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ON B-INJECTORS OF SYMMETRIC GROUPS Sn
AND ALTERNATING GROUPS An: A NEW APPROACH

BY
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M. SHATNAWI and A. NEUMANN

Abstract. The aim of this paper is to introduce the notion of BG-injectors of finite
groups and invoke this notion to determine the B-injectors of Sn and An and to prove
that they are conjugate. This paper provides a new, more straightforward and constructive
proof of a result of Bialostocki which determines the B-injectors of the symmetric and
alternating groups.

1. Introduction. N -injectors in a finite group G are maximal nilpotent
subgroups which share many properties with Sylow subgroups. N -injectors
were first defined by B. Fischer et al. [7] as follows: A subgroup A of G is
an N -injector if for each H CC G, A ∩H is a maximal nilpotent subgroup
of H. A. Mann [10] proved that if CG(F (G)) ⊆ F (G), then G contains
N -injectors, they form a conjugacy class, and they can be characterized as
the maximal nilpotent subgroups which contain F (G), the Fitting subgroup
of G. If G is of odd order, a subgroup S of G is an N -injector if and only
if S is a nilpotent subgroup of G of maximal order. (See A. Bialostocki [6,
Cor. 5] and A. Mann [10, Thm. 1]). A. Bialostocki [4] defines a B-injector
in a finite group G to be any maximal nilpotent subgroup B of G satisfying
d2(B) = d2(G), where d2(X) := max{|A| | A ≤ X and A is nilpotent
of class at most 2}. Bender [3] showed that if G is N -constrained, that
is, CG(F (G)) ⊆ F (G), then A is an N -injector of G if and only if A is
a maximal nilpotent subgroup of G containing an element of a2(G) where
a2(G) is the set of all nilpotent subgroups of G, of class at most 2 and having
order d2(G).

Sometimes B-injectors are called B-N -injectors or nilpotent injectors
(see M. I. AlAli, Ch. Hering and A. Neumann [2], P. Flavell [8]). B-injectors
and N -injectors of a finite group G are equivalent if G is N -constrained, and
B-injectors are N -injectors for any finite group G (A. Neumann [11]).

B-injectors lead to theorems similar to Glaubermann’s ZJ-Theorem and
it is hoped that they will provide tools and arguments for a modified and
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shortened proof of the classification theorem for finite simple groups. This
paper is a part of a greater programme of investigating the B-injectors in ar-
bitrary groups, more precisely, investigating in which groups the B-injectors
are conjugate. The symmetric groups Sn and the alternating groups An turn
out to be critical in answering the question whether the B-injectors are con-
jugate or not.

2. General definitions and notations. Our notation is fairly stan-
dard. Throughout all groups are finite. If G is a group, Z(G) denotes the
center of G. If H and X are subsets of G, then CH(X) and NH(X) denote
respectively the centralizer and normalizer of X in H.

The generalized Fitting group F ∗(G) is defined to be F (G)E(G) where
E(G) = 〈L | L CC G and L is quasisimple〉 is a subgroup of G. A group
L is called quasisimple if L′ = L where L′ is the derived group of L, and
L′/Z(L) is non-abelian simple. Op(G) denotes the unique maximal normal
p-subgroup ofG; it is the Sylow p-subgroup of F (G), andOp′(G) =

∏
Oq(G),

where q 6= p and q is prime. If Ω is a finite set, we denote by SΩ, AΩ the
symmetric and alternating groups of Ω. If |Ω| = n, we sometimes write Sn
and An. Moreover, Φ(G) denotes the Frattini subgroup of G, the intersection
of all maximal subgroups of G. The Fitting subgroup of G is the largest
normal nilpotent subgroup of G and is denoted by F (G). A permutation
representation π : H → Sym(Y ) is semiregular if the identity element is the
only element of H fixing points of Y . Equivalently Hy = 1 for all y in Y .
The integer part of the real number x is denoted by [x].

Definition 2.1. A nilpotent subgroup U of a group G is called a BG-in-
jector of G if U contains every nilpotent subgroup of G that is normalized
by U .

3. Preliminaries

Theorem 3.1 (A. Mann [10]). Let U be a B-injector of G. Then U
contains every nilpotent subgroup of G which is normalized by U .

Corollary 3.1. B-injectors are BG-injectors.

