COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 115</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2009</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 115 | 2009 | NO. 2 |
| :--- | :--- | :--- |</table-markdown></div>

EQUIVARIANT CLASSIFICATION OF 2-TORUS MANIFOLDS

BY
ZHI LÜ (Shanghai) and MIKIYA MASUDA (Osaka)

Abstract

We consider locally standard 2-torus manifolds, which are a generalization of small covers of Davis and Januszkiewicz and study their equivariant classification. We formulate a necessary and sufficient condition for two locally standard 2 -torus manifolds over the same orbit space to be equivariantly homeomorphic. This leads us to count the equivariant homeomorphism classes of locally standard 2 -torus manifolds with the same orbit space.

1. Introduction. A 2-torus manifold is a closed smooth manifold of dimension n with a non-free effective action of a 2-torus group $\left(\mathbb{Z}_{2}\right)^{n}$ of rank n, and it is said to be locally standard if it is locally isomorphic to a faithful representation of $\left(\mathbb{Z}_{2}\right)^{n}$ on \mathbb{R}^{n}. The orbit space Q of a locally standard 2-torus M under this action is a nice manifold with corners. When Q is a simple convex polytope, M is called a small cover and studied in [4]. A typical example of a small cover is a real projective space $\mathbb{R} P^{n}$ with a standard action of $\left(\mathbb{Z}_{2}\right)^{n}$. Its orbit space is an n-simplex. On the other hand, a typical example of a compact non-singular toric variety is a complex projective space $\mathbb{C} P^{n}$ with a standard action of $\left(\mathbb{C}^{*}\right)^{n}$ where $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. $\mathbb{C} P^{n}$ has complex conjugation and its fixed point set is $\mathbb{R} P^{n}$. More generally, any compact non-singular toric variety admits complex conjugation and its fixed point set often provides an example of a small cover. Similarly to the theory of toric varieties, an interesting connection between topology, geometry and combinatorics is discussed for small covers in [4], [5] and [7]. Although locally standard 2 -torus manifolds form a much wider class than small covers, one can still expect such a connection. See [9] for the study of 2-torus manifolds from the viewpoint of cobordism.

The orbit space Q of a locally standard 2 -torus manifold M contains a lot of topological information on M. For instance, when Q is a simple convex polytope (in other words, when M is a small cover), the Betti numbers of M (with \mathbb{Z}_{2} coefficients) are described in terms of face numbers of Q ([4]). This is not the case for a general Q, but the Euler characteristic of M can be described in terms of Q (Lemma 4.1). Although Q contains a lot of

[^0]topological information on M, Q is not sufficient to reproduce M, i.e., there are many locally standard 2 -torus manifolds with the same orbit space in general. We need two data to recover M from Q :
(1) One is a characteristic function on Q introduced in [4], which is a map from the set of codimension-one faces of Q to $\left(\mathbb{Z}_{2}\right)^{n}$ satisfying a certain linear independence condition. Roughly speaking, a characteristic function provides information on the set of non-free orbits in M.
(2) The other one is a principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle over Q which provides information on the set of free orbits in M.

It turns out that the orbit space Q together with these two data uniquely determines a locally standard 2 -torus manifold up to equivariant homeomorphism (Lemma 3.1). When Q is a simple convex polytope, any principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle over it is trivial; so only a characteristic function matters in this case ([4]).

The set of isomorphism classes in all principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundles over Q can be identified with $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)$. Let $\Lambda(Q)$ be the set of all characteristic functions on Q. Then each element in $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)$ determines a locally standard 2-torus manifold with orbit space Q. However, different elements in the product may produce equivariantly homeomorphic locally standard 2-torus manifolds. Let $\operatorname{Aut}(Q)$ be the group of self-homeomorphisms of Q as a manifold with corners. It naturally acts on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)$ and one can see that equivariant homeomorphism classes in locally standard 2-torus manifolds with orbit space Q can be identified with the coset space $\left(H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)\right) / \operatorname{Aut}(Q)$ (see Proposition 5.5). This space is a finite set and we are led to count its elements. However, this is not easy in general. We investigate the case where Q is a compact surface with only one boundary component. In this case, codimension-one faces sit in the boundary circle (i.e. an m-gon with $m \geq 2$), so a characteristic function on Q is a coloring on the m-gon with three colors. This shows that simple and nice combinatorics can still be related to topology.

It should be pointed out that a torus manifold is introduced in [8] as an extended notion of a toric or quasitoric manifold. A torus manifold is a closed smooth manifold of dimension $2 n$ with an effective smooth action of a compact n-dimensional torus $\left(S^{1}\right)^{n}$ having a fixed point. (More precisely, an orientation data on M called an omniorientation in [2] is incorporated in the definition.) There is also the notion of local standardness in this setting ([4]). Although many interesting examples of torus manifolds are locally standard (e.g. this is the case for compact non-singular toric varieties with restricted action of the compact torus, more generally for torus manifolds with vanishing odd degree cohomology, [11]), the local standardness is not
assumed in [8] because a combinatorial object called a multi-fan can be defined without assuming it (see also [10]). As for a 2-torus manifold, we do not require the existence of a fixed point but require that the action be non-free.

The argument developed in this paper for locally standard 2-torus manifolds also works with some modification for locally standard torus manifolds. But the number of locally standard torus manifolds (up to a certain equivalence relation such as equivariant homeomorphism) over a fixed manifold with corners is infinite in general while it is always finite in the 2 -torus case so that the counting problem makes sense. This is why we restrict our concern to the 2-torus case.

The paper is organized as follows. In Section 2, we introduce the notion of locally standard 2-torus manifold and give several examples. Following Davis and Januszkiewicz [4], we define a characteristic function and construct a locally standard 2-torus manifold from a characteristic function and a principal bundle in Section 3. In Section 4 we describe the Euler characteristic of a locally standard 2-torus manifold in terms of its orbit space. Section 5 discusses three equivalence relations among locally standard 2 -torus manifolds and identify them with some coset spaces. We count the number of colorings on a circle in Section 6. Applying this result, we find in Section 7 the number of equivariant homeomorphism classes in locally standard 2-torus manifolds when the orbit space is a compact surface with only one boundary component.
2. 2-torus manifolds. We denote the quotient additive group $\mathbb{Z} / 2 \mathbb{Z}$ by \mathbb{Z}_{2} throughout this paper. The natural action of a 2-torus $\left(\mathbb{Z}_{2}\right)^{n}$ of rank n on \mathbb{R}^{n} defined by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left((-1)^{g_{1}} x_{1}, \ldots,(-1)^{g_{n}} x_{n}\right), \quad\left(g_{1}, \ldots, g_{n}\right) \in\left(\mathbb{Z}_{2}\right)^{n}
$$

is called the standard representation of $\left(\mathbb{Z}_{2}\right)^{n}$. The orbit space is a positive cone $\mathbb{R}_{\geq 0}^{n}$. Any real n-dimensional faithful representation of $\left(\mathbb{Z}_{2}\right)^{n}$ is obtained from the standard representation by composing with a group automorphism of $\left(\mathbb{Z}_{2}\right)^{n}$, up to isomorphism. Therefore the orbit space of the faithful representation space can also be identified with $\mathbb{R}_{\geq 0}^{n}$.

