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Abstract. The incidence coalgebras C = K�I of intervally finite posets I and their
comodules are studied by means of their Cartan matrices and the Euler integral bilinear
form bC : Z(I)×Z(I) → Z. One of our main results asserts that, under a suitable assumption
on I, C is an Euler coalgebra with the Euler defect ∂C : Z(I) × Z(I) → Z zero and
bC(lgthM, lgthN) = χC(M,N) for any pair of indecomposable left C-comodules M and
N of finite K-dimension, where χC(M,N) is the Euler characteristic of the pair M , N
and lgthM ∈ Z(I) is the composition length vector. The structure of minimal injective
resolutions of simple left C-comodules is described by means of the inverse c−1

I ∈ M�I (Z) of
the incidence matrix cI ∈ MI(Z) of the poset I. Moreover, we describe the Bass numbers
µI

m(SI(a), SI(b)), with m ≥ 0, for any simple K�I-comodules SI(a), SI(b) by means
of the coefficients of the bth row of c−1

I . We also show that, for any poset I of width
two, the Grothendieck group K0(K�I-Comodfc) of the category of finitely copresented
K�I-comodules is generated by the classes [SI(a)] of the simple comodules SI(a) and the
classes [EI(a)] of the injective covers EI(a) of SI(a), with a ∈ I.

1. Introduction. Throughout this paper, we fix a field K. Given a non-
empty set I, we denote by MI(K) the set of all I by I matrices λ = [λpq]p,q∈I
with λpq ∈ K. The set MI(K) is equipped with the usual K-vector space
structure and (partial) matrix multiplication (which is not associative and
not everywhere defined if I is infinite); see [7, 2.1] and [36].

We denote by M•I(K) ⊆ MI(K) the associative matrix K-algebra con-
sisting of all matrices λ = [λpq] ∈ MI(K) such that λpq = 0 for all but
finitely many p, q ∈ I. Obviously, M•I(K) has an identity element if and
only if I is a finite set.

Let I ≡ (I,�) be a poset, that is, I is a partially ordered set with
respect to the partial order relation � (see [25]). The relation � is uniquely
determined by the incidence matrix (see [25])

(1.1) cI = [cij ]i,j∈I ∈M�I (Z), cij =
{

1 for i � j,
0 for i 6� j,
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where the abelian group

(1.2) M�I (Z) = {c = [cpq]p,q∈I ∈MI(Z); cpq = 0 if p 6� q}

is viewed as a partial subalgebra of MI(Z).
The poset I is defined to be intervally finite if for any a � b, the interval

[a, b] = {s ∈ I; a � s � b} is a finite set.
If I is intervally finite then, for any λ′ = [λ′ij ], λ

′′ = [λ′′ij ] ∈M�I (Z), their
product λ′ · λ′′ = [λab]a,b∈I , where λab =

∑
j∈I λ

′
ajλ
′′
jb =

∑
a�j�b λ

′
ajλ
′′
jb, is

well defined and lies in M�I (Z). Hence, M�I (Z) is an associative K-algebra
and the matrix E, with 1’s on the main diagonal and zeros elsewhere, is the
identity of M�I (Z).

To any intervally finite poset I, we associate the incidence K-coalgebra
K�I = (KI,∆I , εI), where KI ⊆ M•I(K) is the incidence K-algebra (2.1)
of I, ∆I is the comultiplication and εI is the counity (see Definition 2.2).

We show that the coalgebra C = K�I is basic, c`-hereditary, Hom-
computable in the sense of [30], left locally artinian (hence left cocoherent),
the Cartan matrix CF = CF̂ ∈ MI(Z) [30, (4.3)] is the transpose of cI , CF
has a (unique) left and right inverse CF

−1 = [c−ij ]i,j∈I (2.10) in the partial
algebra M�I (Z), and the Euler integral bilinear form

(1.3) bC : Z(I) × Z(I) → Z

[30, (4.6)] is defined by the formula bC(x, y) = x ·c−1
I · ytr for all x, y ∈ Z(I),

where Z(I) is the direct sum of I-copies of the group Z. Propositions 2.9
and 2.12 give simple formulae for c−ab in terms of the poset I (see (2.11) and
(2.13)). We also show that, for any intervally finite poset I without infinitely
many pairwise incomparable elements, C is an Euler coalgebra, the Euler
defect ∂C : Z(I) × Z(I) → Z is zero [30, (4.14)], the Euler characteristic

(1.4) χC(M,N) =
∞∑
j=0

(−1)j dimK ExtjC(M,N)

is well defined, and bC(lgthM, lgthN) = χC(M,N) for any indecompos-
able left C-comodules M and N of finite K-dimension. In this case, a min-
imal injective resolution of any simple left C-comodule SI(a), with a ∈ I,
is socle-finite and describes the ath column of c−1

I ∈M�I (Z). The structure
of that resolution is described in Theorems 5.3 and 6.2. In particular, in
Section 6 we describe the Bass numbers µIm(SI(a), SI(b)) (6.1), with m ≥ 0,
of any simple K�I-comodules SI(a), SI(b) by means of the entries of the
bth row of c−1

I .
In Section 5, we prove that, for any poset I of width at most two, the

Grothendieck group K0(K�I-Comodfc) of the category of finitely copre-
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sented left K�I-comodules has the form

K0(K�I-Comodfc) = K0(K�I-comod) + K0(K�I-inj),

that is, it is generated by the classes [SI(a)] of the simple comodules SI(a)
and the classes [EI(a)] of the injective covers EI(a) of SI(a), with a ∈ I (cf.
the group K+

0 (C) defined in [30, (4.8)]).
Some of the results of this paper are applied in [32], where we present: (a)

a characterisation of the incidence coalgebras K�I that are representation-
directed, (b) a description of posets I such that K�I is representation-
directed, and (c) a characterisation of the incidence coalgebras K�I that
are left pure semisimple. We show in [32] that every such coalgebra K�I is
tame of discrete comodule type (see [27] and [28]) and gl.dimK�I ≤ 2.

