
strongly algebrable. Let c00 be the subset of c0 consisting of all sequences
with real terms that are eventually zero. Then the set c00 is algebrable in c0
but is not strongly 1-algebrable [BG1].

Let X be a Banach space. A subset M of X is spaceable if M ∪ {0} con-
tains an infinite-dimensional closed subspace Y of X. Since every infinite-
dimensional Banach space contains a linearly independent set of cardinality
continuum, spaceability implies c-lineability. However, spaceability is a much
stronger property. The notions of spaceability and c-algebrability are incom-
parable. We will show that even c-algebrable dense Gδ-sets in `1 may not be
spaceable. On the other hand, there are sets in c0 which are spaceable but
not 1-algebrable (see [BG1]).

2. Algebraic substructures in C, I and MC. In a very nice paper
[J] Jones gives the following example. Let x(n) = 1/2n and y(n) = 1/3n.
Then clearly x ∈ I and y ∈ C. Moreover, x + y ∈ C and x − y ∈ I. Since
x = (x+y)−y and y = −(x−y)+x, neither I nor C is closed under pointwise
addition. However, in the present paper we show that the sets C, I andMC
each contain large (c-generated) algebraic structures. To prove the strong
c-algebrability of C and I, we will combine Theorem 1.1 and the method of
linearly independent exponents, which was successful in [BGP] and [BG1]. In
the next theorem we construct generators as powers of one geometric series
xq (xq(n) = qn) for 0 < q < 1/2. Clearly, xq ∈ C by Theorem 1.1.

Theorem 2.1. C is strongly c-algebrable.

Proof. Fix q ∈ (0, 1/2). Let {rα : α < c} be a linearly independent (over
the rationals) set of reals greater than 1. Let xα(n) = qrαn. We will show
that the set {xα : α < c} generates a free algebra A which, except for the
null sequence, is contained in C.

To do this, we will show that for any β1, . . . , βm ∈ R \ {0}, any matrix
[kil]i≤m, l≤j of natural numbers with nonzero distinct rows, and any α1 <
· · · < αj < c, the sequence x given by

x(n) = P (xα1 , . . . , xαj )(n),
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where
P (z1, . . . , zj) = β1z

k11
1 . . . z

k1j
j + · · ·+ βmz

km1
1 . . . z

kmj
j ,

is in C. We have

x(n) = β1q
n(rα1k11+···+rαj k1j) + · · ·+ βmq

n(rα1km1+···+rαj kmj).

Since rα1 , . . . , rαj are linearly independent and the rows of [kil]i≤m, l≤j are
distinct, the numbers r1 := rα1k11 + · · · + rαjk1j , . . . , rm := rα1km1 + · · · +
rαjkmj are distinct. We may assume that r1 < · · · < rm. Then

|x(n)|∑
i>n |x(i)|

=
|β1qnr1 + · · ·+ βmq

nrm |∑
i>n |β1qir1 + · · ·+ βmqirm |

≥ |β1qnr1 + · · ·+ βmq
nrm |∑

i>n(|β1|qir1 + · · ·+ |βm|qirm)
=

|β1qnr1 + · · ·+ βmq
nrm |

|β1|q(n+1)r1

1−qr1 + · · ·+ |βm|q(n+1)rm

1−qrm

→ 1− qr1
qr1

> 1.

Therefore there is n0 such that |x(n)| >
∑

i>n |x(i)| for all n ≥ n0. Hence,
by Theorem 1.1, we conclude that x ∈ C.

It is obvious that the geometric sequence xq, even for q > 1/2, is not
useful to construct the generators of an algebra contained in I. Indeed, for
a sufficiently large exponent k, the sequence xkq belongs to C. So, in the next
theorem we use the harmonic series.

Theorem 2.2. I is strongly c-algebrable.

