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A NOTE ON STEINHORN’S OMITTING TYPES THEOREM

BY

AKITO TSUBOI (Tsukuba)

Abstract. Let p(x) be a nonprincipal type. We give a sufficient condition for a model
M to have a proper elementary extension omitting p(x). As a corollary, we obtain a
generalization of Steinhorn’s omitting types theorem to the supersimple case.

1. Introduction. The well-known omitting types theorem states that
if p(x) is a nonprincipal type in a countable theory T then there is a model
of T that omits p(x). There are many variants of this theorem. Among such
is that of Steinhorn [5]. He proved the following:

(∗) Let T be superstable and M a countable model of T containing an
infinite indiscernible set. If p(x) is a type over a finite set in M that
is omitted in M then there is a proper elementary extension N of M
that also omits p(x).

In this paper we generalize this result to the case where T is not necessarily
stable. As the original proof uses the notion of average types, it cannot be
applied to unstable cases. We take a quite different approach. We directly use
the ordinary omitting types theorem. With this approach, we can generalize
Steinhorn’s theorem to the supersimple case, and the proof becomes very
short.

In this paper, we say that a model M is finitely generated if there is a
finite tuple a in M such that any element in M is algebraic over a. In this
terminology, one of our results is a slight generalization of the following:

Theorem. Let p(x) be a type over ∅. Let M be a countable model omit-
ting p(x). Suppose that M is not finitely generated. Then there is a proper
elementary extension N of M that also omits p(x).

2. Preliminaries. Our notations and definitions are standard. We
briefly explain some of them. Throughout, T is a countable complete the-
ory formulated in a countable language L. We work in a big model M
of T . (In some situations, we work in Meq.) M,N, . . . are used to denote
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elementary submodels of M. They are countable unless otherwise stated.
A,B, . . . are used to denote small subsets of M. Finite tuples of M are
denoted by a, b and so forth. We write a ∈ A if every member of a belongs
to A.

Formulas are denoted by ϕ, ψ and so forth. If the parameters of ϕ are
contained in A, then ϕ is called an L(A)-formula. A set p(x) of formulas
with the free variable x is called a type if p(x) is finitely satisfiable in M.
In addition, if p(x) consists of only L(A)-formulas, then we say that p(x) is
a type over A. We say that a type p(x) is isolated by a consistent formula
ϕ(x) if for any ψ(x) ∈ p(x) we have

M |= ∀x[ϕ(x)→ ψ(x)].

A formula ϕ(x) is said to be algebraic if there are only finitely many solutions
to ϕ(x). An element a ∈M is said to be algebraic over A if a satisfies some
algebraic L(A)-formula. acl(A) is the set of all algebraic elements over A. If
A is countable, then so is acl(A). The set of all solutions to ϕ(x) in M is
denoted by ϕ(x)M . If ϕ(x) is an L(M)-formula, then a set D of the form
ϕ(x)M is called a definable set in M . If ϕ(x) is an L(A)-formula, then D is
said to be A-definable or definable over A.

Definition 1. Let D ⊂ M be an infinite definable set. We say that D
is finitely generated if there is a finite tuple m ∈M such that D ⊂ acl(m).

Remark 2.

(i) If M is finitely generated, then it is countable. If M is not finitely
generated, then no expansion of M by a finite set of constants is
finitely generated.

(ii) If T is superstable and D ⊂M is finitely generated, then D is finitely
generated by elements from D: Choose m ∈M with D ⊂ acl(m). By
superstability, there is a finite tuple a ∈ D such that p = tp(m/D)
does not fork over a. For each d ∈ D, choose an algebraic formula
ϕd(x,m) ∈ tp(d/m). By our choice of a, using definability of p, we
can find a formula θd(x, e) with e ∈ acleq(a) such that

M |= ϕd(b,m) ⇔ M |= θd(b) (∀b ∈ D).

Let e1, . . . , ek be all the conjugates of e over a. Then
∨

i=1,...,k θd(x, ei)
is an algebraic formula in L(a). This shows that D is finitely gener-
ated by a ∈ D. (Here D need not be a definable set.)