Throughout this paper we use the coalgebra representation theory nota-
tion and terminology introduced in [27], [28], and [37]. The reader is referred
to [18] and [35] for the coalgebra and comodule terminology, and to [1], [2],
[10] and [25] for the representation theory terminology and notation.

Given a K-coalgebra C, we denote by C-Comod and C-comod the cat-
egories of left C-comodules and left C-comodules of finite K-dimension, re-
spectively. The corresponding categories of right C-comodules are denoted
by Comod-C and comod-C. Further, we denote by C-inj the category of
socle finite injective left C-comodules. Given a K-coalgebra C with comulti-
plication ∆ : C → C⊗C and counity ε : C → K, the coalgebra Cop opposite
to C is the K-vector space C equipped with the same counity ε : C → K
and comultiplication ∆op = τ ◦∆ : C → C ⊗ C, where τ : C ⊗ C → C ⊗ C
is the twist map defined by τ(x⊗y) = y⊗x for x, y ∈ C. It is clear that the
category Comod-C of right C-comodules is just the category Cop-Comod of
left Cop-comodules.

Following [24, p. 404], the K-coalgebra C is defined to be basic if the left
C-comodule soc CC has a direct sum decomposition soc CC =

⊕
j∈IC S(j),

where IC is a set, S(j) are simple comodules and S(i) 6∼= S(j) for all i 6= j.
It is shown in [27] that the definition is left-right symmetric and the notion
of basic coalgebra introduced in [6] is equivalent to the above one.

Let lgthM = (`j(M))j∈IC ∈ Z(IC) be the composition length vector
of a comodule M in C-comod, where `j(M) ∈ N is the number of simple
composition factors of M isomorphic to S(j). We recall from [27] that the
map M 7→ lgthM extends to a group isomorphism

lgth : K0(C) '→ Z(IC),

where K0(C) = K0(C-comod) is the Grothendieck group of the category
C-comod (see [27]). If dimK S(j) = 1, then `j(M) = dimK HomC(M,E(j)),
where E(j) is the injective envelope of S(j) [30, Proposition 2.6]. The coal-
gebra C is defined to be Hom-computable if
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`ij := `j(E(i)) = dimK HomC(E(i), E(j))

is finite for all i, j ∈ IC [30, Proposition 2.9].
Following [29] and [30], a comodule N in C-Comod is said to be finitely

cogenerated (or socle-finite) if N is a subcomodule of a finite direct sum
of indecomposable injective comodules, or equivalently, dimK socN is fi-
nite. We say that N is finitely copresented if there is an exact sequence
0 → N → E → E′ in C-Comod, where E and E′ are each a finite di-
rect sum of indecomposable injective comodules. We denote by C-Comodfc

the full subcategory of C-Comod whose objects are the finitely copresented
comodules.

We call a coalgebra C left cocoherent if any finitely cogenerated epi-
morphic image N of an indecomposable injective C-comodule E is finitely
copresented (see [13]). Note that the class of left cocoherent coalgebras con-
tains the right semiperfect coalgebras, hereditary coalgebras and left locally
artinian coalgebras (i.e. coalgebras C with left indecomposable injectives
artinian); see [13].

2. Incidence coalgebras of intervally finite posets. Let I ≡ (I,�)
be a poset. We write i ≺ j if i � j and i 6= j. The poset I is said to be left
locally bounded if for any b ∈ I, the left cone Eb = {p ∈ I; p � b} does not
have infinitely many pairwise incomparable elements. The poset I is said to
be right locally bounded if for any a ∈ I, the right cone aE = {q ∈ I; a � q}
does not have infinitely many pairwise incomparable elements. The width
w(I) of I is defined to be the maximal number of pairwise incomparable
elements of I, if it is finite; otherwise w(I) = ∞ (see [25]). We say that I
is connected if it is not a disjoint union of two subposets I ′ and I ′′ with
all i′ ∈ I ′ and i′′ ∈ I ′′ incomparable in I. A subposet I ′ of a poset I is
defined to be convex, or intervally closed, if for any a � b in I ′, the interval
[a, b] = {s ∈ I; a � s � b} = aD ∩ Eb is also contained in I ′.

Following Rota [22], given an arbitrary poset I, we define the incidence
K-algebra KI ⊆M•I(K) of I to be the K-algebra (see [25])

(2.1) KI = M�I (K) ∩M•I(K) = {λ = [λpq] ∈M•I(K); λpq = 0 if p 6� q}.

We call the unitary K-algebra M�I (K) the complete incidence algebra of
the poset (I,�) with coefficients in K (see Proposition 4.3).

It is easy to see that KI is an associative K-subalgebra of M•I(K), and
the matrix units epq, with p � q, having the identity in the (p, q) entry
and zeros elsewhere, form a K-basis of KI. Given j ∈ I, the matrix unit
ej = ejj ∈ KI is a primitive idempotent of KI, and {ej}j∈I is a complete set
of pairwise orthogonal primitive idempotents of KI. Obviously, the algebra
KI has an identity element if and only if I is finite.
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In most of this paper, we assume that I is a connected intervally finite
poset. It follows that I is finite or countable (and therefore can be identified
with a subset of Z). Hence, if I is countable then cI is an integral Z × Z
matrix and the K-dimension of KI is countable.

We recall from [10] and [25] that the Hasse quiver of I is the quiver
QI = (QI0, Q

I
1), where QI0 = I is the set of points of QI and there is a unique

arrow p → q from p ∈ I to q ∈ I in QI1 if and only if p ≺ q and there is no
t ∈ I such that p ≺ t ≺ q.

For example, if I = Z with the linear order opposite to the natural one,
then

QI : · · · ← −2← −1← 0← 1← 2← · · · ← r+1→ r+2← r+3← · · ·

The algebra KI consists of the lower triangular matrices λ ∈ M•Z(K), and
the matrix cI = [cpq] ∈M�Z (Z) has ones on the main diagonal and below it,
and zeros above the diagonal.