Proof. Let K be a linearly independent subset of (1,∞) of cardinality c.
For α ∈ K, let xα be the sequence given by xα(n) = 1/nα. We will show
that the set {xα : α ∈ K} generates a free algebra A which is contained in
I ∪ {0}. To do this, we will show that for any β1, . . . , βm ∈ R \ {0}, any
matrix [kil]i≤m, l≤j of natural numbers with nonzero distinct rows, and any
α1 < · · · < αj , the sequence x defined by

x = P (xα1 , . . . , xαj )

= β1x
k11
α1

. . . x
k1j
αj + β2x

k21
α1

. . . x
k2j
αj + · · ·+ βmx

km1
α1

. . . x
kmj
αj

belongs to I. We have

x(n) = P (xα1 , . . . , xαj )(n)

= β1
1

nα1k11+···+αjk1j
+ · · ·+ βm

1

nα1km1+···+αjkmj

= β1
1

np1
+ · · ·+ βj

1

npm
.



SOME SETS IN `1 79

Note that p1, . . . , pm are distinct. Assume that p1 < · · · < pm. We have

|x(n)|∑
k>n |x(k)|

=

∣∣β1 1
np1 + β2

1
np2 + · · ·+ βm

1
npm

∣∣∑
k>n

∣∣β1 1
kp1 + β2

1
kp2 + · · ·+ βm

1
kpm

∣∣
≤

∣∣β1 1
np1 + β2

1
np2 + · · ·+ βm

1
npm

∣∣∑
k>n

(∣∣β1 1
kp1

∣∣− ∣∣β2 1
kp2

∣∣− · · · − ∣∣βm 1
kpm

∣∣)
≤

∣∣β1 1
np1 + β2

1
np2 + · · ·+ βm

1
npm

∣∣
|β1|

	∞
n+1

1
xp1 dx− |β2|

	∞
n

1
xp2 dx− · · · − |βm|

	∞
n

1
xpm dx

=

∣∣β1 + β2
np1
np2 + · · ·+ βm

np1
npm

∣∣
n
[
|β1| 1

p1−1
np1−1

(n+1)p1−1 − |β2| 1
p2−1

np1−1

np2−1 − · · · − |βm| 1
pm−1

np1−1

npm−1

]
−→
n→∞

0 < 1.

Observe that the first inequality holds for n large enough. Therefore there
is n0 such that |x(n)| ≤

∑
i>n |x(i)| for any n ≥ n0. Hence, by Theorem 1.1

we conclude that x ∈ I.
The method described in the next lemma belongs to the mathematical

folklore and was used to construct sequences x with E(x) being Cantorvals.
We present its proof since we have not found it explicitly formulated in the
literature.

Lemma 2.3. Let x ∈ `1 be such that

(i) E(x) contains an interval;
(ii) |x(n)| >

∑
i>n |x(i)| for infinitely many n;

(iii) |xn| ≥ |xn+1| for almost all n.

Then x ∈MC.
Proof. By (ii)–(iii), the point x does not belong to I. By (i), the point x

does not belong to C. Hence, by Theorem 1.2 we get x ∈MC.
Until quite recently, only a few examples were known of sequences belong-

ing toMC. These examples were not very useful to construct a large number
of linearly independent sequences. Recently, Jones [J] has constructed a one-
parameter family of sequences in MC. We shall use a modification of his
example in the proof of our next theorem.

Theorem 2.4. MC is c-lineable.

Proof. Let

xq = (4, 3, 2, 4q, 3q, 2q, 4q2, 3q2, 2q2, 4q3, . . .)

and
yq = (1, 1, 1, 1, 1, q, q, q, q, q, q2, q2, q2, q2, q2, q3, . . .)
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for q ∈ [1/6, 2/11). Observe that the sequences xq, q ∈ [1/6, 2/11), are lin-
early independent. We need to show that each non-zero linear combination
of these sequences xq satisfies assumptions (i)–(iii) of Lemma 2.3 and there-
fore it is in MC. To prove this, let us fix q1 > · · · > qm ∈ [1/6, 2/11),
β1, . . . , βm ∈ R and define sequences x and y by

x(n) = β1xq1(n) + · · ·+ βmxqm(n)

and
y(n) = β1yq1(n) + · · ·+ βmyqm(n).

First, we will check that for almost all n,

(2.1) 2|β1qn1 + · · ·+ βmq
n
m| > 9

∑
k>n

|β1qk1 + · · ·+ βmq
k
m|.