A 2-torus manifold M is a closed smooth manifold of dimension n with a non-free effective smooth action of $\left(\mathbb{Z}_{2}\right)^{n}$. We say that M is locally standard if for each point x in M, there is a $\left(\mathbb{Z}_{2}\right)^{n}$-invariant neighborhood V_{x} of x such that V_{x} is equivariantly homeomorphic to an invariant open subset of a real n-dimensional faithful representation space of $\left(\mathbb{Z}_{2}\right)^{n}$.

For a locally standard 2-torus manifold M, the orbit space Q of M naturally becomes a manifold with corners (see [3] for the details on manifolds with corners), and it has a non-empty boundary since the action on M is
assumed to be non-free. Therefore the notion of a face can be defined for Q. In this paper we assume that a face is connected. We call a face of dimension 0 a vertex, a face of dimension one an edge and a codimension-one face a facet. We also understand that Q itself is a face of Q of codimension zero.

An n-dimensional convex polytope P is said to be simple if exactly n facets meet at each of its vertices. Each point of a simple convex polytope P has a neighborhood which is affine isomorphic to an open subset of the positive cone $\mathbb{R}_{\geq 0}^{n}$, so P is an n-dimensional manifold with corners. A locally standard 2-torus manifold M is said to be a small cover when its orbit space is a simple convex polytope (see [4]).

We call a closed, connected, codimension-one submanifold of M characteristic if it is a connected component of the set fixed pointwise by some \mathbb{Z}_{2} subgroup. Since M is compact, M has only finitely many characteristic submanifolds. The action of $\left(\mathbb{Z}_{2}\right)^{n}$ is free outside the union of all characteristic submanifolds, in other words, a point of M with non-trivial isotropy subgroup is contained in some characteristic submanifold of M.

Through the quotient map $M \rightarrow Q$, a characteristic submanifold of M corresponds to a facet of Q. A connected component of the intersection of k characteristic submanifolds of M corresponds to a codimension- k face of Q, so a codimension- k face of Q is a connected component of the intersection of k facets. In particular, any codimension-two face of Q (if it exists) is a connected component of the intersection of two facets of Q, which means that Q is nice (see [3]).

We now give examples of locally standard 2 -torus manifolds.
Example 2.1. A real projective space $\mathbb{R} P^{n}$ with the standard $\left(\mathbb{Z}_{2}\right)^{n}$ action defined by

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mapsto\left[x_{0},(-1)^{g_{1}} x_{1}, \ldots,(-1)^{g_{n}} x_{n}\right], \quad\left(g_{1}, \ldots, g_{n}\right) \in\left(\mathbb{Z}_{2}\right)^{n}
$$

is a locally standard 2 -torus manifold. It has $n+1$ isolated points and $n+1$ characteristic submanifolds. The orbit space of $\mathbb{R} P^{n}$ for this action is an n-simplex, so this locally standard 2 -torus manifold is actually a small cover.

Example 2.2. Let S^{1} denote the unit circle in the complex plane \mathbb{C} and consider two involutions on $S^{1} \times S^{1}$ defined by

$$
t_{1}:(z, w) \mapsto(-z, w), \quad t_{2}:(z, w) \mapsto(z, \bar{w})
$$

Since t_{1} and t_{2} commute, they define a $\left(\mathbb{Z}_{2}\right)^{2}$-action on $S^{1} \times S^{1}$, and it is easy to see that $S^{1} \times S^{1}$ with this action is a locally standard 2-torus manifold. It has no fixed point and the orbit space is $\mathbb{R} P^{1} \times I=S^{1} \times I$ where I is a closed interval.

Example 2.3. If M_{1} and M_{2} are both locally standard 2-torus manifolds of the same dimension, then their equivariant connected sum along their free orbits produces a new locally standard 2 -torus manifold. For example, we take $\mathbb{R} P^{2}$ of Example 2.1 and $S^{1} \times S^{1}$ of Example 2.2 and do the equivariant connected sum of them along their free orbits. The orbit space of the resulting locally standard 2 -torus manifold M is the connected sum of a 2 -simplex with $S^{1} \times I$ at their interior points. M has five characteristic submanifolds and three of them have a fixed point but the other two have no fixed point.

If M is a locally standard 2-torus manifold of dimension n and a subgroup of $\left(\mathbb{Z}_{2}\right)^{n}$ has an isolated fixed point, then the isolated point must be fixed by the entire group $\left(\mathbb{Z}_{2}\right)^{n}$. This follows from the local standardness of M. The following is an example of a closed n-manifold with an effective $\left(\mathbb{Z}_{2}\right)^{n}$-action which is not a locally standard 2-torus manifold.

Example 2.4. Consider two involutions on the unit sphere S^{2} of $\mathbb{R} \times \mathbb{C}$ defined by

$$
t_{1}:(x, z) \mapsto(-x,-z), \quad t_{2}:(x, z) \mapsto(x, \bar{z})
$$

Since t_{1} and t_{2} commute, they define a $\left(\mathbb{Z}_{2}\right)^{2}$-action on S^{2}. But S^{2} with this action is not a locally standard 2 -torus manifold because the fixed point set of $t_{1} t_{2}$ consists of two isolated points $(0, \pm \sqrt{-1})$, which are not fixed by the entire group $\left(\mathbb{Z}_{2}\right)^{2}$.
3. Characteristic functions and principal bundles. Let Q be an n-dimensional nice manifold with corners having a non-empty boundary. We denote by $\mathcal{F}(Q)$ the set of facets of Q. We call a map

$$
\lambda: \mathcal{F}(Q) \rightarrow\left(\mathbb{Z}_{2}\right)^{n}
$$

a characteristic function on Q if it satisfies the following linear independence condition:
whenever the intersection of k facets F_{1}, \ldots, F_{k} is non-empty, the elements $\lambda\left(F_{1}\right), \ldots, \lambda\left(F_{k}\right)$ are linearly independent when viewed as vectors of the vector space $\left(\mathbb{Z}_{2}\right)^{n}$ over the field \mathbb{Z}_{2}.
We denote by G_{F} the subgroup of $\left(\mathbb{Z}_{2}\right)^{n}$ generated by $\lambda\left(F_{1}\right), \ldots, \lambda\left(F_{k}\right)$, where F is a connected component of the intersection of F_{1}, \ldots, F_{k} and has codimension k.

Remark. When $n \leq 2$, it is easy to see that any Q admits a characteristic function. When $n=3, Q$ admits a characteristic function if the boundary of Q is a union of 2 -spheres, which follows from the Four Color Theorem, but Q may not admit a characteristic function otherwise. When $n \geq 4$, there
is a simple convex polytope which admits no characteristic function (see [4, Nonexamples 1.22]).