Remark 3.1. It is clear that BG-injectors are maximal nilpotent and
contain the Fitting group of G. Also if U is a BG-injector of G and if
U ≤ H ≤ G, then U is a BG-injector of H.

We shall overview the BG-injectors in Sn and An, and single out the
B-injectors among the BG-injectors. This works rather smoothly as the
centralizers of elements of prime order in Sn have an easily accessible struc-
ture.

The following lemmas on BG-injectors are needed.
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Lemma 3.1. Let G be a finite group, and U ≤ G be a BG-injector of G.

(1) If Z ≤ Z(G) then Z ≤ U and U/Z is a BG-injector of G/Z.
(2) If F ∗(G) = Op(G) for some prime p, then U is a Sylow p-subgroup

of G.

Proof. (1) Let X/Z be a nilpotent subgroup of G/Z and U/Z ≤
NG/Z(X/Z). As Z ≤ Z(G) and X/Z is nilpotent, X is nilpotent. Since
U/Z normalizes X/Z, we see that U normalizes X. Thus U ≤ N(X), and
hence X ≤ U and X/Z ≤ U/Z.

(2) As F ∗(G) = Op(G) and U is nilpotent, it follows that Op(G) ≤
F (G) ≤ U and U = Op(U)×Op′(G). So Op′(U) ≤ CG(Op(G)) = CG(F ∗(G))
≤ F ∗(G) = Op(G). This implies that Op′(U) = 1. Thus U = Op(U) and
hence U is a p-group. As U is maximal nilpotent it follows that U is a Sylow
p-subgroup.

Lemma 3.2. Let G be a finite group, U ≤ G be a BG-injector of G, and
suppose that G is the central product of two subgroups G1 and G2, that is,
G = G1G2, [G1, G2] = 1. Then U = (U ∩ G1)(U ∩ G2) and U ∩ Gi is a
BG-injector of Gi for i = 1, 2.

Proof. As G = G1G2 and [G1, G2] = 1, it follows that G1 ≤ CG(G2),
G2 E G and G1 ∩G2 ≤ Z(G). Define

U1 = {g1 ∈ G1 | there exists g2 ∈ G2 such that g1g2 ∈ U},
U2 = {g2 ∈ G2 | there exists g1 ∈ G1 such that g1g2 ∈ U}.

Then it can be easily seen that Ui ≤ Gi for i = 1, 2. Also both Ui are
nilpotent. We show that U1 is nilpotent; the proof for U2 is analogous.

As G1 / G and UG2 = U1G2, it follows that G2 E UG2 and UG2/G2 =
U1G2/G2. So U1/U1 ∩ G2

∼= U1G2/G2 = UG2/G2 = U/U ∩ G2. Since U
is nilpotent, so is U/U ∩ G2, hence U1/U1 ∩ G2 is nilpotent. As U1 ∩ G2 ≤
G1 ∩G2 ≤ Z(G), it follows that U1 ∩G2 ≤ Z(U1). Hence U1 is nilpotent.

So U1, U2 are nilpotent and hence U1U2 is nilpotent. Also it is clear
that U = U1U2 and it follows that Ui = U ∩ Gi, i = 1, 2. Thus U =
(U ∩G1)(U ∩G2). It remains to prove that U ∩G1 is a BG-injector of G1.

So let X ≤ G1 be such that X is nilpotent with U1 ≤ NG1(X). Since U =
U1U2 and U2 ≤ G2, it follows that U2 centralizes G1 and X. So U1 ≤ C(X) ≤
N(X), which implies that U = U1U2 ≤ N(X). As U is a BG-injector, it
follows that X ≤ U and hence X ≤ U ∩G1 = U1. So X ≤ U1. Thus U1 is a
BG-injector of G1, and likewise U2 is a BG-injector of G2.

Remark 3.2. Let Ω = {1, . . . , n} and let (A1, . . . , Am) be a partition
of Ω, that is, Ω is a disjoint union of nonempty subsets A1, . . . , Am. If
H = {g ∈ SΩ | Agi = Ai, i = 1, . . . ,m}, then H = H1 × · · · × Hm where
Hi = {g ∈ Sn | g leaves Ai invariant and fixes any point outside}. It is
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clear that Hi
∼= SAi . So if U ≤ Sn with orbits A1, . . . , Am, it follows that

U ≤ H1 × · · · ×Hm
∼= SA1 × · · · × SAm .