We have
2|β1qn1 + · · ·+ βmq

n
m|

9
∑

k>n(|β1qk1 + · · ·+ βmqkm|)
≥ 2|β1qn1 + · · ·+ βmq

n
m|

9
∑

k>n(|β1qk1 |+ · · ·+ |βmqkm|)

=
2|β1qn1 + · · ·+ βmq

n
m|

9
(
|β1|

qn+1
1
1−q1 + · · ·+ |βm| q

n+1
m

1−qm
) −→n→∞ 2

9
· 1− q1

q1
>

2

9
· 1−2/11

2/11
= 1.

Note that if n is not divisible by 3, then |x(n)| ≥ |x(n + 1)|. On the other
hand, if n = 3l, then

|x(n)| = 2|β1ql1 + · · ·+ βmq
l
m|

and
|x(n+ 1)| = 3|β1ql+1

1 + · · ·+ βmq
l+1
m | ≤ 9

∑
k>l

|β1qk1 + · · ·+ βmq
k
m|.

Hence by (2.1) we obtain |x(n)| ≥ |x(n + 1)| for almost all n. By (2.1) we
also have |x(n)| >

∑
i>n |x(i)| for infinitely many n.

Now we will show that
(2.2) |β1qn1 + · · ·+ βmq

n
m| ≤ 5

∑
k>n

|β1qk1 + · · ·+ βmq
k
m|.

We have
|β1qn1 + β2q

n
2 + · · ·+ βmq

n
m|

5
∑

k>n |β1qk1 + β2qk2 + · · ·+ βmqkm|

≤ |β1qn1 + β2q
n
2 + · · ·+ βmq

n
m|

5|
∑

k>n β1q
k
1 + β2qk2 + · · ·+ βmqkm|

=

∣∣β1 + β2
( q2
q1

)n
+ · · ·+ βm

( qm
q1

)n∣∣
5
∣∣β1∑i>0 q

i
1 + β2

( q2
q1

)n∑
i>0 q

i
2 + · · ·+ βm

( qm
q1

)n∑
i>0 q

i
m

∣∣
−→
n→∞

1

5
· 1− q1

q1
≤ 1

5
· 1− 1/6

1/6
= 1.



SOME SETS IN `1 81

By (2.2) we find that |y(n)| ≤
∑

k>n |y(k)| for almost all n. Therefore by
Theorem 1.1, the set E(y) is a finite union of closed intervals. Thus E(y)
has non-empty interior.

To end the proof we need to show that E(x) has non-empty interior. We
will prove that

2
∑
n=0

(β1q
n
1 + · · ·+ βmq

n
m) + E(y) ⊆ E(x).

Let
t ∈ 2

∑
n=0

(β1q
n
1 + · · ·+ βmq

n
m) + E(y).

Note that any element s of E(y) is of the form

s = k0(β1 + · · ·+ βm) + k1(β1q1 + · · ·+ βmqm)

+ k2(β1q
2
1 + · · ·+ βmq

2
m) + · · ·

where kn ∈ {0, 1, 2, 3, 4, 5}. Thus t is of the form

t = 2
∑
n=0

(β1q
n
1 + · · ·+ βmq

n
m)

+ [k0(β1 + · · ·+ βm) + k1(β1q1 + · · ·+ βmqm)

+ k2(β1q
2
1 + · · ·+ βmq

2
m) + · · · ]

= (2 + k0)(β1 + · · ·+ βm) + (2 + k1)(β1q1 + · · ·+ βmqm)

+ (2 + k2)(β1q
2
1 + · · ·+ βmq

2
m) + · · · .

Note that each number from {2, 3, 4, 5, 6, 7}, that is, every number of the
form 2+ kn, can be written as a sum of numbers 4, 3, 2. Hence t ∈ E(x) and
E(x) has non-empty interior. So x ∈MC.

