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ON B-INJECTORS OF SYMMETRIC GROUPS S,,
AND ALTERNATING GROUPS A,,: A NEW APPROACH

BY
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M. SHATNAWT and A. NEUMANN

Abstract. The aim of this paper is to introduce the notion of BG-injectors of finite
groups and invoke this notion to determine the B-injectors of S, and A, and to prove
that they are conjugate. This paper provides a new, more straightforward and constructive
proof of a result of Bialostocki which determines the B-injectors of the symmetric and
alternating groups.

1. Introduction. N-injectors in a finite group G are maximal nilpotent
subgroups which share many properties with Sylow subgroups. N-injectors
were first defined by B. Fischer et al. [7] as follows: A subgroup A of G is
an N-injector if for each H <1<t G, AN H is a maximal nilpotent subgroup
of H. A. Mann [10] proved that if Cq(F(G)) C F(G), then G contains
N-injectors, they form a conjugacy class, and they can be characterized as
the maximal nilpotent subgroups which contain F(G), the Fitting subgroup
of G. If GG is of odd order, a subgroup S of G is an N-injector if and only
if S is a nilpotent subgroup of G of maximal order. (See A. Bialostocki [6,
Cor. 5] and A. Mann [10, Thm. 1]). A. Bialostocki [4] defines a B-injector
in a finite group G to be any maximal nilpotent subgroup B of G satisfying
da(B) = da(G), where da(X) = max{|A4| | A < X and A is nilpotent
of class at most 2}. Bender [3] showed that if G is N-constrained, that
is, C¢(F(G)) € F(G), then A is an N-injector of G if and only if A is
a maximal nilpotent subgroup of G' containing an element of ay(G) where
az(G) is the set of all nilpotent subgroups of G, of class at most 2 and having
order da(G).

Sometimes B-injectors are called B-N-injectors or nilpotent injectors
(see M. I. AlAli, Ch. Hering and A. Neumann [2], P. Flavell [8]). B-injectors
and N-injectors of a finite group G are equivalent if GG is N-constrained, and
B-injectors are N-injectors for any finite group G (A. Neumann [11]).

B-injectors lead to theorems similar to Glaubermann’s ZJ-Theorem and
it is hoped that they will provide tools and arguments for a modified and
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shortened proof of the classification theorem for finite simple groups. This
paper is a part of a greater programme of investigating the B-injectors in ar-
bitrary groups, more precisely, investigating in which groups the B-injectors
are conjugate. The symmetric groups S, and the alternating groups A4,, turn
out to be critical in answering the question whether the B-injectors are con-
jugate or not.

2. General definitions and notations. Our notation is fairly stan-
dard. Throughout all groups are finite. If G is a group, Z(G) denotes the
center of G. If H and X are subsets of G, then Cy(X) and Ny (X) denote
respectively the centralizer and normalizer of X in H.

The generalized Fitting group F*(G) is defined to be F(G)E(G) where
E(G) = (L | L << G and L is quasisimple) is a subgroup of G. A group
L is called quasisimple if L' = L where L’ is the derived group of L, and
L'/Z(L) is non-abelian simple. O,(G) denotes the unique maximal normal
p-subgroup of G} it is the Sylow p-subgroup of F(G), and Oy (G) = [[ O4(G),
where ¢ # p and ¢ is prime. If {2 is a finite set, we denote by Sg, A the
symmetric and alternating groups of 2. If 2| = n, we sometimes write S,
and A,,. Moreover, ®(G) denotes the Frattini subgroup of G, the intersection
of all maximal subgroups of G. The Fitting subgroup of G is the largest
normal nilpotent subgroup of G and is denoted by F(G). A permutation
representation 7 : H — Sym(Y') is semiregular if the identity element is the
only element of H fixing points of Y. Equivalently H, = 1 for all y in Y.
The integer part of the real number z is denoted by |[z].

DEFINITION 2.1. A nilpotent subgroup U of a group G is called a BG-in-

jector of G if U contains every nilpotent subgroup of G that is normalized
by U.

3. Preliminaries

THEOREM 3.1 (A. Mann [10]). Let U be a B-injector of G. Then U
contains every nilpotent subgroup of G which is normalized by U.

COROLLARY 3.1. B-injectors are BG-injectors.