Following [12], we introduce the following definition (see also [18] and
[28]).

Definition 2.2. Let I be an intervally finite poset. The incidence K-
coalgebra of I is the triple

(2.3) K�I = (KI,∆I , εI),

where KI is the incidence K-algebra of I, and the counit εI : KI → K and
comultiplication ∆I : KI → KI ⊗KI are defined by the formulae

∆I(epq) =
∑
p�t�q

ept ⊗ etq, εI(epq) =
{

0 for p 6= q,
1 for p = q.

Since I is intervally finite, the K-linear map ∆I is well-defined. We recall
that dimK K

�I ≤ ℵ0 if the poset I is connected.
We start with the following useful observations.

Lemma 2.4. Let I be an intervally finite poset. Let I∗ = (I,�∗) be the
poset opposite to I ≡ (I,�), that is, p �∗ q if and only if q � p.

(a) The K-linear map t̂r : K�I
'−→ K�I∗ that associates to any matrix

λ its transpose λtr defines an isomorphism of the K-coalgebra K�I∗

with the K-coalgebra (K�I)op.
(b) The coalgebra isomorphism (K�I)op ∼= K�I∗ defined in (a) induces

the category isomorphisms

K�I∗-Comod ∼= Comod-K�I and K�I∗-comod ∼= comod-K�I.

(c) If U is a convex subposet of I then K�U is a subcoalgebra of K�I
and K�U -comod is an extension closed subcategory of K�I-comod.
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Proof. (a) The underlying K-vector spaces of K�I∗ and (K�I)op are
subspaces of the K-algebra M•I(K) of all matrices λ = [λpq] ∈ MI(K) such
that λpq = 0 for all but finitely many p, q ∈ I. Transposition t̂r : M•I(K)→
M•I(K) carries the matrix unit epq ∈ KI with p � q to the matrix unit
eqp ∈ KI∗, with q �∗ p. Moreover, t̂r induces the coalgebra isomorphism
t̂r : K�I

'−→ (K�I∗)op. Indeed, it is easy to check that εI∗(t̂r(epq)) = εI(epq)
and (t̂r ⊗ t̂r)∆op

I (epq) = ∆I∗ t̂r(epq) = ∆I∗(eqp) for any p, q ∈ I such that
p � q.

(b) Recall that there is an isomorphism (K�I)op-Comod ∼= Comod-K�I
of categories that restricts to (K�I)op-comod ∼= comod-K�I. Hence (b)
follows from (a).

(c) The first part follows immediately from the definition, but the second
one is not immediate. However, the proof is left to the reader (consult [14,
Section 2]).

Now we collect the basic properties of the incidence coalgebra K�I.

Proposition 2.5. Let I be an intervally finite poset I.

(a) The coalgebra K�I is basic, and it is connected (indecomposable) if
and only if the poset I is connected. Moreover, dimK K

�I ≤ ℵ0 if I
is connected.

(b) For C = K�I and each j ∈ IC ,
SI(j) = ej · (KI) · ej ∼= Kej

is a one-dimensional simple left coideal (and subcoalgebra) of C, the
left ideal

EI(j) = KI · ej
of the K-algebra KI is a left coideal of the coalgebra C such that
socEI(j) = SI(j), EndCSI(j) ∼= K, and EndCEI(j) ∼= K. More-
over, there are vector space isomorphisms

(2.6) HomC(EI(q), EI(p))
ξqp−−→
'

{
Kepq if p � q,
0 if p 6� q.

(c) There are left K�I-comodule decompositions

(2.7) socK�I =
⊕
j∈I

SI(j) and K�I =
⊕
j∈I

EI(j),

(d) The coalgebra C is Hom-computable, the composition length matrix
CF = [`pq] ∈ M�I (Z) coincides with the Cartan matrix CF̂ = [̂̀pq] ∈
M�I (Z) with `pq = ̂̀

pq = dimK HomC(EI(p), EI(q)), and CF
tr = cI .

Given p ∈ I, the transpose of the vector lgthEI(p) = (`pq)q∈I =
(cqp)q∈I ∈ Z(I) of EI(p) is the pth column of the matrix cI .
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Proof. The statement (a) is a consequence of (b).
To prove (b), (c), and (d), we note that the left ideal EI(j) = KI · ej

of the K-algebra KI is the jth column left ideal of KI consisting of all
matrices λ = [λpq] such that λpq = 0 for q 6= j and all p ∈ I. It follows that
K�I =

⊕
j∈I EI(j). By the definition of the comultiplication ∆I , EI(j) is a

left coideal of C = K�I. Further, it is easy to see that there are K-vector
space isomorphisms

HomC(EI(q), EI(p)) ∼= HomC(KI · eq,KI · ep) ∼= ep · (KI) · eq

∼=
{
Kepq if p � q,
0 if p 6� q.

Moreover, one easily shows that if p ≺ q ≺ s and ξqp : HomC(EI(q), EI(p))
∼−→ Kepq and ξsq : HomC(EI(s), EI(q))

∼−→ Keqs are the composite isomor-
phisms then, for any f ∈ HomC(EI(q), EI(p)) and g ∈ HomC(EI(s), EI(q)),

(2.8) ξsp(f ◦ g) = ξqp(f) · ξsq(g).

It follows that `pq = ̂̀
pq = dimK HomC(EI(p), EI(q)) = cqp ≤ 1 for all

p, q ∈ I, that is, C is Hom-computable and CF
tr = cI [30, Proposition 2.9].

Moreover, there is an algebra isomorphism EndCEI(j) ∼= K. Hence each
EI(j) is an indecomposable injective left C-comodule containing the simple
comodule SI(j), that is, SI(j) = socEI(j), and EI(j) is the injective enve-
lope of SI(j) in K�I-Comod.

Throughout, we make the identifications CF = CF̂ = ctr
I .