If U is a BG-injector of Sn, then U is a BG-injector of H and by
Lemma 3.2, we have U = (U ∩ H1) × · · · × (U ∩ Hm) and U ∩ Hi is a
BG-injector of Hi

∼= SAi .

Lemma 3.3. Suppose that G = G1 ×G2.

(1) If A ∈ a2(G), then A = (A ∩ G1) × (A ∩ G2) and A ∩ Gi ∈ a2(Gi),
i = 1, 2.

(2) If B is a B-injector of G, then B = (B ∩G1)× (B ∩G2) and B ∩Gi
is a B-injector of Gi, i = 1, 2.

(3) If a2,p(G) = {X ≤ G | X is a p-group of class ≤ 2 and of maximal
order} and if A ∈ a2,p(G), then A = (A ∩ G1) × (A ∩ G2) and
A ∩Gi ∈ a2,p(Gi), i = 1, 2.

Proof. Easy and hence omitted.

Remark 3.3. Let H be a finite group such that H ∼= Zp oSk, the wreath
product of the cyclic group Zp, p prime, with Sk. Then F ∗(H) = Op(H).

Proof. See [9].

Remark 3.4. For a partition Σ = (A1, . . . , Am) of a finite set Ω, YΣ =
{g ∈ SΩ | Agi = Ai for all i} is the Young subgroup of Ω.

It is obvious that YΣ = YA1 × · · · × YAm ≤ SΩ, where

YAi = {g ∈ SΩ | g fixes all points not in Ai}
and YAi

∼= SAi . Further, we define Y ∗Ai = YAi ∩AΩ and

Y ∗Σ = 〈Y ∗A1
, . . . , Y ∗Am〉 = Y ∗A1

× · · · × Y ∗Am ≤ AΩ.
Consider an element g ∈ SAi of prime order p 6= 2.
Let A = {α ∈ Ω | αg 6= α} and Γ = {α ∈ Ω | αg = α}. So Σ =

(A,Γ ) is a partition of Ω. If |A| = pk, then g is a product of k pairwise
commuting p-cycles t1, . . . , tk and ti ∈ YA corresponding to the orbits of
g in A. Also CSΩ (g) permutes these ti’s and in particular normalizes V =
〈t1, . . . , tk〉 ∼= Zkp ; hence V ⊆ Op(CSΩ (g)). So CSΩ (g) ≤ YZ = YA × Γ ,
and thus CSΩ (g) = CYA(g) × YΓ . As CYA(g) ∼= Zp o Sk, Remark 3.3 implies
F ∗(CYA(g)) = Op(CY (g)) and C(V ) = V ×YΓ . We then exploit the structure
of C(g) to investigate the BG-injectors of SΩ and AΩ. So we prove the
following lemma.

Lemmas 3.6 and 3.7 were proved in [2]; to keep the paper self-contained
we repeat the proof.

Lemma 3.4. Let U be a BG-injector in SΩ, g ∈ Z(U) of prime order p 6=
2, and let Γ and A be as defined in Remark 3.4. Then U = (U∩YA)×(U∩YΓ ),
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U ∩ YA is a Sylow p-subgroup of YA, U ∩ YA is a BG-injector of YA, and
U ∩ YΓ is a BG-injector of YΓ ∼= SΓ .

Proof. As g ∈ Z(U) is of prime order p 6= 2, we have p | |A|, so

U ≤ CSΩ (g) = CYA(g)× YΓ .
As U is a BG-injector of SΩ and U ≤ CYA(g)× YΓ ≤ SΩ, it follows that U
is a BG-injector of CYA(g)× YΓ ≤ YA × YΓ . By Lemma 3.2, we have

U = (U ∩ CYA(g))× (U ∩ YΓ ) = (U ∩ YA)× (U ∩ YΓ )

and U ∩CYA(g) is a BG-injector in CYA(g), U ∩YΓ is a BG-injector in YΓ ∼=
SΩ and U ∩ CYA(g) = U ∩ YA . Furthermore, as F ∗(CYA(g)) = Op(CYA(g))
(use Remark 3.3), Lemma 3.2 implies that U ∩ YA is a Sylow p-subgroup
of YA.

We can prove a similar result for AΩ.