REMARK 3.1. It is clear that BG-injectors are maximal nilpotent and
contain the Fitting group of G. Also if U is a BG-injector of G and if
U < H <G, then U is a BG-injector of H.

We shall overview the BG-injectors in S,, and A,, and single out the
B-injectors among the BG-injectors. This works rather smoothly as the
centralizers of elements of prime order in 5,, have an easily accessible struc-
ture.

The following lemmas on BG-injectors are needed.
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LEMMA 3.1. Let G be a finite group, and U < G be a BG-injector of G.

(1) If Z < Z(G) then Z < U and U/Z is a BG-injector of G/Z.
(2) If F*(G) = Oy(G) for some prime p, then U is a Sylow p-subgroup
of G.

Proof. (1) Let X/Z be a nilpotent subgroup of G/Z and U/Z <
Ng/z(X/Z). As Z < Z(G) and X/Z is nilpotent, X is nilpotent. Since
U/Z normalizes X/Z, we see that U normalizes X. Thus U < N(X), and
hence X < U and X/Z <U/Z.

(2) As F*(G) = Op(G) and U is nilpotent, it follows that O,(G) <
F(G) <Uand U = 0p(U)x Oy (G). So Oy (U) < Cq(0p(G)) = Ca(F*(G))
< F*(G) = Op(G). This implies that Oy (U) = 1. Thus U = O,(U) and
hence U is a p-group. As U is maximal nilpotent it follows that U is a Sylow
p-subgroup.

LEMMA 3.2. Let G be a finite group, U < G be a BG-injector of G, and
suppose that G is the central product of two subgroups G1 and Gs, that is,
G = G1Go, [Gl,GQ] = 1. Then U = (Uﬂ Gl)(Uﬂ GQ) and UNG; is a
BG-injector of G; fori=1,2.

Proof. As G = G1G2 and [G1,G3] = 1, it follows that G; < Cg(Ga),
G2 4G and G; N G2 < Z(G). Define

Ui = {q1 € G1 | there exists go € G2 such that g1g2 € U},
Us = {g2 € G2 | there exists g1 € G such that g1g2 € U}.

Then it can be easily seen that U; < G; for i = 1,2. Also both U; are
nilpotent. We show that U is nilpotent; the proof for Us is analogous.

As G1 <G and UGy = U1Ga, it follows that Go < UG and UG, /Gy =
UlGQ/GQ. So Ul/Ul NGy = U1G2/G2 = UGQ/GQ = U/UQGQ. Since U
is nilpotent, so is U/U N Go, hence U /U; N Gy is nilpotent. As Uy NGy <
G1 NGy < Z(Q), it follows that Uy N Ge < Z(Uy). Hence U is nilpotent.

So Uy,Us, are nilpotent and hence UiUs is nilpotent. Also it is clear
that U = U;Us and it follows that U; = UNG;, i = 1,2. Thus U =
(U N G1)(UNGse). It remains to prove that U N Gy is a BG-injector of G.

So let X < G be such that X is nilpotent with U; < Ng, (X). Since U =
U1Uy and Uy < G, it follows that Us centralizes G and X. So U; < C(X) <
N(X), which implies that U = UjUsy < N(X). As U is a BG-injector, it
follows that X < U and hence X < U NG =U;. So X <Ujy. Thus U; is a
BG-injector of G1, and likewise Us is a BG-injector of Ga.

REMARK 3.2. Let 2 = {1,...,n} and let (A4i,...,A,,) be a partition
of (2, that is, {2 is a disjoint union of nonempty subsets Ai,...,A,,. If
H={geSq|A!=A;,i=1,...,m}, then H = Hy X --- x H,, where
H; = {g € S, | g leaves A; invariant and fixes any point outside}. It is
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clear that H; = S4,. So if U < S, with orbits Ay,..., A,,, it follows that
U<H; X - XHp=854 x---x854,,.

If U is a BG-injector of S, then U is a BG-injector of H and by
Lemma 3.2, we have U = (UNHy) x --- x (UN Hy,) and UN H; is a
BG-injector of H; = Sy,.

LEMMA 3.3. Suppose that G = G1 X Gs.

(1) If A € aa(G), then A = (ANG1) x (ANG2) and ANG; € az(G;),
i=1,2.