3. The topological size and Borel class of C, I and MC. Let us
observe that the sets c00, C, I andMC are all dense in `1. Moreover, c00 is an
Fσ-set of the first category. We are interested in the topological size and Borel
class of these sets. For this, let us consider the hyperspace H(R) of all non-
empty compact subsets of reals, equipped with the Vietoris topology (see [Ke,
4F, pp. 24–28]). Recall that the Vietoris topology is generated by the subbase
of sets of the form {K ∈ H(R) : K ⊂ U} and {K ∈ H(R) : K ∩ U 6= ∅} for
all open sets U in R. This topology is metrizable by the Hausdorff metric dH
given by the formula

dH(A,B) = max
{
max
t∈A

d(t, B),max
s∈B

d(s,A)
}

where d is the natural metric in R. It is known that the set N of all nowhere
dense compact sets is a Gδ-set in H(R) and the set F of all compact sets
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with a finite number of connected components is an Fσ-set. To see this, it is
enough to observe that

• K is nowhere dense if and only if for any set Un from a fixed countable
base of the natural topology in R there exists a set Um from this base
such that cl(Um) ⊂ Un and K ⊂ (cl(Um))

c;
• K has more than k components if and only if there exist pairwise

disjoint open intervals J1, . . . , Jk+1 such that K ⊂ J1 ∪ · · · ∪ Jk+1 and
K ∩ Ji 6= ∅ for i = 1, . . . , k + 1.

Now, let us observe that if we assign the set E(x) to the sequence x ∈ `1,
we actually define a function E : `1 → H(R).

Lemma 3.1. The function E is Lipschitz with Lipschitz constant L = 1,
hence it is continuous.

Proof. Let t ∈ E(x). Then there exists a subset A of N such that t =∑
n∈A x(n). We have

d(t, E(y)) ≤ d
(
t,
∑
n∈A

y(n)
)
=
∣∣∣∑
n∈A

(x(n)− y(n))
∣∣∣ ≤∑

n∈N
|x(n)− y(n)|

= ‖x− y‖1
where ‖ · ‖1 denotes the norm in `1. Hence, dH(E(x), E(y)) ≤ ‖x− y‖1.

Theorem 3.2. The set C is a dense Gδ-set (and hence residual), I is a
true Fσ-set (i.e. it is Fσ but not Gδ) of the first category, andMC is in the
class (Fσδ ∩ Gδσ) \ Gδ.

Proof. Let us observe that C∪c00 = E−1[N ] and I ∪c00 = E−1[F ] where
N , F , E are defined as before. Hence C ∪ c00 is Gδ and I ∪ c00 is Fσ. Thus C
is Gδ (because c00 is Fσ) and I∪MC is Fσ. Moreover, I = (I∪c00)∩(I∪MC)
is Fσ, too. By the density of C, C is residual. Since I is dense of the first
category, it cannot be Gδ. For the same reason,MC cannot be Gδ. SinceMC
is a difference of two Fσ-sets, it is in the class Fσδ ∩ Gδσ.

Remark 3.3. In [BG1] the following similar result was shown by quite
different methods: the set of bounded sequences, with the set of limit points
homeomorphic to the Cantor set, is strongly c-algebrable and residual in `∞.

4. Spaceability. In this section we will show that I is spaceable while
C is not. This shows that there is a subset M of `1 containing a dense
Gδ-subset and a linear subspace of dimension c, but Y \ M 6= ∅ for any
infinite-dimensional closed subspace Y of `1.

Theorem 4.1. Let I1 be the subset of I which consists of those x ∈ `1
for which E(x) is an interval. Then I1 is spaceable.
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Proof. Let A1, A2, . . . be a partition of N into infinitely many infinite
subsets. Let An = {k1n < k2n < · · · }. Define xn ∈ `1 by xn(k

j
n) = 2−j and

xn(i) = 0 if i /∈ An. Then ‖xn‖1 = 1 and {xn : x ∈ N} forms a normalised
basic sequence. Let Y be a closed linear space generated by {xn : x ∈ N}.
Then

y ∈ Y ⇔ ∃t ∈ `1
(
y =

∞∑
n=1

t(n)xn

)
.

Since E(xn) = [0, 1], we have E(
∑∞

n=1 t(n)xn) =
⋃∞
n=1 In where In is an

interval with endpoints 0 and t(n). Put t+(n) = max{t(n), 0} and t−(n) =
min{−t(n), 0}. Then E(

∑∞
n=1 t(n)xn) = [

∑∞
n=1 t

−(n),
∑∞

n=1 t
+(n)] and the

result follows.

Let us mention the very recent result by Bernal-González and Ordóñez
Cabrera [BO, Theorem 2.2], who gave sufficient conditions for spaceability
of sets in Banach spaces. Using that result, one can prove the spaceability
of I, but it cannot be used to prove Theorem 4.1, since the assumptions are
not satisfied.