Lemma 3.5. Let U be a BG-injector in AΩ and let g ∈ Z(U) with prime
order p 6= 2. Then U = (U ∩ CY ∗A(g))× (U ∩ Y ∗Γ ).

Proof. Since g ∈ Z(U), we have

U ≤ CAΩ (g) ≤ CSΩ (g) = CYA(g)× YΓ ≤ YA × YΓ .
If V is as defined above, it follows that V ⊆ Op(CSΩ (g)) = Op(CAΩ (g)) as p
is odd. As U is a BG-injector of CAΩ (g), this implies that V ⊆ Op(CAΩ (g))
⊆ U ; but U is nilpotent, so U = Op(U)×Op′(U).

Also V ⊆ Op(U) and Op′(U) ⊆ C(Op(U)), thus Op′(U) ⊆ CAΩ (V ). So
Op′(U) ≤ CSΩ (V ) = V × YΓ . As U ≤ AΩ and V ⊂ AΩ (p 6= 2), we have

Op′(U) = Op′(U) ∩AΩ ≤ (V × YΓ ) ∩AΩ = V × (YΓ ∩AΩ) = V × Y ∗Γ .
Thus Op′ ≤ Y ∗Γ as p | |V |, and therefore U = Op(U)×Op′(U) ≤ CYA(g)×Y ∗Γ ;
this implies that U ≤ CY ∗A(g) × Y ∗Γ , as p 6= 2. Hence Lemma 3.3 yields the
conclusion.

Combining all these results, we obtain the following general lemma.

Lemma 3.6. Let Ω be a finite set and let U be a BG-injector of SΩ.
Then there exists a partition Σ = (A1, . . . , Am) of Ω such that

(1) U ≤ YΣ = YA1 × · · · × YAm.
(2) U = (U ∩ YA1)× · · · × (U ∩ YAm).
(3) For i = 1, . . . ,m, there exists a prime pi such that U ∩YAi is a Sylow

pi-subgroup of YAi and also a BG-injector in YAi.
(4) (a) If pi 6= 2, then pi | |A|.

(b) If pi = 2, then |Ai| 6≡ 3 mod 4.

Proof. We consider two cases:

Case 1: U is a 2-group. If Σ is a partition consisting of Ω alone, then
YΣ = SΩ and U = U ∩ YΣ . As U is a BG-injector of SΩ, it is maximal
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nilpotent and thus U is a Sylow 2-subgroup of SΩ. So (1)–(3) follow, and
4(a) is also true. As U is a 2-group and a BG-injector, it cannot normalize
a 3-cycle. Hence 4(b) follows.

Case 2: U is not a 2-group. Then there exists a prime p 6= 2 such that
p | |U |. As U is nilpotent, there exists z ∈ Z(U) of order p. Let A1 be the set
of non-fixed points of Z = Z(U) and Γ be the set of fixed points of Z. By
Lemma 3.4, we have U ≤ CSΩ (z) ≤ YA1 × YΓ and p | |A1|, more precisely

U ≤ CSΩ (z) = CYA1
(z)× YΓ ≤ YA1 × YΓ .

Thus, by Lemma 3.2,

U = (U ∩ CYA1
(z))× (U ∩ YΓ ) = (U ∩ YA1)× (U ∩ YΓ )

and U ∩CYA1
(z) is a BG-injector of YA1 , and U ∩YΓ is a BG-injector of YΓ .

As U∩CYA1
(z) is a BG-injector of CYA1

(z) and Γ ∗(CYA1
(z)) = Op(CYA1

(z)),
we find that U ∩CYA1

(z) is a Sylow p-subgroup of YA1
∼= SA1 ANDU ∩YΓ is

a BG-injector of YΓ ∼= SΓ . Repeating the argument for U ∩YΓ and YΓ ∼= SΓ
yields the claim.

Lemma 3.7. Let Ω be a finite set and let U be a BG-injector of AΩ.
Then there exists a partition Σ = (A1, . . . , Am) of Ω such that :

(1) U ≤ Y ∗A1
× · · · × Y ∗Am and U = (U ∩ Y ∗A1

)× · · · × (U ∩ Y ∗Am).
(2) For i = 1, . . . ,m, there exists a prime pi such that U ∩Y ∗Ai is a Sylow

pi-subgroup of Y ∗Ai.
(3) If pi 6= 2, then pi | |Ai|, and if pi = 2, then |Ai| 6≡ 3 mod 4.