(2) If B is a B-injector of G, then B = (BNG1) x (BNG2) and BNG;
is a B-injector of G, 1 = 1,2.

(3) If a2p(G) ={X < G | X is a p-group of class < 2 and of mazimal
order} and if A € as,(G), then A = (AN Gi) x (AN Ga) and
ANG; e agyp(Gi), 1=1,2.

Proof. Easy and hence omitted.

REMARK 3.3. Let H be a finite group such that H = 7,15}, the wreath
product of the cyclic group Z, p prime, with Si. Then F*(H) = O,(H).

Proof. See [9].

REMARK 3.4. For a partition X = (Ay,..., Ay,) of a finite set 2, Yy =
{g € Sqn | A? = A, for all i} is the Young subgroup of 2.

It is obvious that Yy, = Y4, x --- x Yy, < Sp, where
Y4, = {g € Sn | g fixes all points not in A;}
and Yy, = S4,. Further, we define in =Yy, NAp and
Yii=(Ya,....YxA ) =Y} x---xYy < Ap.

Consider an element g € S4, of prime order p # 2.

Let A={ae R |ad#altand ' ={a € 2| a9 =a}. So X =
(A, ') is a partition of £2. If |A| = p¥, then ¢ is a product of k pairwise
commuting p-cycles ti,...,t; and t; € Y corresponding to the orbits of
g in A. Also Cg,(g) permutes these ¢;’s and in particular normalizes V =
<t1,...,tk> = Zg; hence V C Op(CSQ(g))~ So CS_Q(Q) <Yz =Yy x F,
and thus Cs,,(g9) = Cy,(9) X Yr. As Cy,(9) = Z, 1 S, Remark 3.3 implies
F*(Cy,(9)) = Op(Cy(g)) and C(V) = V xYp. We then exploit the structure
of C(g) to investigate the BG-injectors of Sy and Agp. So we prove the
following lemma.

Lemmas 3.6 and 3.7 were proved in [2]; to keep the paper self-contained
we repeat the proof.

LEMMA 3.4. Let U be a BG-injector in S, g € Z(U) of prime order p #
2, and let I" and A be as defined in Remark 3.4. Then U = (UNY4)x(UNYT),
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UNYy is a Sylow p-subgroup of Ya, UNYa is a BG-injector of Ya, and
U NYr is a BG-injector of Yr = Sp.

Proof. As g € Z(U) is of prime order p # 2, we have p||A], so

U < Cs,(9) = Cy,(g9) x YT
As U is a BG-injector of S and U < Cy,(g9) X Yr < Sgq, it follows that U
is a BG-injector of Cy,(g) x Yr <Yy x Yp. By Lemma 3.2, we have
U=UnNCy,(9)x(UNYr)=UnNYy) x(UNYr)

and UNCy,(g) is a BG-injector in Cy, (g9), UNYr is a BG-injector in Y =
S and UNCy,(g9) = UNYy. Furthermore, as F*(Cy,(g)) = Op(Cy,(9))
(use Remark 3.3), Lemma 3.2 implies that U N Yy, is a Sylow p-subgroup
of Yyu.

We can prove a similar result for Ap.

LEMMA 3.5. Let U be a BG-injector in Ag and let g € Z(U) with prime
order p # 2. Then U = (U N Cyx(g)) x (UNYF).

Proof. Since g € Z(U), we have
U <Canl(9) £Cs,(9) =Cy,(g9) x Yr <Ya x YT

If V is as defined above, it follows that V' C O,(Cs,,(9)) = Op(Ca,(g)) as p
is odd. As U is a BG-injector of C'4,,(g), this implies that V' C O,(Ca,(g))
C U; but U is nilpotent, so U = Op(U) x Oy (U).

Also V' C Op(U) and Oy (U) € C(Op(U)), thus Oy (U) € Ca, (V). So
Op(U)<Cs,(V) =V xYr. AsU < Ag and V C A (p # 2), we have

Op/(U) = Op/(U) NA < (VxYr)NAg=V x(YrNAp) =V x Y.
Thus O, < Y} as p||V], and therefore U = O,(U) x Oy (U) < Cy, (9) x Y5,
this implies that U < Cy:(g) x Y7, as p # 2. Hence Lemma 3.3 yields the
conclusion.