Following [16], [23], and [31] we define a K-coalgebra C to be left c`-
hereditary if every colocal epimorphic image of an injective left C-comodule
is injective. Here, a comodule M is called colocal if M contains a unique
simple subcomodule, or equivalently, M is isomorphic to a subcomodule of
an indecomposable injective comodule (see also [31] and [32]). It is easy to
check that C is left c`-hereditary if and only if every non-zero homomorphism
f : E → E′ between indecomposable injective left C-comodules E and E′

is surjective. It is clear that hereditary coalgebras are left and right c`-
hereditary.

Corollary 2.9. Let I be an intervally finite poset , and C = K�I.

(a) The coalgebra C is left and right c`-hereditary.
(b) The incidence matrix cI and the Cartan matrix CF = [`pq] ∈M�I (Z)

with `pq = dimK HomC(EI(p), EI(q)) are two-sided invertible in the
ring M�I (Z), and CF

tr = cI . More precisely, the matrix
(2.10) c−1

I = [c−pq]p,q∈I ∈M�I (Z),

defined by the formula (2.11) below, is a unique right and unique left
inverse of cI and CF

−1 = (c−1
I )tr.
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(c) Given a ≺ b in I, the restriction c−1
I |[a,b] is the inverse of the re-

striction c[a,b] of cI to [a, b].

Proof. (a) Given p ≺ q, let κqp : EI(q)→ EI(p) be the C-comodule ho-
momorphism such that ξqp(κqp) = epq, where ξqp : HomC(EI(q), EI(p))

'−→
Kepq is the isomorphism (2.6).

We prove that C is left c`-hereditary by showing that, given s, q ∈ I,
any non-zero homomorphism g : EI(s) → EI(q) is surjective. Since f 6= 0,
the preceding proof yields q � s. In view of Proposition 2.5(b), we may
assume that q ≺ s. If, to the contrary, g is not surjective then EI(q)/Im g is
non-zero and there exist p ∈ I and a non-zero h ∈ HomC(EI(q)/Im g,EI(p)).
It follows that fg = 0, where f is the composite homomorphism EI(q) →
EI(q)/Img

h−→ EI(p). Note that p ≺ q ≺ s and f = µ′ · κqp, g = µ · κsq for
some non-zero scalars µ, µ′ ∈ K. By applying (2.8), we get

0 = ξsp(0) = ξsp(f ◦ g) = ξqp(f) · ξsq(g) = µµ′epq · eqs = µµ′eqs 6= 0.

This contradiction finishes the proof of (a).
(b) Since, according to Proposition 2.5(d), CF

tr = cI , it is sufficient
to prove that cI has a left inverse that is also a right inverse. We define
c−1
I = [c−pq]p,q∈I as follows. Given a, b ∈ I such that a � b, we view the

interval [a, b] as a subposet of I, and let c[a,b] = [cpq]p,q∈[a,b] ∈ M[a,b](Z) be
the restriction of the matrix cI to [a, b]. Since I is intervally finite, [a, b]
is finite, say [a, b] = {a1 = a, a2, . . . , am = b} with ai ≺ aj for i < j. It
follows that by a simultaneous permutation of rows and columns of c[a,b]

we can reduce it to an upper triangular matrix in Mm(Z) with ones on the
diagonal. It follows that detc[a,b] = 1, and the matrix c[a,b] has an inverse
c−1

[a,b] = [ĉabpq]p,q∈[a,b] ∈M[a,b](Z) such that ĉabpp = 1 for any p ∈ [a, b]. It is easy

to see that if a � c � d � b, then the restriction of c−1
[a,b] to [c, d] ⊆ [a, b] is

c−1
[c,d], and in particular ĉabcd = ĉcdcd.

For any a, b ∈ I, we define

(2.11) c−ab =
{

0 if a 6� b,
ĉabab if a � b.

Obviously, c−1
I = [c−ab]a,b∈I ∈ M�I (Z). To see that c−1

I · cI = [c′pq] is the
identity matrix E ∈ M�I (Z), fix a, b ∈ I. Since cpq = c−pq = 0 whenever
p 6� q, we get

c′ab =
∑
s∈I

c−ascsb =
∑
a�s�b

c−ascsb =
∑
s∈[a,b]

ĉasascsb

=
∑
s∈[a,b]

ĉabascsb =
{

1 for a = b,
0 for a 6= b,
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because c−1
[a,b] ·c[a,b] is the identity matrix in M[a,b](Z). Similarly we show that

cI · c−1
I = E. The equality (CF tr)−1 = c−1

I follows easily from CF
tr = cI .

Since (c) follows from the construction of c−1
I , the proof is complete.

Now we give an explicit formula for the entries c−ij of c−1
I in terms of I,

and hence we get an explicit formula for the Euler Z-bilinear form bC .
For simplicity of notation, we denote by `(a, b) the length of the maximal

path in the Hasse quiver Q[a,b] of the poset [a, b], and we call it the length
of the interval [a, b].

Proposition 2.12. Let I be an intervally finite connected poset and let
c−1
I = [c−ij ]i,j∈I ∈M�I (Z) be the (left and right) inverse of cI = [cij ]. Then

(2.13) c−ab =


`(a,b)∑
s=1

(−1)sĉ(s)ab if a � b,

0 if a 6� b,
where

ĉ
(s)
ab =

∑
a=j0≺j1≺···≺js=b

caj0cj0j1cj1j2 . . . cjs−1b.

In particular,

c−ab =


1 if a = b,
−1 if there is an arrow a→ b in the Hasse quiver QI ,
0 if Q[a,b] = {a→ j1 → · · · → js−1 → js = b} and s ≥ 2.

Proof. It follows from (2.11) that c−ab = 0 if a 6� b in I, and c−ab = ĉabab if
a � b, where ĉabab is the (a, b)-entry of

c−1
[a,b] = [ĉabpq]p,q∈[a,b] ∈MJ(Z), J = [a, b].