Proof. We argue as in the proof of Lemma 3.6.

Corollary 3.2. Let B be a B-injector of SΩ. Then there exists a par-
tition Σ = (A1, . . . , Am) of Ω, such that B ≤ YAi∪Aj × YΩ\(Ai∪Aj) for
any i 6= j and by Lemma 3.3, B ∩ YAi∪Aj is a BG-injector of YAi∪Aj . In
particular ,

d2(SAi) = d2(YAi) = d2(B ∩ YAi) = d2,pi(SAi).

Note. If n = n1 + n2, where ni > 0, then d2(Sn) ≥ d2(Sn1)d2(Sn2)
because Sn1 × Sn2 ≤ Sn and so d2(Sn1)d2(Sn2) = d2(Sn1 × Sn2) ≤ d2(Sn).

Lemma 3.8. Let Ω be a finite set of size n, and let P ≤ SΩ be a p-
subgroup of SΩ of class ≤ 2. Then there exist integers a, b ≥ 0 such that
n ≥ pa+b and |P | ≤ pa+b+ab.

Proof. Without loss of generality one can assume that P is transitive
on Ω, Z = Z(P ) acts semiregularly on Ω, and since the class of P is
≤ 2, it follows that P ′ ≤ Z(P ), and if Zα is the set of elements in Z
which fix α ∈ Ω then (Pα)′ ≤ (P ′)α ≤ Zα = 1. So Pα is abelian and
hence M = 〈Z,Pα〉 = Z × Pα is an abelian normal subgroup of P , as
P ′ ≤ Z ≤ M and Z ∩ Zα = Zα = 1. Set |P/M | = pa and |Z| = pb. Then
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there exist t1, . . . , ta ∈ P such that P/M = 〈Mt1, . . . ,Mta〉. Define σ :
Pα → (P ′)a by σ(x) = ([x, t1], . . . , [x, ta]). As class(P ) ≤ 2, it follows that σ
is a homomorphism and is injective. Therefore |Pα| ≤ |P ′|a ≤ |Z(P )|a = pba

and
n = [P : Pα] = [P : M ][M : Pα]

as Pα ≤M ≤ P . So

[P : Pα] = pa
|M |
|Pα|

= pa
|Z| |Pα|
|Pα|

= papb = pa+b

and |P | = n|Pα| ≤ npab = pa+b+ab. This completes the proof.

Corollary 3.3. Let Ω be a finite set of size n, and let P ≤ SΩ be a
transitive p-subgroup of class ≤ 2 on Ω.

(1) If p 6= 2, then |P | ≤ pn/p, where equality can hold for n = p or n = 9
and p = 3.

(2) If p = 2, then |P | = n = 2 or |P | ≤ 8n/4. If n > 2 then |P | < 8n/4.

Proof. Consider two cases:

Case 1: p 6= 2. By Lemma 3.8, there exist integers a, b ≥ 0 such that
n = pa+b and |P | ≤ pa+b−1. As p 6= 2, it follows that pa+b+ab ≤ pn/p if and
only if a + b + ab ≤ n/p = pa+b−1, where equality can only hold for n = p
or n = 9 and p = 3.

Case 2: p = 2. Then |P | ≤ 2a+b+ab. If n > 2, then 2a+b+ab ≤ 23·n/4 if
and only if a+ b+ ab ≤ 3 · 2a+b−2.

Now we prove the following lemmas.

Lemma 3.9. Let P ≤ SΩ be a p-subgroup with orbits A1, . . . , Am. Then
P ≤ YΣ = YA1 × · · · × YAm , where Σ = (A1, . . . , Am) is a partition of Ω.
Let ζi : YΣ → YAi be the projection. Then:

(1) P ≤ P ζ1 × · · · × P ζm and P ζi ≤ YAi.
(2) Each P ζi is transitive on Ai.
(3) P ∩ YAi ≤ P ζi.
(4) If P is of class ≤ 2 and of maximal order d2,p(SΩ), then

(a) P = P ζ1 × · · · × P ζm.
(b) P ∩ YAi = P ζi.
(c) P = (P ∩ YA1)× · · · × (P ∩ YAm).