A characteristic function arises naturally from a locally standard 2-torus manifold M of dimension n with orbit space Q. A facet of Q is the image of a characteristic submanifold of M under the quotient map π : $M \rightarrow Q$. To each element $F \in \mathcal{F}(Q)$ we assign the non-zero element of $\left(\mathbb{Z}_{2}\right)^{n}$ which fixes pointwise the characteristic submanifold $\pi^{-1}(F)$. The local standardness of M implies that this assignment satisfies the linear independence condition above required for a characteristic function.

Besides the characteristic function, a principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle over Q will be associated with M as follows. We take a small invariant open tubular neighborhood for each characteristic submanifold of M and remove their union from M. Then the $\left(\mathbb{Z}_{2}\right)^{n}$-action on the resulting space is free and its orbit space can naturally be identified with Q, so it gives a principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle over Q.

We have associated a characteristic function and a principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle with a locally standard 2 -torus manifold. Conversely, one can reproduce the locally standard 2 -torus manifold from these two data. This is done by Davis-Januszkiewicz [4] when Q is a simple convex polytope, but their construction still works in our setting. Let $\xi=(E, \kappa, Q)$, where $\kappa: E \rightarrow$ Q, be a principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle over Q and let $\lambda: \mathcal{F}(Q) \rightarrow\left(\mathbb{Z}_{2}\right)^{n}$ be a characteristic function on Q. We define an equivalence relation \sim on E as follows: for $u_{1}, u_{2} \in E$,

$$
u_{1} \sim u_{2} \Leftrightarrow \kappa\left(u_{1}\right)=\kappa\left(u_{2}\right) \text { and } u_{1}=u_{2} g \text { for some } g \in G_{F}
$$

where F is the face of Q containing $\kappa\left(u_{1}\right)=\kappa\left(u_{2}\right)$ in its relative interior and G_{F} is the subgroup of $\left(\mathbb{Z}_{2}\right)^{n}$ defined at the beginning of this section. Then the quotient space E / \sim, denoted by $M(\xi, \lambda)$, naturally inherits the $\left(\mathbb{Z}_{2}\right)^{n}$-action from E.

The following is proved in [4] when Q is a simple convex polytope, but the same proof works in our setting.

Lemma 3.1. If M is a locally standard 2 -torus manifold over Q with ξ as the associated principal $\left(\mathbb{Z}_{2}\right)^{n}$-principal bundle and λ as the characteristic function, then there is an equivariant homeomorphism from $M(\xi, \lambda)$ to M which covers the identity on Q.

4. Euler characteristic of a locally standard 2-torus manifold.

The following formula describes the Euler characteristic $\chi(M)$ of a locally standard 2-torus manifold M in terms of its orbit space, and it is a special case of a much more general result. Here we are carrying out a standard exercise.

Lemma 4.1. If M is a locally standard 2-torus manifold over Q, then

$$
\chi(M)=\sum_{F} 2^{\operatorname{dim} F} \chi(F, \partial F)=\sum_{F} 2^{\operatorname{dim} F}(\chi(F)-\chi(\partial F))
$$

where F runs over all faces of Q.
Proof. As observed in Section 3, M can be decomposed into the disjoint union of $2^{\operatorname{dim} F}$ copies of $F \backslash \partial F$ over all faces F of Q. This implies the former identity in the theorem. The latter identity is well-known. In fact, it follows from the homology exact sequence for the pair $(F, \partial F)$.

When $\operatorname{dim} M=2, Q$ is a surface with boundary and each boundary component is a circle with at least two vertices if it has a vertex.

Corollary 4.2. If $\operatorname{dim} M=2$ and Q has m vertices, then $\chi(M)=$ $4 \chi(Q)-m$.

Proof. Since ∂Q is a union of circles, $\chi(Q, \partial Q)=\chi(Q)$. If a boundary circle has no vertex, then it is an edge without boundary and its Euler characteristic is zero. So we may neglect it. If F is an edge with a vertex, then it has two endpoints and $\chi(F, \partial F)=\chi(F)-\chi(\partial F)=-1$, and if F is a vertex, then $\chi(F, \partial F)=\chi(F)=1$. Since the number of edges with a vertex and the number of vertices are both m, it follows from Lemma 4.1 that $\chi(M)=2^{2} \chi(Q)-2 m+m=4 \chi(Q)-m$.

Remark. When $\operatorname{dim} M=2$, it is not difficult to see that M is orientable if and only if Q is orientable and the characteristic function $\lambda: \mathcal{F}(Q) \rightarrow\left(\mathbb{Z}_{2}\right)^{2}$ associated with M assigns exactly two elements to each boundary component of Q with a vertex (cf. [12]). Therefore one can find the homeomorphism type of M from the corollary above and the characteristic function λ.
5. Classification of locally standard 2-torus manifolds. In this section we introduce three notions of equivalence in locally standard 2-torus manifolds over Q and identify each set of equivalence classes with the coset space of $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)$ under some action.

Following Davis and Januszkiewicz [4] we say that two locally standard 2torus manifolds M and M^{\prime} over Q are equivalent if there is a homeomorphism $f: M \rightarrow M^{\prime}$ together with an element $\sigma \in \mathrm{GL}\left(n, \mathbb{Z}_{2}\right)$ such that
(1) $f(g x)=\sigma(g) f(x)$ for all $g \in\left(\mathbb{Z}_{2}\right)^{n}$ and $x \in M$,
(2) f induces the identity on the orbit space Q.

When we classify locally standard 2 -torus manifolds up to the above equivalence, it suffices to consider locally standard 2 -torus manifolds of the form $M(\xi, \lambda)$ by Lemma 3.1. We denote by ξ^{σ} the principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundle ξ with $\left(\mathbb{Z}_{2}\right)^{n}$-action through $\sigma \in \operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$. Then it is obvious that $M\left(\xi^{\prime}, \lambda^{\prime}\right)$ is
equivalent to $M(\xi, \lambda)$ if and only if there exists $\sigma \in \operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$ such that $\xi^{\prime}=\xi^{\sigma}$ and $\lambda^{\prime}=\sigma \circ \lambda$.

We denote by $\mathcal{P}(Q)$ the set of all principal $\left(\mathbb{Z}_{2}\right)^{n}$-bundles over Q. Since the classifying space of $\left(\mathbb{Z}_{2}\right)^{n}$ is an Eilenberg-MacLane space $K\left(\left(\mathbb{Z}_{2}\right)^{n}, 1\right)$, $\mathcal{P}(Q)$ can be naturally identified with $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)$, and the action of σ sending ξ to ξ^{σ} is just the action on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)$ induced from the automorphism σ on the coefficient group $\left(\mathbb{Z}_{2}\right)^{n}$. With this understood, the above fact implies the following.

Proposition 5.1. The set of equivalence classes in locally standard 2torus manifolds over Q bijectively corresponds to the coset space

$$
\operatorname{GL}\left(n, \mathbb{Z}_{2}\right) \backslash\left(H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)\right)
$$

under the diagonal action.
The action of $\operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$ on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)$ is free when Q has a vertex by the following lemma.