Thus, we may assume that I = [a, b] is a finite poset, where a � b. Moreover,
we may assume that I = {a = 1, 2, . . . ,m − 1,m = b} with p � q implying
p ≤ q in the natural order of Z. This means that the matrices c[a,b] = cI =
[cij ] ∈ Mm(Z) and c−1

[a,b] = c−1
I = [c−ij ] ∈ Mm(Z) have the upper triangular

forms

cI =


1 c12 . . . c1m

0 1 . . . c2m
...

. . .
...

0 0 . . . 1

 , c−1
I =


1 c−12 . . . c−1m
0 1 . . . c−2m
...

. . .
...

0 0 . . . 1


with c11 = · · · = cmm = 1, c−11 = · · · = c−mm = 1, cij = 0 and c−ij = 0 if
i 6� j.
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It follows that the group homomorphism σ̂I : Zm → Zm defined by the
formula σ̂I(x) = x · cI for x = (x1, . . . , xm) ∈ Zm is an isomorphism, and
σ̂−1
I is defined by σ̂−1

I (x′) = x′ · c−1
I for x′ = (x′1, . . . , x

′
m) ∈ Zm.

It is easy to see that if (x′1, . . . , x
′
m) = σ̂I(x) then x′j =

∑
i�j cijxi =∑

i�j xi for all j ∈ {1, . . . ,m}. It follows that

x′1 = x1,

x′2 = c12x1 + x2,

x′3 = c13x1 + c23x2 + x3,

...
...

x′m = c1mx1 + c2mx2 + · · ·+ cm−1,mxm−1 + xm,

and, since x = σ̂−1
I (x′), we have

x1 = c−11x
′
1,

x2 = c−12x
′
1 + x′2,

x3 = c−13x
′
1 + c−23x

′
2 + x′3,

...
...

xm = c−1mx
′
1 + c−2mx

′
2 + · · ·+ c−m−1,mx

′
m−1 + x′m.

On the other hand, the elimination procedure applied to the first system of
equations yields

x1 = x′1, hence c−11 = 1;

x2 = −c12x
′
1 + x′2, hence c−12 = −c12, c

−
22 = 1;

x3 = [−c13 + c12c23]x′1 − c23x
′
2 + x′3, hence c−13 = −c12 + c12c23,

c−23 = −c23, c
−
33 = 1;

x4 = [−c14 + c12c24 + c13c34 − c12c23c34]x′1
+ [−c24 + c23c34]x′2 − c34x

′
3 + x′4, hence c−14 = −c14 + c12c24

+ c13c34 − c12c23c34,

c−24 = −c24 + c23c34,

c−34 = −c34, c
−
44 = 1.

We can show by induction that

xm = c−1mx
′
1 + c−2mx

′
2 + · · ·+ c−m−1,mx

′
m−1 + x′m,

where c−mm = 1 and

c−pm =
m∑
s=1

(−1)s
[ ∑
p=j0≺j1≺···≺js=m

cpj0cj0j1cj1j2 . . . cjs−1m

]
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for p = 1, . . . ,m − 1. Since we assume a = 1 and b = m, the coefficient
c−ab = c−1m has the desired form.

3. Integral bilinear forms associated to intervally finite posets.
Assume that I is a connected intervally finite poset and let C = K�I, with
decompositions (2.7). Let cI = [cij ]i,j∈I ∈MI(Z) be the incidence matrix of
I and let c−1

I = [c−ij ]i,j∈I ∈M�I (Z) be the right (and left) inverse of cI .
Following [8] and [26], we associate to I five Z-bilinear forms

(3.1) b̂I , bI , b
tr
I , bI , b

tr
I : Z(I) × Z(I) → Z

defined by the formulae

b̂I(x, y) =
∑
i∈I

xiyi +
∑

j≺i∈I−
xiyj −

∑
p∈max I

(∑
i≺p

xi

)
yp,

bI(x, y) =
∑
i∈I

xiyi +
∑
i≺j

xiyj = x · cI · ytr,

btrI (x, y) =
∑
i∈I

xiyi +
∑
j≺i

xiyj = x · ctr
I · ytr,

bI(x, y) =
∑
i∈I

xiyi +
∑
i≺j

c−ijxiyj = x · c−1
I · y

tr,

b
tr
I (x, y) =

∑
i∈I

xiyi +
∑
j≺i

c−jixiyj = x · c−trI · ytr,

where max I is the set of all maximal elements of I and I− = I \max I is
viewed as a subposet of I. We call b̂I the Tits (geometric) bilinear form of I,
bI and btrI the ordinary Z-bilinear forms of I, and bI , b

tr
I the Euler Z-bilinear

forms of I. The corresponding integral quadratic forms

(3.2) q̂I , qI , qI : Z(I) → Z,

defined by q̂I(x) = b̂I(x, x), qI(x) = bI(x, x) = btrI (x, x), and qI(x) =
bI(x, x) = b

tr
I (x, x), are called the Tits (geometric) integral quadratic form,

the ordinary integral quadratic form, and the Euler integral quadratic form
of I, respectively.

We note that if I is infinite and has no maximal elements, then max I=∅,
I− = I and we get btrI = b̂I and qI = q̂I , that is, the ordinary and the Tits
quadratic forms of I coincide.

We recall from [8], [25], and [26] that the Tits form of a finite poset
plays a crucial role in the study of matrix representations of posets and in
describing the finite posets that are of finite or of tame prinjective type.
Similarly, the Euler quadratic form of a coalgebra or a finite-dimensional
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algebra is one of the basic tools in determining the representation type (see
[1], [4], [15], [21], [25]–[30], [32], [33], [34]).

We recall from [30, (4.6)] that the Euler Z-bilinear form

(3.3) bC : Z(I) × Z(I) → Z
of C = K�I is defined by the formula bC(x, y) = x · (CF−1)tr · ytr for
x, y ∈ Z(I), where CF = [`pq] ∈ M�I (Z) is the Cartan matrix of C, with
`pq = dimK HomC(EI(p), EI(q)). The Euler quadratic form qC : Z(I) → Z
is defined by

qC(x) = bC(x, x) = x · (CF−1)tr · xtr for x ∈ Z(I).