However, we do not know other results giving sufficient conditions for
a set in a Banach space not to be spaceable. An interesting example of a
non-spaceable set was given in the classical paper [G] by Gurariy where
it was proved that the set of all differentiable functions from C[0, 1] is not
spaceable. It is well known that the set of all differentiable functions in C[0, 1]
is dense but meager. We will prove that even dense Gδ-sets in Banach spaces
may not be spaceable.

Theorem 4.2. Let Y be an infinite-dimensional closed subspace of `1.
Then there is y ∈ Y such that E(y) contains an interval.

Proof. Let εn ↘ 0. Let x1 be any non-zero element of Y with ‖x1‖1 =
1 + ε1. Since x1 ∈ `1, there is n1 with

∑∞
n=n1+1 |x1(n)| ≤ ε1. Let E1 consist

of all finite sums
∑n1

n=1 δnx1(n) where δi ∈ {0, 1}. Then E1 is a finite set with
minE1 =

∑n1
n=1 x

−
1 (n), maxE1 =

∑n1
n=1 x

+
1 (n) and 1 ≤ maxE1 −minE1 ≤

1 + ε1.
Let Y1 = Y ∩{x ∈ `1 : x(n) = 0 for every n ≤ n1}. As {x ∈ `1 : x(n) = 0

for every n ≤ n1} has a finite codimension, Y1 is infinite-dimensional. Let
x2 be any non-zero element of Y1 with ‖x2‖1 = 1 + ε2. Since x2 ∈ `1,
there is n2 > n1 with

∑∞
n=n2+1 |xi(n)| ≤ ε2, i = 1, 2. Let E2 consist of all

finite sums
∑n2

n=n1+1 δnx2(n), where δi ∈ {0, 1}. Then E2 is a finite set with
minE2 =

∑n2
n=n1+1 x

−
2 (n), maxE2 =

∑n2
n=n1+1 x

+
2 (n) and 1 ≤ maxE2 −

minE2 ≤ 1 + ε2.
Proceeding inductively, we define natural numbers n1 < n2 < · · · and

infinite-dimensional closed spaces Y ⊃ Y1 ⊃ Y2 ⊃ · · · such that Yk = {x∈ Y :
x(n) = 0 for every n ≤ nk}, non-zero elements xk ∈ Yk−1 with ‖xk‖1 = 1+εk
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and
∑∞

n=nk+1 |xi(n)| ≤ εk, i = 1, . . . , k, and finite sets Ek consisting of all
sums

∑nk
n=nk−1+1 δnxk(n) where δi ∈ {0, 1}. Note that 1 ≤ diam(Ek) ≤

1 + εk. Consider y =
∑∞

k=1 xk/2
k. We claim that E(y) contains the interval

I := [minE1,maxE1].
Note that for any t ∈ I there is t1 ∈ E1 with |t− t1| ≤ (1 + ε1)/2. Since

1 ≤ diam(E2) ≤ 1 + ε2, there is t2 ∈ E1 +
1
2E2 with |t − t2| ≤ (1 + ε2)/2

2.
Hence, there is t̃ ∈ E(x1 + x2/2) with |t − t̃| ≤ (1 + ε2)/2

2 + ε1. Since
1 ≤ diam(Ek) ≤ 1+εk, inductively we can find tk ∈ E1+

1
2E2+ · · ·+ 1

2k−1Ek
with |t− tk| ≤ (1+ εk)/2

k. Hence, there is t̃ ∈ E(x1 + x2/2+ · · ·+ xk/2
k−1)

with

|t− t̃| ≤ (1+εk)/2
k+εk−1+εk−1/2+ · · ·+εk−1/2k−1 ≤ (1+εk)/2

k+2εk−1.

Since E(y) is closed and contains E(x1 + x2/2 + · · · + xk/2
k−1), it follows

that t ∈ E(y) and consequently I ⊂ E(y).

Immediately we get the following.

Corollary 4.3. The set C is not spaceable.

We end the paper with some open questions on the setMC.

Problem 4.4.

(i) IsMC c-algebrable?
(ii) IsMC an Fσ-subset of `1?
(iii) IsMC spaceable?
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