Proof. (1) As YΣ = YA1 × · · · × YAm , any x ∈ YΣ can be uniquely
written as x = x1 · · ·xm with xi ∈ YAi and xζi = xi. So x = xζ1 · · ·xζm .
Hence x ∈ P ζ1 × · · · × P ζm , and this proves (1).

(2) Let α, β ∈ Ai. As P is transitive on Ai, there exists x ∈ P such
that αx = β. Let x = x1 · · ·xm with xj ∈ YAj . By the definition of YAk , if
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xj ∈ YAi for j 6= i, then xj fixes all points not on Aj , hence all points in Ai
as Ai ⊆ Ω \Aj . Thus αxj = α and βxj = β for all j 6= i. So

β = αx = αx1x2···xi−1xixi+1···xm = αxixi+1···xm

and αxi = βx
−1
m x−1

m−1···x
−1
i−1 = β, which proves (2).

(3) Let x ∈ P ∩ YAi . Then the decomposition of x in YA1 × · · · × YAm is

x = (1, . . . , 1, x
↓
i

, 1, . . . , 1).

So x = xζi ∈ P ζi . Hence P ∩ YAi ≤ P ζi .
(4) As ζi, i = 1, . . . ,m, are homomorphisms, we have class(P ζi) ≤

class(P ) ≤ 2, which implies that class(P ζ1×· · ·×P ζm) ≤ 2. So P ζ1×· · ·×P ζm
is a p-subgroup of SΩ of class ≤ 2. Thus |P ζ1 ×· · ·×P ζm | ≤ d2,p(SΩ) = |P |.
As P ≤ P ζ1×· · ·×P ζm , from (1) it follows that |P | ≤ |P ζ1×· · ·×P ζm | ≤ |P |.
Hence P = P ζ1 × · · · × P ζm . So P ζi ≤ P and P ∩ Yi ≤ P ζi ≤ P ∩ YAi . Thus
P ∩ YAi = P ζi , proving (4).

Lemma 3.10. Let Ω be a finite set of size n.

(1) If p 6= 2, then d2,p(Sn) = d2,p(An) = p[n/p].
(2) If p 6= 2, then d2,2(Sn) = εn8[n/4], where

εn =
{

1, n ≡ 0, 1 mod 4,
2, n ≡ 2, 3 mod 4,

and if n > 1, then d2,2(An) = 1
2d2,2(Sn) = 1

2εn8[n/4]. Furthermore,
if p 6= 3, then:

(a) All p-subgroups of Sn of class ≤ 2 and order d2,p(Sn) are conju-
gate.

(b) If p > 3, then these groups are elementary abelian.
(c) If p = 2, then these groups are isomorphic to Zεn×D

[n/4]
8 , where

D8 denotes a Sylow 2-subgroup of S4, which is a dihedral group
of order 8.

Proof. It can be easily seen that Sn contains subgroups of order p[n/p]

for any prime p and generated by [n/p] cycles with distinct supports and
p[n/p] ≤ d2,p(Sn).

Also Sn contains 2-subgroups of order εn8[n/4] ≤ d2,2(Sn). This can be ex-
plained as follows. Let π = (A1, . . . , Am, A) be a partition of Ω. Let |Ai| = 4,
i = 1, . . . ,m, and |A| = r, where n = 4m+ r, 0 ≤ r ≤ 4. It follows that

H = YA1 × · · · × YAm × Yr ≤ Sn
where YAi ∼= S4 and Yr ∼= Zεn . Hence H ∼= Sm4 × Sr contains Dm

8 × Zεn of
class ≤ 2. It remains to show that for p 6= 3, these groups are exactly all
possible p-subgroups of class ≤ 2 and order d2,p(Sn).
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We consider two cases:

Case 1: p 6= 2. Let |Ai| = ni. Then p[ni/p] = pni/p ≤ d2,p(SAi) =
|P ∩ YAi |. By Corollary 3.3 we have |P ∩ YAi | ≤ pni/p. Hence pni/p =
d2,p(SAi) = |P ∩ YAi |. Again by Corollary 3.3, we have either ni = p, or
ni = 9 and p = 3. So if p 6= 3, then all orbits of P have length 1 or p. Thus P
is conjugate to the subgroup constructed above and hence d2,p(Sn) = p[n/p].
As p 6= 2, it follows that d2,p(Sn) = d2,p(An).