To get a matrix description of the Tits form b̂I and relate it to the Euler
forms bI , b

tr
I , bC , we introduce some concepts.

Definition 3.4. Let I be a connected intervally finite poset.

(a) The reduced incidence matrix of I is the bipartite matrix

(3.5) c•I =

[
cI− 0

0 E

]
∈M�I (Z),

where E ∈ Mmax I(Z) is the identity matrix and cI− ∈ M�
I−×I−(Z)

is the incidence matrix of I− = I \max I.

(b) The Tits matrix of I is the bipartite matrix

(3.6) ĉI = c•I + (c•I)tr − cI =

[
ctr
I− −U
0 E

]
∈M�I (Z),

where U = [cjp]j∈I−, p∈max I ∈ M�
I−×max I

(Z) has cjp = 1 if j ∈ I−,
p ∈ max I and j ≺ p, whereas cjp = 0 otherwise.

The following proposition shows that the forms b̂I , bC and btrI , bC are
Z-congruent if, for each a ∈ I, the right cone aD and the left cone Ea are
finite.

Proposition 3.7. Let I be a connected intervally finite poset , and C =
K�I.

(a) For each j ∈ I, the jth column of cI is the length vector

e(j) = lgthEI(j) ∈ ZI

of the indecomposable injective comodule EI(j), that is,

cI = [. . . , e(j)tr, . . .]j∈I ∈M�I (Z).

(b) bC = bI , that is, for all x, y ∈ Z(I),

bC(x, y) = bI(x, y) = x · c−1
I · y

tr =
∑
i∈I

xiyi +
∑
i≺p

c−ipxiyp.
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(c) For all x, y ∈ Z(I),

b̂I(x, y) = x · ĉI · ytr and btrI (x, y) = x · ctr
I · ytr.

(d) The bilinear forms b̂I , bC , and btrI , bC are Z-congruent and the fol-
lowing diagrams are commutative:

(3.8)

Z(I) × Z(I)

σ•I×σ
• ∼=

��

bbI // Z

Z(I) × Z(I)

bK�I

::uuuuuuuuuu

Z(I) × Z(I)

σtr
I ×σ

tr ∼=
��

btrI // Z

Z(I) × Z(I)

bK�I

::uuuuuuuuuu

if , for each a ∈ I, the right cone aD and the left cone Ea are finite,
where the group homomorphisms σ•I , σ

tr
I : Z(I) → Z(I) defined by

σ•I (x) = x · c•I and σtr
I (x) = x · ctr

I , for x ∈ Z(I), are isomorphisms
(see [26, (2.2), (3.3)]).

Proof. (a) By Proposition 2.5(d), CF tr = cI and (a) follows.
(b) By Corollary 2.9, (CF tr)−1 = c−1

I . Then bC(x, y) = bI(x, y) = x ·
c−1
I ·ytr. The equality x ·c−1

I ·ytr =
∑

i≺p c
−
ipxiyp for all x, y ∈ Z(I) is verified

by a direct calculation.
(c) The equalities are easily verified by a direct calculation.
(d) By Corollary 2.9, cI ∈ M�I (Z) and cI− ∈ M�

I−(Z) are invertible. It
follows that c•I and ctr

I are invertible in M�I (Z).
Assume that Ea is finite for each a ∈ I. Hence, in view of (a), each row of

ctr
I has a finite number of non-zero entries and therefore, for every x ∈ Z(I),

the vector σtr
I (x) = x ·ctr

I ∈ ZI lies in Z(I). Thus, σtr
I : Z(I) → Z(I) is a group

isomorphism, the products ctr
I · c−1

I and (ctr
I · c−1

I ) · cI are defined, and

ctr
I = (ctr

I · c−1
I ) · cI = ctr

I · (c−1
I · cI).

Hence, for any x, y ∈ Z(I), we get

bC(σtr
I (x), σtr

I (y)) = (x · ctr
I ) · [c−1

I · (y · ctr
I )tr]

= (x · ctr
I ) · [c−1

I · cI · ytr]

= x · ctr
I · ytr = btrI (x, y),

that is, the right hand diagram in (3.8) is commutative.
Assume that aD is finite for each a ∈ I. It follows that each row of cI

has a finite number of non-zero entries, and therefore, for every x ∈ Z(I),
the vector σ•I (x) = x ·c•I ∈ ZI lies in Z(I). Hence, σ•I : Z(I) → Z(I) is a group
isomorphism. Moreover, the products (c•I · c−1

I ) · (c•I)tr, c•I · [c−1
I · (c•I)tr]

are defined and the commutativity of the left hand diagram in (3.8) is a
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consequence of the equalities

(3.9) ĉI = (c•I · c−1
I ) · (c•I)tr = c•I · [c−1

I · (c•I)tr].
To prove the first equality of (3.9), we note that

(c•I)tr =

[
ctr
I− 0

0 E

]
, c−1

I =

[
c−1
I− −c−1

I− · U
0 E

]
,

c•I − cI =

[
0 −U
0 0

]
.

Then we get

(c•I · c−1
I ) · (c•I)tr

=

([
cI− 0

0 E

]
·

[
c−1
I− −c−1

I− · U
0 E

])
·

[
ctr
I− 0

0 E

]

=

[
cI− · c−1

I− cI− · (−c−1
I− · U)

0 E

]
·

[
ctr
I− 0

0 E

]

=

[
E −U
0 E

]
·

[
ctr
I− 0

0 E

]
=

[
ctr
I− −U
0 E

]
= ĉI .

The equality ĉI = c•I · [c−1
I · (c•I)tr] follows in a similar way.