Lemma 5.2. If Q has a vertex, then the action of $\operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$ on $\Lambda(Q)$ is free and $|\Lambda(Q)|=\left|\mathrm{GL}\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(Q)\right| \prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)$.

Proof. Suppose that $\lambda=\sigma \circ \lambda$ for some $\lambda \in \Lambda(Q)$ and $\sigma \in \operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$. Take a vertex of Q and let F_{1}, \ldots, F_{n} be the facets of Q meeting at the vertex. Then

$$
\left(\lambda\left(F_{1}\right), \ldots, \lambda\left(F_{n}\right)\right)=\sigma\left(\lambda\left(F_{1}\right), \ldots, \lambda\left(F_{n}\right)\right) .
$$

Since the matrix $\left(\lambda\left(F_{1}\right), \ldots, \lambda\left(F_{n}\right)\right)$ is non-singular, σ is the identity matrix. This proves the former statement in the lemma. Then the latter statement follows from the well-known fact that $\left|\mathrm{GL}\left(n, \mathbb{Z}_{2}\right)\right|=\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)$ (see [1]).

Lemma 5.2 is also helpful when counting the number of elements in $\Lambda(Q)$. Here is an example.

Example 5.3 (The number of characteristic functions on a prism). There exist seven combinatorially inequivalent 3 -polytopes with six vertices (see [6, Theorem 6.7]) and only one of them is simple, which is a prism P^{3}.

Let us count the number of characteristic functions on P^{3}. The prism P^{3} has five facets, consisting of three square facets and two triangular facets. We denote the square facets by F_{1}, F_{2}, F_{4}, and the triangular facets by F_{3}, F_{5}. The facets F_{1}, F_{2}, F_{3} intersect at a vertex and we may assume that a characteristic function λ on P^{3} takes the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ of $\left(\mathbb{Z}_{2}\right)^{3}$ to F_{1}, F_{2}, F_{3} respectively through the action of $\operatorname{GL}\left(3, \mathbb{Z}_{2}\right)$ on $\left(\mathbb{Z}_{2}\right)^{3}$. The characteristic function λ must satisfy the linear independence condition at each vertex of P^{3}. This requires that the values of λ on the remaining facets
F_{4}, F_{5} must be as follows:

$$
\left(\lambda\left(F_{4}\right), \lambda\left(F_{5}\right)\right)=\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}, \mathbf{e}_{3}\right) \quad \text { or } \quad\left(\mathbf{e}_{1}+\mathbf{e}_{2}, a \mathbf{e}_{1}+b \mathbf{e}_{2}+\mathbf{e}_{3}\right)
$$

where $a, b \in \mathbb{Z}_{2}$. Therefore, $\left|\mathrm{GL}\left(3, \mathbb{Z}_{2}\right) \backslash \Lambda\left(P^{3}\right)\right|=5$ and $\left|\Lambda\left(P^{3}\right)\right|=5\left|\mathrm{GL}\left(3, \mathbb{Z}_{2}\right)\right|$ $=840$ by Lemma 5.2.

Another natural equivalence relation between locally standard 2-torus manifolds is equivariant homeomorphism. An automorphism of Q is a selfhomeomorphism of Q as a manifold with corners, and we denote the group of automorphisms of Q by $\operatorname{Aut}(Q)$. Similarly, an automorphism of $\mathcal{F}(Q)$ is a bijection from $\mathcal{F}(Q)$ to itself which preserves the poset structure of $\mathcal{F}(Q)$ defined by inclusions of faces, and we denote the group of automorphisms of $\mathcal{F}(Q)$ by $\operatorname{Aut}(\mathcal{F}(Q))$. An automorphism of Q induces an automorphism of $\mathcal{F}(Q)$, so we have a natural homomorphism

$$
\begin{equation*}
\Phi: \operatorname{Aut}(Q) \rightarrow \operatorname{Aut}(\mathcal{F}(Q)) \tag{5.1}
\end{equation*}
$$

We note that $\operatorname{Aut}(\mathcal{F}(Q))$ acts on $\Lambda(Q)$ by sending $\lambda \in \Lambda(Q)$ to $\lambda \circ h$ for $h \in \operatorname{Aut}(\mathcal{F}(Q))$.

Lemma 5.4. $M(\xi, \lambda)$ is equivariantly homeomorphic to $M\left(\xi^{\prime}, \lambda^{\prime}\right)$ if and only if there is an $h \in \operatorname{Aut}(Q)$ such that $\lambda^{\prime}=\lambda \circ \Phi(h)$ and $h^{*}\left(\xi^{\prime}\right)=\xi$ in $\mathcal{P}(Q)$, where $h^{*}\left(\xi^{\prime}\right)$ denotes the bundle induced from ξ^{\prime} by h.

Proof. If $M(\xi, \lambda)$ is equivariantly homeomorphic to $M\left(\xi^{\prime}, \lambda^{\prime}\right)$, then there is an equivariant homeomorphism $H: M\left(\xi^{\prime}, \lambda^{\prime}\right) \rightarrow M(\xi, \lambda)$ and it is easy to see that the automorphism of Q induced from H is the desired h in the statement.

Conversely, suppose that there is an $h \in \Lambda(Q)$ such that $\lambda^{\prime}=\lambda \circ \Phi(h)$ and $\xi^{\prime}=h^{*}(\xi)$ in $\mathcal{P}(Q)$. Then there is a bundle map $\hat{h}: \xi^{\prime} \rightarrow \xi$ which covers h, and \hat{h} descends to a map H from $M\left(\xi^{\prime}, \lambda^{\prime}\right)$ to $M(\xi, \lambda)$ because $\lambda^{\prime}=\lambda \circ \Phi(h)$. It is not difficult to see that H is an equivariant homeomorphism.

Aut (Q) naturally acts on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)$, and the canonical bijection between $\mathcal{P}(Q)$ and $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)$ is equivariant with respect to the actions of $\operatorname{Aut}(Q)$.

Proposition 5.5. The set of equivariant homeomorphism classes in all locally standard 2-torus manifolds over Q bijectively corresponds to the coset space

$$
\left(H^{1}\left(Q,\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)\right) / \operatorname{Aut}(Q)
$$

under the diagonal action of $\operatorname{Aut}(Q)$. If Q is a simple convex polytope, then the set of equivariant homeomorphism classes in all small covers over Q bijectively corresponds to the coset space $\Lambda(Q) / \operatorname{Aut}(\mathcal{F}(Q))$.

Proof. The former statement in the proposition follows from Lemma 5.4. If Q is a simple polytope, then $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right)=0$. Therefore, the latter
statement follows if we prove that the map Φ in (5.1) is surjective when Q is a simple convex polytope.