Case 2: p = 2. Let P ∈ a2,2(Sn) and let P ≤ YΣ = YA1×· · ·×YAm where
YAi , i = 1, . . . ,m, are the Young subgroups corresponding to the partition
Σ = (A1, . . . , Am). By Lemma 3.3, P = (P ∩ YA1)× · · · × (P ∩ YAm) where
P ∩ YAi ∈ a2,2(YAi), and by Lemma 3.9, P ∩ YAi is a transitive subgroup
of YAi . By Corollary 3.3, |Ai| = 1 or 2 and 8n/4 ≤ d2(SAi) = |P∩YAi | ≤ 8n/4.
This implies that |P ∩YAi | = 8n/4, which occurs if and only if ni = 4. Hence
again P is a group conjugate to the group constructed above. As P 6≤ An,
this implies that d2,2(An) = 1

2d2,2(Sn).

Now we are in a position to prove the first main result.

Theorem 3.2. Let Ω be a finite set of size n and let B be a B-injector
of SΩ.

(1) If n ≡ 3 mod 4, then B = 〈d〉 × T where d is a 3-cycle, and T is a
Sylow 2-subgroup of CSΩ (d).

(2) If n 6≡ 3 mod 4, then B is a Sylow 2-subgroup. In particular , all the
B-injectors of SΩ are conjugate.

Proof. As B is a B-injector of SΩ, it is a BG-injector of SΩ. By Lemma
3.6, there exists a partition Σ = (A1, . . . , Am) of Ω such that B ≤ YΣ and
B = (B ∩ YA1)× · · · × (B ∩ YAm) and for i = 1, . . . ,m, there exist primes pi
such that B ∩ YAi is a Sylow pi-subgroup of YAi , and hence, by Lemma 3.3,
a B-injector of YAi .

Let pi 6= 2. Then pi | |Ai| = ni and

εni8
[ni/4] ≤ d2(SAi) = d2(YAi) = d2(B ∩ YAi) = d2,pi(B ∩ YAi)

= p
[ni/pi]
i = p

ni/pi
i .

This implies that pi = 3 = ni. Hence either B ∩YAi is a 2-group, or |Ai| = 3
and B∩YAi is a 3-cycle. We have at most one i such that |Ai| = 3, because we
assume that |Ai| = |Aj | = 3 for i 6= j. It follows that (B∩YAi)×(B∩YAj ) ≤
YAi∪Aj

∼= S6 and (B∩YAi)×(B∩YAj ) is again a B-injector of YAi∪Aj . Hence
d2(S6) = d2((B ∩ YAi) × (B ∩ YAj )) = 32 = 9, which is a contradiction, as
16 = ε68[6/4] = d2,2(S6) ≤ d2(S6) = 9, so d2(S2) > 9. Hence either B is
a Sylow 2-group (if no |Ai| is 3), or b = 〈d〉 × T for some 3-cycle. If B is
a Sylow 2-group, then n 6≡ 3 mod 4 as observed above. If n ≡ 3 mod 4,
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then a Sylow 2-group T of Sn has a fixed point and an orbit of length 2. So
T = Z2 × T1 where T1 is a Sylow 2-group of Sn−3, and we deduce that

d2,2(Sn) = d2,2(T ) = d2,2(Z2)d2,2(T1) = 2d2,2(Sn−3)
< 3d2,2(Sn−3) = d2(S3)d2(Sn−3) ≤ d2(Sn).

As d2,2(Sn) < d2(Sn), it follows that B-injectors cannot be 2-groups. So
B = 〈d〉 × T, and this completes the description of the BG-injectors of Sn.

Now we discuss the B-injectors of An. First we give a lemma.

Lemma 3.11.

(1) If p is prime, p ≥ 7, then pk < 3[pk/3] for all k ≥ 1.
(2) 5k < 3[5k/3] for all k ≥ 3.
(3) 3k < 1

28[3k/4] for all k ≥ 3.

Proof. Easy.

Now we prove the second main result.

Theorem 3.3. Let B be a B-injector in AΩ = An.

(1) If |Ω| = 5, then B is a Sylow 5-subgroup.
(2) If |Ω| = 6, then B is a Sylow 3-subgroup.
(3) If |Ω| 6= 5, 6, then there exists a B-injector B∗ of SΩ such that

B = B∗ ∩AΩ (B∗ is known by Theorem 3.2).