Corollary 3.10. Let I be an intervally finite connected poset and let
C = K�I. Then the quadratic forms qC , qCop , qI : Z(I) → Z coincide, and

qC(x) = qCop(x) = qI(x) =
∑
j∈I

x2
j +

∑
p≺q∈I

c−pqxpxq,

for any x ∈ Z(I), where c−pq is given by the formulae (2.11) and (2.13).

Proof. Since, according to Lemma 2.4, there is a coalgebra isomorphism
Cop ∼= K�I∗, the corollary follows from Propositions 2.12 and 3.7(a).

Example 3.11. Let I = Z be the poset with Hasse quiver QI of the
form

. . . −→ −6 −→ −3 −→ 0 −→ 3 −→ 6 −→ 9 −→ . . .

↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘
. . . −→ −5 −→ −2 −→ 1 −→ 4 −→ 7 −→ 10 −→ . . .

↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘
. . . −→ −4 −→ −1 −→ 2 −→ 5 −→ 8 −→ 11 −→ . . .
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J
J
J
JĴ

J
J
J
J
JĴ

J
J
J
J
JĴ

J
J
J
J
JĴ

J
J
J
J
JĴ

J
J
J
J
JĴ

J
J
J
J
JĴ

The matrices cI ∈M�Z (Z) and c−1
I have the forms
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−4 −3 −2 −1 0 9 10

↓ ↓ ↓ ↓ ↓ ↓ ↓

cI =



. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 . . .

. . . 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .



←−4

←−3

←−2

←−1

←0

←1

←2

←3

...

c−1
I =

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . 1 −1 −1 −1 2 2 2 −4 −4 −4 8 8 8 −16 −16 . . .

. . . 0 1 0 0 −1 −1 −1 2 2 2 −4 −4 −4 8 8 . . .

. . . 0 0 1 0 −1 −1 −1 2 2 2 −4 −4 −4 8 8 . . .

. . . 0 0 0 1 −1 −1 −1 2 2 2 −4 −4 −4 8 8 . . .

. . . 0 0 0 0 1 0 0 −1 −1 −1 2 2 2 −4 −4 . . .

. . . 0 0 0 0 0 1 0 −1 −1 −1 2 2 2 −4 −4 . . .

. . . 0 0 0 0 0 0 1 −1 −1 −1 2 2 2 −4 −4 . . .

. . . 0 0 0 0 0 0 0 1 0 0 −1 −1 −1 2 2 . . .

. . . 0 0 0 0 0 0 0 0 1 0 −1 −1 −1 2 2 . . .

. . . 0 0 0 0 0 0 0 0 0 1 −1 −1 −1 2 2 . . .

. . . 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −1 . . .

. . . 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .



←−4

←−3

←−2

←−1

←0

←1

←2

←3

...
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Now we illustrate the use of Proposition 3.7 in computing the entry
c−09 = −4 of c−1

I . By (2.13) applied to a = 0 and b = 9, we get `(0, 9) = 3
and c−09 = −ĉ(1)

09 + ĉ
(2)
09 − ĉ

(3)
09 = −1 + 6− 9 = −4, because

ĉ
(1)
09 = c09 = 1,

ĉ
(2)
09 = c03c39 + c04c49 + c05c59 + c06c69 + c07c79 + c08c89 = 6,

ĉ
(3)
09 = c03c36c69 + c03c37c79 + c03c38c89 + c04c46c69 + c04c47c79 + c04c48c89

+ c05c56c69 + c05c57c79 + c05c58c89 = 9.

It follows that the Euler Z-bilinear form bC : Z(Z) × Z(Z) → Z and the
ordinary Z-bilinear form btrI = b̂I : Z(Z)×Z(Z) → Z are given by the formulae

bC(x, y) =
∑
p∈Z

xpyp +
∑
p∈Z

∞∑
q=p+3

(−1)q−p−22q−p−3

· (xp + xp+1 + xp+2) · (yq + yq+1 + yq+2),

b̂I(x, y) =
∑
p∈Z

xpyp +
∑
p∈Z

∞∑
q=p+3

(xp + xp+1 + xp+2) · (yq + yq+1 + yq+2),

for all x = (xj)j∈Z and y = (yj)j∈Z in the free abelian group Z(I) = Z(Z).
We give in [32] a characterisation of the incidence coalgebras K�I of

intervally finite posets I such that the Euler form bK�I = bI : Z(I) ×Z(I) →
Z is weakly positive, i.e. bK�I(v) > 0 for every non-zero vector v ∈ Z(I)

with non-negative coordinates. They are just the representation-directed
coalgebras in the sense of [30, Section 6]. We also show in [32] that every such
coalgebra K�I is tame of discrete comodule type [27] and gl.dimK�I ≤ 2.
Moreover, we present there a complete list of all connected and intervally
finite posets I such that bK�I is weakly positive.

4. Comodule categories over incidence coalgebras of intervally
finite posets. For any poset I, we denote by QI its Hasse quiver. The
K-algebra homomorphism KQI → KI associating to any arrow p → q of
QI the matrix unit epq ∈ KI induces a K-algebra isomorphism

(4.1) KQI/ΩI ∼= KI,

where ΩI is the two-sided ideal of KQI generated by all commutativity
relations, that is, by all differences w′−w′′ ∈ KQI of paths w′, w′′ of length
m ≥ 2 with a common source and common target (see [1, Chapter II] and
[25, Chapter 14]).

We denote by K�QI the path K-coalgebra of the quiver QI , and by

(4.2) K�(QI , ΩI) = Ω⊥I = {ψ ∈ K�QI ; 〈ψ,ΩI〉 = 0}
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the pathK-coalgebra of the bound quiver (QI , ΩI), viewed as a subcoalgebra
of K�QI (see [27], [28], and [31]).