A simple polytope Q has a simplicial polytope Q^{*} as its dual and the face poset $\mathcal{F}(Q)$ is the same as $\mathcal{F}\left(Q^{*}\right)$ with reverse inclusion. Therefore $\operatorname{Aut}(\mathcal{F}(Q))=\operatorname{Aut}\left(\mathcal{F}\left(Q^{*}\right)\right)$. Since Q^{*} is simplicial, an element φ of $\operatorname{Aut}\left(\mathcal{F}\left(Q^{*}\right)\right)$ is realized by a simplicial automorphism on the boundary of Q^{*}, so it extends to an automorphism of Q^{*}. Since Q is dual to Q^{*}, the automorphism of Q^{*} determines a bijection on the vertex set of Q and hence an automorphism of Q which induces the chosen φ.

Our last equivalence relation is a combination of the previous two. We say that two locally standard 2-torus manifolds M and M^{\prime} over Q are weakly equivariantly homeomorphic if there is a homeomorphism $f: M \rightarrow M^{\prime}$ together with $\sigma \in \operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$ such that $f(g x)=\sigma(g) f(x)$ for any $g \in\left(\mathbb{Z}_{2}\right)^{n}$ and $x \in M$. We note that f induces an automorphism of Q but it may not be the identity on Q. The observation above shows that $M(\xi, \lambda)$ and $M\left(\xi^{\prime}, \lambda^{\prime}\right)$ are weakly equivariantly homeomorphic if and only if there are $h \in \operatorname{Aut}(Q)$ and $\sigma \in \operatorname{GL}\left(n, \mathbb{Z}_{2}\right)$ such that $\xi^{\prime}=h^{*}\left(\xi^{\sigma}\right)$ and $\lambda^{\prime}=\sigma \circ \lambda \circ h$. This yields

Proposition 5.6. The set of weakly equivariant homeomorphism classes in locally standard 2-torus manifolds over Q bijectively corresponds to the double coset space

$$
\operatorname{GL}\left(n, \mathbb{Z}_{2}\right) \backslash\left(H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{n}\right) \times \Lambda(Q)\right) / \operatorname{Aut}(Q)
$$

under the diagonal actions of $\operatorname{Aut}(Q)$ and $\mathrm{GL}\left(n, \mathbb{Z}_{2}\right)$. If Q is a simple convex polytope, then the set of weakly equivariant homeomorphism classes in small covers over Q bijectively corresponds to the double coset space

$$
\begin{equation*}
\operatorname{GL}\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(Q) / \operatorname{Aut}(\mathcal{F}(Q)) \tag{5.2}
\end{equation*}
$$

Remark. When Q is a right-angled regular hyperbolic polytope (such a Q is the dodecahedron, the 120 -cell or an m-gon with $m \geq 5$), it is shown in [7, Theorem 3.3] that the double coset space (5.2) identifies with the set of hyperbolic structures in small covers over Q. This together with Mostow rigidity implies that when $\operatorname{dim} Q \geq 3$, that is, when Q is the dodecahedron or the 120-cell, (5.2) identifies with the set of homeomorphism classes in small covers over Q ([7, Corollary 3.4]), i.e., the natural surjective map from the double coset space to the set of homeomorphism classes in small covers over Q is bijective for such Q. However, this last statement does not hold for an m-gon Q with $m \geq 6$ although it holds for $m=3,4,5$ (see the remark following Example 6.5 in the next section).
6. Counting the colorings on a circle. When $\operatorname{dim} Q=2$, each boundary component is a circle with at least two vertices if it has a ver-
tex, and any two non-zero elements in $\left(\mathbb{Z}_{2}\right)^{2}$ form a basis of $\left(\mathbb{Z}_{2}\right)^{2}$; so a characteristic function on Q is equivalent to coloring arcs on the boundary circles with three colors in such a way that any two adjacent arcs have different colors.

Let $S(m)$ be a circle with $m(\geq 2)$ vertices. A coloring on $S(m)$ (with three colors) means to color arcs of $S(m)$ in such a way that any adjacent arcs have different colors. We denote by $\Lambda(m)$ the set of all colorings on $S(m)$ and set

$$
A(m):=|\Lambda(m)|
$$

Lemma 6.1. $A(m)=2^{m}+(-1)^{m} 2$.
Proof. Let $L(m)$ be a segment with $m+1$ vertices, so $L(m)$ consists of m segments. The number of colorings of segments of $L(m)$ with three colors in such a way that any adjacent segments have different colors is $3 \cdot 2^{m-1}$. If the two end segments have different colors, then gluing the end points of $L(m)$ produces a coloring on $S(m)$; otherwise, a coloring on $S(m-1)$. Thus, $A(m)+A(m-1)=3 \cdot 2^{m-1}$. On the other hand, a simple observation shows that $A(3)=A(2)=6$. These imply the lemma.

We think of $S(m)$ as the unit circle of \mathbb{C} with m vertices $e^{2 \pi k / m}(k=$ $0,1, \ldots, m-1)$. Let \mathfrak{D}_{m} be the dihedral group of order $2 m$ consisting of m rotations of \mathbb{C} by angles $2 \pi k / m(k=0,1, \ldots, m-1)$ and m reflections in lines in \mathbb{C} obtained by rotating the real axis by $\pi k / m(k=0,1, \ldots, m-1)$. Then the action of \mathfrak{D}_{m} on $S(m)$ preserves the vertices so that \mathfrak{D}_{m} acts on the set $\Lambda(m)$. With this understood we have

TheOrem 6.2. Let φ denote Euler's totient function, that is, $\varphi(1)=1$ and $\varphi(N)$ for a positive integer $N(\geq 2)$ is the number of positive integers less than N and coprime to N. Then

$$
\left|\Lambda(m) / \mathfrak{D}_{m}\right|=\frac{1}{2 m}\left(\sum_{2 \leq d \mid m} \varphi(m / d) A(d)+\frac{1+(-1)^{m}}{2} \cdot 3 \cdot 2^{m / 2} \cdot \frac{m}{2}\right)
$$

Proof. The famous Burnside lemma or Cauchy-Frobenius lemma (see [1]) says that if G is a finite group and X is a finite G-set, then

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

where X^{g} denotes the set of g-fixed points in X. We apply this formula to our \mathfrak{D}_{m}-set $\Lambda(m)$. Let $a \in \mathfrak{D}_{m}$ be the rotation by $2 \pi / m$ and $b \in \mathfrak{D}_{m}$ be the reflection in the real axis. Then

$$
\begin{equation*}
\left|\Lambda(m) / \mathfrak{D}_{m}\right|=\frac{1}{2 m} \sum_{k=0}^{m-1}\left(\left|\Lambda(m)^{a^{k}}\right|+\left|\Lambda(m)^{a^{k} b}\right|\right) \tag{6.1}
\end{equation*}
$$

Here, if d is the greatest common divisor of k and m, then $\Lambda(m)^{a^{k}}=\Lambda(m)^{a^{d}}$ because the subgroups generated by a^{k} and by a^{d} are the same. Since $\Lambda(m)^{a^{d}}=\Lambda(d)$ and $\Lambda(1)$ is empty, we have

$$
\begin{equation*}
\sum_{k=0}^{m-1}\left|\Lambda(m)^{a^{k}}\right|=\sum_{2 \leq d \mid m} \varphi(m / d) A(d) \tag{6.2}
\end{equation*}
$$