Combining all these results, we obtain the following general lemma.

LEMMA 3.6. Let §2 be a finite set and let U be a BG-injector of Sg.
Then there exists a partition X = (Aq, ..., Ap) of £2 such that

(1) ULSYy =Yg, x---xYy,.

(2) U= (UQYAI) X oo X (UﬁYAm>.

(3) Fori=1,...,m, there exists a prime p; such that UNYy, is a Sylow
pi-subgroup of Ya, and also a BG-injector in Yy, .

(4) (a) If pi # 2, then p;||A].
(b) If p; = 2, then |A;| # 3 mod 4.

Proof. We consider two cases:

CASE 1: U is a 2-group. If X is a partition consisting of 2 alone, then
Yy, = Sp and U = UNYy. As U is a BG-injector of Sy, it is maximal
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nilpotent and thus U is a Sylow 2-subgroup of Sq,. So (1)—(3) follow, and
4(a) is also true. As U is a 2-group and a BG-injector, it cannot normalize
a 3-cycle. Hence 4(b) follows.

CASE 2: U is not a 2-group. Then there exists a prime p # 2 such that
p||U]. As U is nilpotent, there exists z € Z(U) of order p. Let A; be the set
of non-fixed points of Z = Z(U) and I" be the set of fixed points of Z. By
Lemma 3.4, we have U < Cg,,(z) < Y4, x Yr and p||A;|, more precisely

U< CSQ(Z) = CYAI (Z) XYr <Yy, xYpr.
Thus, by Lemma 3.2,
U= (UﬂCyAl(Z)) X (UﬂYp) = (UﬁYAl) X (UﬂYp)

and UNCy, (z) is a BG-injector of Yy,, and UNYT is a BG-injector of Yr.
AsUNCy,, (2) is a BG-injector of Cy, (z) and I'*(Cy, (2)) = Op(Cy,, (2)),
we find that UNCy, (2) is a Sylow p-subgroup of Y4, =S4, ANDUNYT is
a BG-injector of Yy = Sp. Repeating the argument for UNYr and Y = Sp
yields the claim.

LEMMA 3.7. Let §2 be a finite set and let U be a BG-injector of Agq.
Then there exists a partition X = (Ay,..., Ap) of 2 such that:

(D ULSY) x---xYy andU=UNY};)x---xUNY} ).

(2) Fori=1,...,m, there exists a prime p; such that UNY is a Sylow
pi-subgroup of Y .

(3) If pi # 2, then p; ||Ail|, and if p; = 2, then |A;| # 3 mod 4.

Proof. We argue as in the proof of Lemma 3.6.

COROLLARY 3.2. Let B be a B-injector of S;. Then there exists a par-
tition X = (A1,...,An) of 2, such that B < Yaua; X Yo\(a,ua,) for
any i # j and by Lemma 3.3, BN Ya,ua; is a BG- mjector of Ya,ua,. In
particular,

dQ(SAi) = dQ(YAz) = d2(B N YAz) = dQ,Pi (SAZ)

NoTE. If n = n; + ng, where n; > 0, then d2(S,) > d2(Sp,)d2(Sh,)
because Sy, X Sp, < S, and so da(Sp, )d2(Sn,) = d2(Sp, X Sn,) < d2(Sy).

LEMMA 3.8. Let §2 be a finite set of size n, and let P < S be a p-
subgroup of Sq of class < 2. Then there exist integers a,b > 0 such that
n > pa-‘rb and |P| < pa+b+ab'

Proof. Without loss of generality one can assume that P is transitive
on 2, Z = Z(P) acts semiregularly on 2, and since the class of P is
< 2, it follows that P’ < Z(P), and if Z, is the set of elements in Z
which fix a € 2 then (P,) < (P')o < Zo = 1. So P, is abelian and
hence M = (Z,P,) = Z x P, is an abelian normal subgroup of P, as
P <Z<Mand ZNZy = Zy = 1. Set |P/M| = p* and |Z| = p°. Then
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there exist t1,...,t, € P such that P/M = (Mty,..., Mt,). Define o :
P, — (P)* by o(z) = ([z,t1], ..., [x,ta]). As class(P) < 2, it follows that o
is a homomorphism and is injective. Therefore |P,| < |P'|* < |Z(P)|* = p*®
and
n=I[P: P, =[P:M|[M: P,]
as P, <M < P. So
LM 1211
| P | P

and |P| = n|P,| < np® = p®*t+a This completes the proof.