For understanding the main theorem, only a basic knowledge of model
theory is necessary (see [1]). But for corollaries, the reader is assumed to
have some knowledge of stability and simplicity (see [3], [4] or [7]).
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3. Main results

Theorem 3. Let p(x) be a type over a finite set of M , where M is a
countable model omitting p(x). Suppose that D = δM is not finitely gener-
ated. Then there is a proper elementary extension N of M with the following
properties:

(i) δN ) D;
(ii) N also omits p(x).

Proof. We can assume that p(x) is a type over ∅ and that δ(x) is an
L-formula. Now we prove the contraposition. Assume that p(x) is realized
in any proper elementary extension N of M with δN ) D. We shall show
that D is finitely generated. Let T ∗ be the elementary diagram of M . By
the omitting types theorem, we can find a formula ϕ(x, y) with parameter
m from M with the following properties:

• T ∗ ∪ {δ(y)} ∪ {y 6= a : a ∈ D} ∪ {ϕ(x, y)} is consistent;
• T ∗ ∪ {δ(y)} ∪ {y 6= a : a ∈ D} ∪ {ϕ(x, y)} ` p(x).

Choose L-formulas θn(x) (n ∈ ω) such that {θn(x) : n ∈ ω} is equivalent to
p(x) and such that T ` ∀x(θn+1(x)→ θn(x)) (n ∈ ω). Then we can find an
increasing sequence {An : n ∈ ω} of finite subsets of D such that

T ∗ ∪ {δ(y)} ∪
{ ∧

a∈An

y 6= a
}
∪ {ϕ(x, y)} ` θn(x).

We may assume that the An’s were chosen as small as possible. Then, by
rewriting the above, we have

M |= ∃x[δ(y) ∧ ϕ(x, y) ∧ ¬θn(x)]↔
∨

a∈An

y = a.

If there were d ∈ Dr
⋃

n∈ω An, then ϕ(x, d) would isolate p(x). So we must
have D =

⋃
n∈ω An. Then D is covered by algebraic formulas ∃x[δ(y) ∧

ϕ(x, y) ∧ ¬θn(x)], all of which are L-formulas. So D ⊂ acl(∅).
In the above, we treated the case where only one type p(x) is considered.

The theorem can be easily generalized to the case of countably many types.

Corollary 4. Let S be a countable set of types over ∅. Let M be a
countable model omitting all types in S. Suppose that D = δM is not finitely
generated. Then there is a proper elementary extension N of M with the
following properties:

(i) δN ) D;
(ii) N also omits all types in S.

The following corollary generalizes the main result of Steinhorn [5] to the
supersimple case. Basic properties of simplicity can be found in [2] and [7].
However, the only property of supersimplicity which we need is that every
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finite tuple of elements has a finite weight. Namely, if T is supersimple and
I is an infinite independent set then for any tuple a there is b ∈ I such that
a and b are independent.

Corollary 5. Let T be supersimple. Suppose that M contains an in-
finite independent (nonalgebraic) set I. Suppose also that M omits p(x).
Then there is a proper elementary extension N of M that also omits p(x).

Proof. By Theorem 3, it is sufficient to show that M is not finitely gen-
erated. Suppose otherwise. Then M is finitely generated by a finite tuple m.
In particular, for any a ∈ I, the tuples a and m are dependent. This shows
that the weight of m is infinite, contradicting the supersimplicity.

Remark 6. Suppose that a model M of supersimple theory contains an
infinite indiscernible sequence I = {ai}i∈ω. Then, by supersimplicity, there
is n ∈ ω such that I r {ai}i<n is independent over {ai}i<n. So Corollary 5
generalizes Steinhorn’s omitting types theorem.

Corollary 7. Let T be supersimple. Suppose that M contains an in-
finite (nontrivial) indiscernible sequence. Suppose also that M omits p(x).
Then there is a proper elementary extension N of M that also omits p(x).

The following theorem is an analogue of Corollary 3.2 in [5].