On the other hand, since $a^{k} b$ is the reflection in the line in \mathbb{C} obtained by rotating the real axis by $\pi k / m$, we have

$$
\left|\Lambda(m)^{a^{k} b}\right|= \begin{cases}3 \cdot 2^{m / 2} & \text { when } m \text { is even and } k \text { is odd } \tag{6.3}\\ 0 & \text { otherwise }\end{cases}
$$

Putting (6.2) and (6.3) into (6.1), we obtain the formula in the theorem.
Example 6.3. As is well known, $\varphi\left(p^{n}\right)=p^{n-1}(p-1)$ for any prime number p and positive integer n, and $\varphi(a b)=\varphi(a) \varphi(b)$ for a, b relatively prime. We set

$$
B(m):=\left|\Lambda(m) / \mathfrak{D}_{m}\right|
$$

Using the formula in Theorem 6.2 together with Lemma 6.1, one finds that

$$
\begin{aligned}
B(2) & =3, \quad B(3)=1, \quad B(4)=6, \quad B(5)=3, \quad B(6)=13 \\
B(7) & =9, \quad B(8)=30, \quad B(9)=29, \quad B(10)=78 \\
B\left(2^{k}\right) & =2^{2^{k}-k-1}+3 \cdot 2^{2^{k-1}-2}+\sum_{i=1}^{k} 2^{2^{i-1}-i-1} \\
B\left(p^{k}\right) & =\sum_{i=1}^{k} \frac{1}{2 p^{i}}\left(2^{p^{i}}-2^{p^{i-1}}\right) \\
B(2 p) & =\frac{1}{4 p}\left(4^{p}+(3 p+1) 2^{p}+6 p-6\right) \\
B(p q) & =\frac{1}{2 p q}\left(2^{p q}-2^{p}-2^{q}+2\right)+\frac{1}{2 p}\left(2^{p}-2\right)+\frac{1}{2 q}\left(2^{q}-2\right)
\end{aligned}
$$

where p is an odd prime and q is another odd prime.
Remark. The same argument works for coloring $S(m)$ with s colors. In this case the identity in Lemma 6.1 turns into

$$
A_{s}(m)=(s-1)^{m}+(-1)^{m}(s-1)
$$

and if we denote by $\Lambda_{s}(m)$ the set of all colorings on $S(m)$ with s colors, then the formula in Theorem 6.2 turns into

$$
\left|\Lambda_{s}(m) / \mathfrak{D}_{m}\right|=\frac{1}{2 m}\left(\sum_{2 \leq d \mid m} \varphi(m / d) A_{s}(d)+\frac{1+(-1)^{m}}{2} \cdot s \cdot(s-1)^{m / 2} \cdot \frac{m}{2}\right)
$$

The computation of $\left|\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}\right|$ can be done in a similar fashion but is rather complicated. We note that the action of $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ on $\Lambda(m)$ permutes the three colors used to color $S(m)$. GL $\left(2, \mathbb{Z}_{2}\right)$ consists of six elements; three of them are of order 2 and two are of order 3 .

ThEOREM 6.4. Let α and β be the functions defined as follows:

$$
\begin{array}{llll}
\alpha(1)=1, & \alpha(2)=3, & \alpha(3)=2, & \alpha(6)=4 \\
\beta(1)=0, & \beta(2)=2, & \beta(3)=2, & \beta(6)=4 .
\end{array}
$$

Then $\left|\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}\right|$ is given by

$$
\frac{1}{2 m}\left[\sum_{d \mid m}\left\{\varphi(m / d) \cdot \frac{1}{6}(\alpha((m / d, 6)) A(d)+\beta((m / d, 6)) A(d-1))\right\}+E(m)\right]
$$

where $(m / d, 6)$ denotes the greatest common divisor of m / d and $6, A(q)=$ $2^{q}+(-1)^{q} 2$ as before, and

$$
E(m)= \begin{cases}(m / 6) A((m+1) / 2) & \text { if } m \text { is odd } \\ m \cdot 2^{m / 2-1} & \text { if } m \text { is even }\end{cases}
$$

Proof. Applying the Burnside lemma to our \mathfrak{D}_{m}-set

$$
\Gamma(m):=\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m)
$$

we have
(6.4) $\left|\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}\right|=\frac{1}{2 m} \sum_{g \in \mathfrak{D}_{m}}\left|\Gamma(m)^{g}\right|$
$=\frac{1}{2 m} \sum_{k=0}^{m-1}\left(\left|\Gamma(m)^{a^{k}}\right|+\left|\Gamma(m)^{a^{k} b}\right|\right)=\frac{1}{2 m}\left[\sum_{d \mid m} \varphi(m / d)\left|\Gamma(m)^{a^{d}}\right|+\sum_{k=0}^{m-1}\left|\Gamma(m)^{a^{k} b}\right|\right]$.
We need to analyze $\left|\Gamma(m)^{a^{d}}\right|$ with $d \mid m$, and $\left|\Gamma(m)^{a^{k} b}\right|$.
First we deal with $\left|\Gamma(m)^{a^{d}}\right|$ with $d \mid m$. Note that $\lambda \in \Lambda(m)$ is a representative of $\Gamma(m)^{a^{d}}$ if and only if there is $\sigma \in \mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ such that

$$
\begin{equation*}
\sigma \circ \lambda=\lambda \circ a^{d} . \tag{6.5}
\end{equation*}
$$

Since a^{d} is of order m / d, the repeated use of (6.5) shows that

$$
\begin{equation*}
\sigma^{m / d}=1 \tag{6.6}
\end{equation*}
$$

The identity (6.5) implies that the λ satisfying (6.5) can be determined by the coloring restricted to the union of d consecutive arcs, say T, and it also tells us how to recover λ from the coloring on T.

Let μ be a coloring on T. We shall count the colorings λ on $S(m)$ which are extensions of μ and satisfy (6.5) for some $\sigma \in \mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$. For each σ satisfying (6.6), there is a unique extension to $S(m)$ which satisfies (6.5). However, the extension may not be a coloring, i.e., two arcs meeting at a
junction of T and its translations by rotations $\left(a^{d}\right)^{r}(r=1, \ldots, m / d-1)$ may have the same color. Let t and t^{\prime} be the end arcs of T such that the rotation of t by a^{d-1} is t^{\prime}. (Note: When $d=1$, we understand $t=t^{\prime}$ and then the subsequent argument works.) The extension is a coloring if and only if

$$
\begin{equation*}
\sigma(\mu(t)) \neq \mu\left(t^{\prime}\right) \tag{6.7}
\end{equation*}
$$

As is easily checked, the number of σ satisfying conditions (6.6) and (6.7) is $\alpha((m / d, 6))$ if $\mu(t) \neq \mu\left(t^{\prime}\right)$, and $\beta((m / d, 6))$ if $\mu(t)=\mu\left(t^{\prime}\right)$. On the other hand, the number of μ with $\mu(t) \neq \mu\left(t^{\prime}\right)$ is $A(d)$, and of those with $\mu(t)=$ $\mu\left(t^{\prime}\right)$ is $A(d-1)$. It follows that the number of λ satisfying (6.5) for some σ is $\alpha((m / d, 6)) A(d)+\beta((m / 6, d)) A(d-1)$. This proves that

$$
\begin{equation*}
\left|\Gamma(m)^{a^{d}}\right|=\frac{1}{6}(\alpha((m / d, 6)) A(d)+\beta((m / 6, d)) A(d-1)) \tag{6.8}
\end{equation*}
$$

since the action of $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ on $\Lambda(m)$ is free by Lemma 5.2 , and the order of $\operatorname{GL}\left(2, \mathbb{Z}_{2}\right)$ is 6 .