COROLLARY 3.3. Let {2 be a finite set of size n, and let P < Sp be a
transitive p-subgroup of class < 2 on 2.

(1) If p # 2, then |P| < p™/P, where equality can hold forn =p orn =9
and p = 3.
(2) If p=2, then |P| =n =2 or |P| <8V, If n > 2 then |P| < 8"/4,

a

p

[P:P]=p = pp” = p**

Proof. Consider two cases:

CASE 1: p # 2. By Lemma 3.8, there exist integers a,b > 0 such that
n = p*t and |P| < p®tP=1. As p # 2, it follows that p®+ttteb < p/P if and
only if a 4+ b+ ab < n/p = p***~!, where equality can only hold for n = p
orn=9andp=23.

CASE 2: p = 2. Then |P| < 200+ab If > 2 then 20+btaeb < 93n/4 jf
and only if a + b+ ab < 3 - 20102,

Now we prove the following lemmas.

LEMMA 3.9. Let P < S be a p-subgroup with orbits Ay, ..., Am. Then
P<Ysy=Yq x---xYy,, 6 where ¥ = (A1,...,An) is a partition of §2.
Let ¢; : Ys; — Ya, be the projection. Then:

(1) P< PS x - x PSm and PS < Ya,.

(2) Each P is transitive on A;.

(3) PNYy, < PS.

(4) If P is of class < 2 and of mazximal order d2,(Sn), then
(a) P=P% x - x PSm,
(b) PNYy, = P%.
(¢) P=(PNYy)X--x(PNYy,).

Proof. (1) As Yy = Y4, X --- x Yy, , any ¢ € Yy can be uniquely
written as © = x1---x,, with z; € Yy, and 2% = x;. So & = a8 - gbm,
Hence x € Pt x --- x PSm_and this proves (1).

(2) Let a,3 € A;. As P is transitive on A;, there exists x € P such
that o = 3. Let © = 21 -- -z, with z; € YA].. By the definition of Yy, , if
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x;j € Yu, for j # i, then x; fixes all points not on A;, hence all points in A;
as A; C 2\ Aj. Thus o = « and % = 3 for all j # i. So

ﬂ:@ :0[12 1—1LiLq41 m:azz+1 m

and o = ﬁx#m:nl*l'"xi_—ll = (3, which proves (2).
(3) Let x € PNY4,. Then the decomposition of z in Y4, x --- x Yy, is

r=(1,...,1,z,1,...,1).
!
So x = 2% € P%. Hence PN Ya, < PG,

(4) As ¢, i = 1,...,m, are homomorphisms, we have class(P%) <
class(P) < 2, which implies that class(P% x - - -x PSm) < 2. 8o P x - - - x PSm
is a p-subgroup of Sq of class < 2. Thus [PS! x - - x Pém| < dap(Sn) = |P.
As P < PStx..-x PSm_from (1) it follows that |P| < |PSt x---x PSm| < |P|.
Hence P = P% x --- x P%m. So PS% < P and PNY; < P% < PNYy,. Thus
PNYy, = PS, proving (4).

LEMMA 3.10. Let 2 be a finite set of size n.

(1) If p # 2, then da p(Sn) = da p(An) = pi"/?).

(2) If p # 2, then d22(Sp) = e84 where

1, n=0,1 mod 4,
En =
2, n=2,3 mod 4,

and if n > 1, then da2(Ay) = %dgg(Sn) = %5718[”/4]. Furthermore,

if p# 3, then:

(a) All p-subgroups of Sy, of class < 2 and order d3,(Sy) are conju-
gate.

(b) If p > 3, then these groups are elementary abelian.

(¢) If p=2, then these groups are isomorphic to Z., X Dén/q, where
Dg denotes a Sylow 2-subgroup of Sy, which is a dihedral group
of order 8.

Proof. Tt can be easily seen that S, contains subgroups of order pl*/?!
for any prime p and generated by [n/p] cycles with distinct supports and
pln/Pl < d2.p(Sy).