Theorem 8. Let T be a small supersimple theory. Suppose that M |= T
is not finitely generated. Let S be the set of all types in S(∅) that are not
realized in M . Then there is an uncountable elementary extension M∗ of M
that also omits S.

Proof. We will construct an elementary chain {Mi : i ∈ ω1} of countable
models with the following properties:

• M0 = M , Mi �Mi+1 (i ∈ ω1).
• Mi does not realize a type in S.
• Mi is not finitely generated.

If we have such an elementary chain, then M∗ =
⋃

i∈ω1
Mi is an uncountable

model omitting S. So suppose that we have constructed Mj ’s for j < i. If i is
a limit ordinal, then we can simply putMi =

⋃
j<iMj . So we can concentrate

on the case i = j + 1. Since S is a countable set (by the smallness of T ), by
Corollary 4, there is a proper extension Mi ⊃ Mj that omits all the types
in S. It only remains to show the following:

Claim A. Mi is not finitely generated.

Suppose otherwise. Then there is m ∈Mi such that Mi = acl(m). Since
Mj is not finitely generated, we have a sequence {ak : k ∈ ω} of finite
tuples of Mj such that ak+1 /∈ acl(a0, . . . , ak) for each k. If ak+1 and m were
independent over {a0, . . . , ak}, then we would have ak+1 ∈ acl(a0, . . . , ak). So
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the types pk = tp(m/a0, . . . , ak) form a forking sequence of infinite length.
This contradicts the supersimplicity.

4. Examples. The following example is from Example 2.9 in [5].

Example 9. Let M = (M ;DM , RM , BM , FM , <M ), where the universe
M is the disjoint union of three countable sets DM , RM and FM ; DM

and RM are disjoint copies of ω; <M is the natural ordering of DM , i.e.
(DM , <M ) = (ω,<); BM is the set of all bijections f : DM → RM that are
identical on a cofinite subset of ω; FM ⊂ BM ×DM ×RM is defined by

M |= F (f,m, n) ⇔ f(m) = n.

It is easy to see that T = Th(M) is unstable. (In fact, T has both the
strict order property and the independence property.) For any two finite
sets A,B ⊂ RM of the same cardinality, there is an automorphism sending
A to B. So RM is an indiscernible set.

Let p(x) be the type {D(x)} ∪ {n < x : n ∈ DM}. Each n ∈ DM is
definable over ∅, so p(x) is a type over ∅. In [5] it was shown that there is
no proper elementary extension N �M omitting p(x). The argument there
also shows that M = dcl(f). So M is finitely generated.

The following example shows that there is a finitely generated model
which contains an infinite indiscernible sequence.

Example 10. Let L = {U, V,R0, R1, . . .}, where U and V are unary
relation symbols, and each Ri (i ∈ ω) is a binary relation symbol. We define
the following L-structure M .

• The universe is the disjoint union of UM and VM ;
• UM = ω; VM is the set of all bijections f : ω → ω that are identical

on a cofinite set;
• RM

i ⊂ VM × UM , M |= Ri(f, n)⇔ f(n) = i.

It is not hard to see that T = Th(M) is stable and not superstable. Moreover,
M has the following properties.

1. UM is an indiscernible set.

Let A and B be two finite subsets of UM with |A| = |B|. We show that
there is an automorphism σ of M with σ(A) = B. First choose a bijection
σ ∈ V such that σ(A) = B. We extend σ by defining σ(f) = f ◦ σ−1

for f ∈ VM . Then we have Ri(f, n) ⇔ f(n) = i ⇔ σ(f)(σ(n)) = i ⇔
Ri(σ(f), σ(n)). This shows that σ is an automorphism of M .

2. Let f ∈ VM . Then UM ⊂ dcl(f). In particular , UM is finitely gener-
ated by f .
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For any n ∈ UM , Rf(n)(f, n) holds in M . Since f is one-to-one, n is the
unique element satisfying the formula Rf(n)(f, x). So we have n ∈ dcl(f).
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