Next we deal with $\left|\Gamma(m)^{a^{k} b}\right|$. A similar argument shows that $\lambda \in \Lambda(m)$ is a representative of $\Gamma(m)^{a^{k} b}$ if and only if there is $\sigma \in \mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ such that

$$
\begin{equation*}
\sigma \circ \lambda=\lambda \circ a^{k} b \tag{6.9}
\end{equation*}
$$

Since $a^{k} b$ is of order two, the repeated use of (6.9) shows that

$$
\begin{equation*}
\sigma^{2}=1 \tag{6.10}
\end{equation*}
$$

Suppose that m is odd. Then the line fixed by $a^{k} b$ goes through a vertex, say v, of $S(m)$ and the midpoint of the arc, say e^{\prime}, of $S(m)$ opposite to the vertex v. Let H be the union of $(m+1) / 2$ consecutive arcs starting from v and ending at e^{\prime}. Let e be the other end arc of H different from e^{\prime}. The arc e has v as a vertex. Let ν be a coloring on H and let $\sigma \in \mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ satisfy (6.10). Then ν has an extension to a coloring of $S(m)$ satisfying (6.9) if and only if

$$
\sigma(\nu(e)) \neq \nu(e) \quad \text { and } \quad \sigma\left(\nu\left(e^{\prime}\right)\right)=\nu\left(e^{\prime}\right)
$$

It follows that $\nu(e)$ must be different from $\nu\left(e^{\prime}\right)$ and there is only one σ satisfying the two identities above for each such ν. Since the number of ν with $\nu(e) \neq \nu\left(e^{\prime}\right)$ is $A((m+1) / 2)$, so is the number of $\lambda \in \Lambda(m)$ satisfying (6.9) for some σ. It follows that $\left|\Gamma(m)^{a^{k} b}\right|=\frac{1}{6} A((m+1) / 2)$ and hence

$$
\begin{equation*}
\sum_{k=0}^{m-1}\left|\Gamma(m)^{a^{k} b}\right|=\frac{m}{6} A((m+1) / 2) \tag{6.11}
\end{equation*}
$$

Suppose that m is even and k is odd. Then the line fixed by $a^{k} b$ goes through the midpoints of two opposite arcs, say e and e^{\prime}, of $S(m)$. Let H be the union of $m / 2+1$ consecutive arcs starting from e and ending at e^{\prime}. Let ν be a coloring on H and let $\sigma \in \mathrm{GL}\left(2, \mathbb{Z}_{2}\right)$ satisfy (6.10). Then ν has
an extension to a coloring of $S(m)$ satisfying (6.9) if and only if

$$
\sigma(\nu(e))=\nu(e) \quad \text { and } \quad \sigma\left(\nu\left(e^{\prime}\right)\right)=\nu\left(e^{\prime}\right)
$$

If $\nu(e) \neq \nu\left(e^{\prime}\right)$ then such a σ must be the identity, and if $\nu(e)=\nu\left(e^{\prime}\right)$ then there are two such σ, one of which is the identity. Since the number of ν with $\nu(e) \neq \nu\left(e^{\prime}\right)$ is $A(m / 2+1)$, and of those with $\nu(e)=\nu\left(e^{\prime}\right)$ is $A(m / 2)$, the number of $\lambda \in \Lambda(m)$ satisfying (6.9) for some σ is $A(m / 2+1)+2 A(m / 2)$. It follows that

$$
\begin{equation*}
\sum_{k=0, k \text { odd }}^{m-1}\left|\Gamma(m)^{a^{k} b}\right|=\frac{m}{12}(A(m / 2+1)+2 A(m / 2)) \tag{6.12}
\end{equation*}
$$

Suppose that m is even and k is even. Then the line fixed by $a^{k} b$ goes through two opposite vertices, say v and v^{\prime}, of $S(m)$. Let H be the union of $m / 2$ consecutive arcs starting from v and ending at v^{\prime}. Let e and e^{\prime} be the end arcs of H which respectively have v and v^{\prime} as a vertex. Let ν be a coloring on H and let $\sigma \in \operatorname{GL}\left(2, \mathbb{Z}_{2}\right)$ satisfy (6.10). Then ν has an extension to a coloring of $S(m)$ satisfying (6.9) if and only if

$$
\sigma(\nu(e)) \neq \nu(e) \quad \text { and } \quad \sigma\left(\nu\left(e^{\prime}\right)\right) \neq \nu\left(e^{\prime}\right) .
$$

If $\nu(e) \neq \nu\left(e^{\prime}\right)$ then there is only one such σ, and if $\nu(e)=\nu\left(e^{\prime}\right)$ then there are two. Since the number of ν with $\nu(e) \neq \nu\left(e^{\prime}\right)$ is $A(m / 2)$, and of those with $\nu(e)=\nu\left(e^{\prime}\right)$ is $A(m / 2-1)$, the number of $\lambda \in \Lambda(m)$ satisfying (6.9) for some σ is $A(m / 2)+2 A(m / 2-1)$. It follows that

$$
\begin{equation*}
\sum_{k=0, k \text { even }}^{m-1}\left|\Gamma(m)^{a^{k} b}\right|=\frac{m}{12}(A(m / 2)+2 A(m / 2-1)) \tag{6.13}
\end{equation*}
$$

Thus, when m is even, it follows from (6.12) and (6.13) that

$$
\begin{align*}
\sum_{k=0}^{m-1}\left|\Gamma(m)^{a^{k}}\right| & =\frac{m}{12}(A(m / 2+1)+3 A(m / 2)+2 A(m / 2-1)) \tag{6.14}\\
& =m \cdot 2^{m / 2-1}
\end{align*}
$$

where we have used $A(q)=2^{q}+(-1)^{q} 2$ at the latter identity.
The theorem now follows from (6.4), (6.8), (6.11) and (6.14).
Remark. When m is even, $\Lambda(m)$ contains exactly three colorings with two colors and it defines the unique element in the double coset space $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}$.