Also S, contains 2-subgroups of order e84 < d2.2(Sp). This can be ex-
plained as follows. Let m = (41,..., A, A) be a partition of 2. Let |A;| = 4,
i=1,...,m, and |A| = r, where n = 4m +r, 0 < r < 4. It follows that

H=Yy x---xYy, xY. <85,

where Yy, = 54 and YV, = Z. . Hence H = SJ* x S, contains Dg' x Z,, of
class < 2. It remains to show that for p # 3, these groups are exactly all
possible p-subgroups of class < 2 and order da ,(.Sy).
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We consider two cases:

CASE 1: p # 2. Let |A;] = n;. Then pl™/Pl = pnilP < dy (S4,) =
|P N Yy,|. By Corollary 3.3 we have |P N Yy| < p™/P. Hence p™/P =
dap(Sa;) = |PNYy,| Again by Corollary 3.3, we have either n; = p, or
n; = 9 and p = 3. So if p # 3, then all orbits of P have length 1 or p. Thus P

is conjugate to the subgroup constructed above and hence dy ,(S,) = pln/pl,
As p # 2, it follows that da ,(Sy) = dap(A4y).

CASE 2:p=2. Let P € ag2(Sy) andlet P < Yy =Yy, x---xYy, where
Ya,, i =1,...,m, are the Young subgroups corresponding to the partition
Y =(A1,...,Ay). By Lemma 3.3, P = (PNYa,) X --- x (PNYy,,) where
PNYa, € az22(Yy,), and by Lemma 3.9, P N Yy, is a transitive subgroup
of Yy,. By Corollary 3.3, |4;] = 1 or 2 and 8"/ < dy(S4,) = |PNYy,| < 8™/4.
This implies that |PNY,,| = 8%, which occurs if and only if n; = 4. Hence
again P is a group conjugate to the group constructed above. As P £ A,,
this implies that da2(An) = 3d2.2(Sy).

Now we are in a position to prove the first main result.

THEOREM 3.2. Let {2 be a finite set of size n and let B be a B-injector
of Sp.

(1) If n =3 mod 4, then B = (d) x T where d is a 3-cycle, and T is a
Sylow 2-subgroup of Cs,(d).

(2) If n # 3 mod 4, then B is a Sylow 2-subgroup. In particular, all the
B-injectors of S are conjugate.

Proof. As B is a B-injector of Sq, it is a BG-injector of Sqo. By Lemma
3.6, there exists a partition X' = (Ay,..., Ay,) of £2 such that B < Yy and
B=(BNYy,)x---x(BNYy,, ) and fori =1,...,m, there exist primes p;
such that BNYjy, is a Sylow p;-subgroup of Yy,, and hence, by Lemma 3.3,
a B-injector of Yy,.

Let p; # 2. Then p; | |A;| = n; and

57%‘8[7”/4] < d2(SAi) = dQ(YAi) =da(B N YAi) = d2,Pi(B N YAi)

— pgni/Pi} — p?i/Pi‘

This implies that p; = 3 = n;. Hence either BNY}y, is a 2-group, or |4;| =3
and BNYy, is a 3-cycle. We have at most one ¢ such that |A;| = 3, because we
assume that [A;| = [A;] = 3 for i # j. It follows that (BNY4,) x (BNYy,) <
Ya;04; = Se and (BNYa,) % (BﬂYAJ.) is again a B-injector of Y,u4,. Hence
da(S6) = d2((BNYy,) x (BNYy,)) = 3% =9, which is a contradiction, as
16 = 668[6/4} = d2,2(S6) < dy(Se) = 9, so do(S2) > 9. Hence either B is
a Sylow 2-group (if no |A4;| is 3), or b = (d) x T for some 3-cycle. If B is
a Sylow 2-group, then n #Z 3 mod 4 as observed above. If n = 3 mod 4,
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then a Sylow 2-group T of S, has a fixed point and an orbit of length 2. So
T = Zy x T1 where T7 is a Sylow 2-group of S,,_3, and we deduce that

d22(Sp) = do2(T) = d22(Z2)da2(Th) = 2d2,2(Sn—3)
< 3dz2,2(Sn-3) = d2(S3)d2(Sn—3) < da(Sh).