Let B be a B-injector of X = A5 or A6, and let p be a prime divisor
of |X|. If zp ∈ Z(B), then d2(X) = d2(B) = d2(CX(zp)) ≤ |CX(zp)| as
B ≤ CX(zp).

Let X = A5. Then 2 - |B|, as otherwise 5 ≤ d2(A5) ≤ |CX(z2)| = 4,
a contradiction. Also 3 - |B|, as otherwise 5 ≤ d2(A5) ≤ |CX(z3)| = 3, a
contradiction. So B is a Sylow 5-subgroup.

Likewise if X = A6, then B is a Sylow 3-subgroup.
Now we discuss the third case. Let B be a B-injector of AΩ and |Ω|

6= 5, 6.

Case 1: B is a 2-group. Then B is a Sylow 2-subgroup. So B = B∗∩AΩ

for some Sylow 2-subgroup of SΩ. As B is a BG-injector of AΩ and is a 2-
group, it cannot normalize a 3-cycle, and hence |Ω| 6≡ 3 mod 4, because in
this case, Sylow 2-subgroups of SΩ and AΩ do normalize a 3-cycle. So B∗ is
a B-injector of SΩ (B∗ is known by Theorem 3.2), and the assertion follows.

Case 2: B is not a 2-group. By Lemma 3.7, there exists a partition
π = (A1, . . . , Am) of Ω such that B ≤ Y ∗π = Y ∗A1

× · · · ×Y ∗An , B = (B ∩Y ∗A1
)

× · · · × (B ∩ Y ∗Am), B ∩ Y ∗Ai is a B-injector of Y ∗Ai
∼= AAi and either B ∩ Y ∗Ai

is a Sylow 2-subgroup if |Ai| 6≡ 3 mod 4, or B ∩ Y ∗Ai is a Sylow pi-subgroup
for some prime pi 6= 2 and pi | |Ai|.
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Let pi 6= 2. Then as B ∩ Y ∗Ai is a B-injector of Y ∗Ai , one has: If |Ai| =
pik = ni then

d2(AAi) = d2(Y ∗Ai) = d2(B ∩ Y ∗Ai) = d2,pi(AAi) = pki ,

and
3[pik/3] = 3[ni/3] = d2,3(AAi) ≤ d2(AAi) = pki .

Also we have 1
2d2,2(SA) ≤ d2,2(AAi) ≤ d2(AAi), thus 1

2εni8
[ni/4] ≤ d2(AAi) =

pki . By Lemma 3.10, we have the following restrictions on pi and |Ai|. As
3[pik/3] ≤ pki , it follows that pi = 3 or 5 by Lemma 3.11(1). If pi = 5, then
k = 1 or 2 and hence |Ai| = 3 or 6 by Lemma 3.11(3). So we can renumber
the components of π so that π = (A1, . . . , Aa, Γ1, . . . , Γb, Σ) where |Ai| = 3
for i = 1, . . . , a, |Γi| = 5 for i = 1, . . . , b, and |Σ| = m with n = 3a+ 5b+m.
Then

B = (B ∩ Y ∗A1
)× · · · × (B ∩ Y ∗An)× (B ∩ Y ∗Γ1

)× · · · × (B ∩ Y ∗Γb)× (B ∩ Y ∗Σ)

and hence

d2(AΩ) = 3a5bd2,2(AΣ) = 3a5bd2,2(AΣ) = 3a5bd2,2(Sm)

and
1
2
d2(S3a+5b)d2(Sm) ≤ 1

2
d2(Sn) ≤ d2(An) = d2(B) = 3a5bd2,2(AΣ).

Hence if m = 0, then 1
2d2(S3a+5b) ≤ 3a5b. If m 6= 0, then

1
2
d2(S3a+5b)d2(Sm) ≤ q3a5bd2,2(Am) = 3a5b · 1

2
d2,2(An) = 3a5b · 1

2
d2,2(Sm)

≤ d2(S3a+5b)
1
2
d2(Sm),

so d2(S3a+5b) = 3a5b and this implies a ≤ 1, b = 0 and d2(Sm) = d2,2(Sm).
Hence, if m 6= 0, then B is a 2-group or 〈d〉 × T .

This completes the proof of the theorem.
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