Example 6.5. We set

$$
C(m):=\left|\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}\right| .
$$

Using the formula in Theorem 6.4, one finds that

$$
\begin{aligned}
& C(2)=1, \quad C(3)=1, \quad C(4)=2, \quad C(5)=1, \quad C(6)=4, \quad C(7)=3 \\
& C(8)=8, \quad C(9)=8, \quad C(10)=18, \quad C(11)=21, \quad C(12)=48
\end{aligned}
$$

We conclude this section with a remark. When Q is an m-gon $(m \geq 3)$, a small cover over Q is a closed surface with Euler characteristic $4-m$ and the cardinality of the set of homeomorphism classes in small covers over Q is one (resp. two) when m is odd (resp. even). On the other hand, the double coset space (5.2) identifies with $\mathrm{GL}\left(2, \mathbb{Z}_{2}\right) \backslash \Lambda(m) / \mathfrak{D}_{m}$ and we see from Theorem 6.4 that its cardinality is strictly larger than 2 when $m \geq 6$. So, the natural surjective map from the double coset space (5.2) to the set of homeomorphism classes in small covers over Q is not injective when Q is an m-gon with $m \geq 6$. However, it is bijective when $m=3,4,5$ (see Example 6.5).
7. Locally standard 2-torus manifolds of dimension two. We shall count the equivariant homeomorphism classes in locally standard 2torus manifolds with orbit space Q when Q is a compact surface with only one boundary component.

Theorem 7.1. Suppose that Q is a compact surface with only one boundary component with $m(\geq 2)$ vertices and set

$$
h(Q):=\left|H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) / \operatorname{Aut}(Q)\right|
$$

Then the number of equivariant homeomorphism classes in locally standard 2-torus manifolds over Q is $h(Q) B(m)$, where $B(m)=\left|\Lambda(m) / \mathfrak{D}_{m}\right|$ is the number discussed in the previous section.

Proof. By Corollary 5.5 it suffices to count the number of orbits in $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) \times \Lambda(Q)$ under the diagonal action of $\operatorname{Aut}(Q)$. Since Q has only one boundary component and m vertices, $\Lambda(Q)$ can be identified with $\Lambda(m)$ of Section 6, and $\operatorname{Aut}(\mathcal{F}(Q))$ is isomorphic to the dihedral group \mathfrak{D}_{m}.

Let H be the normal subgroup of $\operatorname{Aut}(Q)$ which acts on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right)$ trivially. We claim that the restriction of the natural homomorphism

$$
\begin{equation*}
\operatorname{Aut}(Q) \rightarrow \operatorname{Aut}(\mathcal{F}(Q)) \cong \mathfrak{D}_{m} \tag{7.1}
\end{equation*}
$$

to H is still surjective. An automorphism of Q (as a manifold with corners) which rotates the boundary circle and fixes the exterior of its neighborhood is an element of H. Therefore H contains all rotations in \mathfrak{D}_{m}. It is not difficult to see that any closed surface admits an involution which has onedimensional fixed point component and acts trivially on the cohomology with \mathbb{Z}_{2} coefficients. Since Q is obtained from a closed surface by removing an invariant open disk centered at a point in the one-dimensional fixed point
set, Q admits an involution which reflects the boundary circle and lies in H. This implies the claim.

Let K be the kernel of the homomorphism $\operatorname{Aut}(Q) \rightarrow \operatorname{Aut}(\mathcal{F}(Q))$. Then

$$
\begin{align*}
&\left|\left(H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) \times \Lambda(Q)\right) / \operatorname{Aut}(Q)\right| \tag{7.2}\\
&=\left|\left(H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) / K \times \Lambda(Q)\right) / \operatorname{Aut}(Q)\right|
\end{align*}
$$

For any element g in $\operatorname{Aut}(Q)$, there is an element h in H such that $g h$ lies in K because the map (7.1) restricted to H is surjective. Since H acts trivially on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right)$, this shows that an $\operatorname{Aut}(Q)$-orbit in $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right)$ is the same as a K-orbit. This means that the induced action of $\operatorname{Aut}(Q)$ on $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) / K$ is trivial. Therefore the right hand side at (7.2) reduces to

$$
\left.\mid H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right) / \operatorname{Aut}(Q)\right)||\Lambda(Q) / \operatorname{Aut}(Q)|
$$

Here the first factor is $h(Q)$ by definition, and the second is $\left|\Lambda(m) / \mathfrak{D}_{m}\right|=$ $B(m)$ by the surjectivity of (7.1), proving the theorem.

Example 7.2. $H^{1}\left(Q ;\left(\mathbb{Z}_{2}\right)^{2}\right)$ is isomorphic to $H^{1}\left(Q ; \mathbb{Z}_{2}\right) \oplus H^{1}\left(Q ; \mathbb{Z}_{2}\right)$ and the action of $\operatorname{Aut}(Q)$ on the direct sum is diagonal. When Q is a disk, $h(Q)=1$. When Q is a real projective plane with an open disk removed, $H^{1}\left(Q ; \mathbb{Z}_{2}\right)$ is isomorphic to \mathbb{Z}_{2} and the action of $\operatorname{Aut}(Q)$ on it is trivial. Therefore, $h(Q)=4$ in this case. When Q is a torus with an open disk removed, $H^{1}\left(Q ; \mathbb{Z}_{2}\right)$ is isomorphic to $\left(\mathbb{Z}_{2}\right)^{2}$. The action of $\operatorname{Aut}(Q)$ on it is non-trivial and it is not difficult to see that $h(Q)=5$ in this case.

Acknowledgements. The first author is supported by grants from NSFC (No. 10371020 and No. 10671034).

REFERENCES

[1] J. L. Alperin and R. B. Bell, Groups and Representations, Grad. Texts in Math. 162, Springer, 1995.
[2] V. M. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, Univ. Lecture Ser. 24, Amer. Math. Soc., Providence, RI, 2002.
[3] M. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293-324.
[4] M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 61 (1991), 417-451.
[5] M. Davis, T. Januszkiewicz and R. Scott, Nonpositive curvature of blow-ups, Selecta Math. 4 (1998), 491-547.
[6] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math. 168, Springer, 1996.
[7] A. Garrison and R. Scott, Small covers of the dodecahedoron and the 120-cell, Proc. Amer. Math. Soc. 131 (2002), 963-971.
[8] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), 1-68.
[9] Z. Lü, 2-torus manifolds, cobordism and small covers, arXiv:math/0701928.
[10] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. 51 (1999), 237-265.
[11] M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711-746.
[12] H. Nakayama and Y. Nishimura, The orientability of small covers and coloring simple polytopes, Osaka J. Math. 42 (2005), 243-256.

Institute of Mathematics
School of Mathematical Science
Fudan University
Shanghai 200433, P.R. China
E-mail: zlu@fudan.edu.cn

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558-8585, Japan
E-mail: masuda@sci.osaka-cu.ac.jp

[^0]: 2000 Mathematics Subject Classification: 57S10, 14M25, 52B70.
 Key words and phrases: 2-torus manifold, equivariant classification.