As dp2(Sp) < da(Sy), it follows that B-injectors cannot be 2-groups. So
B = (d) x T, and this completes the description of the BG-injectors of .S,,.

Now we discuss the B-injectors of A,. First we give a lemma.
LEMMA 3.11.

(1) If p is prime, p > 7, then p* < 3PF/3] for all k > 1.
(2) 5 < 30%/3 for all k > 3.
(3) 3k < 18B*4 for all k > 3.

Proof. Easy.
Now we prove the second main result.
THEOREM 3.3. Let B be a B-injector in A = A,,.

(1) If |£2| =5, then B is a Sylow 5-subgroup.

(2) If |£2| =6, then B is a Sylow 3-subgroup.

(3) If |£2| # 5,6, then there exists a B-injector B* of Sq such that
B = B*NAq (B* is known by Theorem 3.2).

Let B be a B-injector of X = As or Ag, and let p be a prime divisor
of |X|. If z, € Z(B), then dy(X) = da(B) = d2(Cx (%)) < |Cx(z)| as
B <Cx (Zp)

Let X = As. Then 2 1 |B|, as otherwise 5 < da(A45) < |Cx(z2)| = 4,
a contradiction. Also 3 1 |B|, as otherwise 5 < da(A45) < |Cx(z3)] = 3, a
contradiction. So B is a Sylow 5-subgroup.

Likewise if X = Ag, then B is a Sylow 3-subgroup.

Now we discuss the third case. Let B be a B-injector of A and ||
#5,6.

CASE 1: Bis a 2-group. Then B is a Sylow 2-subgroup. So B = B*NAq
for some Sylow 2-subgroup of Sq. As B is a BG-injector of Aq and is a 2-
group, it cannot normalize a 3-cycle, and hence |2| #Z 3 mod 4, because in
this case, Sylow 2-subgroups of Sg and Aq do normalize a 3-cycle. So B* is
a B-injector of Sq (B* is known by Theorem 3.2), and the assertion follows.

CASE 2: B is not a 2-group. By Lemma 3.7, there exists a partition
m=(A1,...,Ap) of 2such that B<Y =Y} x---xY1 B=(BNY})
x - x(BNY}) ), BNY} is a B-injector of Y = Ay, and either BNY},
is a Sylow 2-subgroup if |A;| Z 3 mod 4, or BN Y} is a Sylow p;-subgroup
for some prime p; # 2 and p; | | 44|
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Let p; # 2. Then as BN Y} is a B-injector of Y}, one has: If |A;| =
pik = n; then

do(An,) = do(Y3) = do(BNYS)) = doy,(Aa,) = pF,

and
glpik/3] — glni/3] — da3(An,) < do(An,) = pk.

Also we have %dQ’Q(SA) < dg2(Aa,) < da2(Ag,), thus %sniS[ni/‘H <dy(Aa,) =
p¥. By Lemma 3.10, we have the following restrictions on p; and |4;|. As
3Tpik/3] < pf, it follows that p; = 3 or 5 by Lemma 3.11(1). If p; = 5, then
k =1 or 2 and hence |4;| = 3 or 6 by Lemma 3.11(3). So we can renumber
the components of 7 so that 7 = (Ay, ..., Aq, I, ..., Iy, X)) where |A;| =3
fori=1,...,a,|[;|=5fori=1,...,b, and | Y| = m with n = 3a + 5b+m.
Then

B=(BNYj)x--x(BNY; )x (BNY)x---x (BNY) x (BNYy)
and hence
da(Ag) = 3%5%dy 2 (Ax) = 3%5°da 2 (Ax) = 375°da 9(S,)

and

1 1
§d2<s3a+5b)d2(sm) < §d2(5n) < dy(A,) = da(B) = 375°dy o(Ax).

Hence if m = 0, then 3da(S3q45) < 3%5°. If m # 0, then

1 1 1
§d2(33a+5b)d2(5m) < ¢3°5%da 9(Ay,) = 3750 - §d2,2(14n) = 3%5°. §d2,2(5m)

1
< d2(S3a+5b)§d2(Sm)a

s0 d2(S3q455) = 3%5° and this implies a < 1, b= 0 and da(S,,) = d22(Sm)-
Hence, if m # 0, then B is a 2-group or (d) x T
This completes the proof of the theorem.
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