One of the main aims of this section is to study the comodule category
K�I-Comod by means of K-linear representations of I. We recall that a
K-linear representation of a poset I is a system X = (Xp, qϕp)p≺q, where
Xp is a K-vector space for each p ∈ I, qϕp : Xp → Xq is a K-linear map for
all p ≺ q, and sϕq ◦ qϕp = sϕp for all p ≺ q ≺ s. A morphism f : X → X ′

of representations is a system f = (fp)p∈I of K-linear maps fp : Xp → X ′p
such that qϕ

′
p ◦ fp = fq ◦ qϕp for p ≺ q [23].

We denote by RepK(I) the Grothendieck K-category of K-linear repre-
sentations of I, and by repK(I) ⊇ rep`fK (I) the abelian full subcategories of
RepK(I) formed by the finitely generated objects and by the finitely gen-
erated representations of finite length, respectively. Finally, we denote by
Rep`fK (I) the full Grothendieck subcategory of RepK(I) formed by the lo-
cally finite representations, that is, directed unions of objects from rep`fK (I).

We say that X = (Xp, qϕp)p�q is locally nilpotent if for any p ∈ I and
xp ∈ Xp there exists an integer m ≥ 1 such that imϕim−1 ◦ · · · ◦ i2ϕi1 ◦
i1ϕi0(xp) = 0 for all paths i0 → i1 → · · · → im of length m in the Hasse
quiver QI (see [15], [27], [9, Section 7.4]). The representation X is said to be
nilpotent if there exists an m ≥ 1 such that imϕim−1 ◦ · · · ◦ i2ϕi1 ◦ i1ϕi0 = 0
for all paths i0 → i1 → · · · → im in QI . We denote by nilrep`fK (I) the
full subcategory of rep`fK (I) formed by all nilpotent representations of finite
length, and by Rep`n`fK (I) the full subcategory of Rep`fK (I) formed by all
locally nilpotent representations. Any representation of I of finite length is
nilpotent, that is, nilrep`fK (I) = rep`fK (I), and hence Rep`n`fK (I) = Rep`fK (I).

Proposition 4.3. Let I be a connected intervally finite poset, and C =
K�I.

(a) There exists a K-coalgebra isomorphism K�I ∼= K�(QI , ΩI) (see
(4.5)).

(b) The pseudocompact K-algebra C∗ = (K�I)∗ dual to K�I is isomor-
phic to the completion K̂I = M�I (K) of KI in the cofinite topology.
In particular , there is a K-algebra isomorphism (K�I)∗ ∼= KI =
M�I (K) if I is finite.

(c) The functor (4.8) constructed below defines K-linear category equiv-
alences

(4.4)
K�I-comod ∼= nilrep`fK (I) = rep`fK (I),

K�I-Comod ∼= Rep`n`fK (I) = Rep`fK (I).

(d) Under the identification K�I-Comod ∼= Rep`fK (I), for each p ∈ I, the
simple comodule SI(p) is identified with the representation SI(p) =
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(K(p)
q , sO

(p)
q ), where K

(p)
q = K if q = p, K

(p)
q = 0 if q 6= p, and

sO
(p)
q = 0 for all s ≺ q.

(e) Under the identification K�I-Comod ∼= Rep`fK (I), for each p ∈ I,
the injective comodule EI(p) is identified with the representation
EI(p) = (K(p)

q , sψ
(p)
q ), where K(p)

q = K if q � p, K(p)
q = 0 if q 6� p,

sψ
(p)
q : K(p)

q → K
(p)
s is the identity map if s ≺ q ≺ p, and sψ

(p)
q = 0

otherwise.

Proof. (a) For each p, q ∈ I, set

Ω⊥I (p, q) = {ψ ∈ KQI(p, q); 〈ψ,ΩI〉 = 0}.

It is easy to check that Ω⊥I (p, q) = Kêpq, where êpq is the sum of all oriented
paths ω in QI starting in p and ending with q (see [28, 3.12]). It follows that
the K-linear map

(4.5) θ : K�I → K�(QI , ΩI), qpq 7→ êpq,

is a K-coalgebra isomorphism.
(b) Because of the isomorphism (4.5) of coalgebras, (b) reduces to the

corresponding statement for K�(QI , ΩI), where the arguments in the proof
of Theorem 3.14 in [28] apply. The details are left to the reader.

(c) It is shown in [20], [27], [28], and [30, Proposition 3.3] that the K-
linear category equivalences

K�QI -Comod ∼= Rep`fK (QI) and K�QI -comod ∼= rep`fK (QI)

established in [27] restrict to the category equivalences

K�(QI , ΩI)-Comod ∼= Rep`n`fK (QI , ΩI) = Rep`fK (QI , ΩI) ∼= Rep`fK (I),

K�(QI , ΩI)-comod ∼= nilrep`fK (QI , ΩI) = rep`fK (QI , ΩI) ∼= rep`fK (I).

Hence, in view of (4.5), we get (4.4).
For the convenience of the reader, we give a direct construction of an

equivalence

(4.6) Φ : K�I-Comod '→ Rep`fK (I).

Recall that the Yoneda map ε̃M : HomC(M,C) → HomK(M,K) = M∗

[27, 4.9] is an isomorphism for any left C-comodule M . Moreover, there is
a natural isomorphism M ∼= homK(M∗,K) = (M∗)◦ of left C-comodules,
where (M∗)◦ = homK(M∗,K) is the set of all continuous K-linear maps
from the pseudocompact K-vector space M∗ to K (see [27, Sections 2–4]).
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It follows that there are natural isomorphisms of K-vector spaces

M ∼= (M∗)◦ = [HomC(M,C)]◦ ∼=
[
HomC

(
M,
⊕
p∈I

EI(p)
)]◦

∼=
[∏̌
p∈I

HomC(M,EI(p))
]◦ ∼= ⊕

p∈I
[HomC(M,EI(p))]◦ =

⊕
p∈I

Mp,

where
Mp = [HomC(M,EI(p))]◦

is viewed as a K-vector space, HomC(M,EI(p)) is viewed as a pseudocom-
pact K-vector space in a natural way (see [27, Sections 2–4]), and the vector
subspace∏̌
p∈I

HomC(M,EI(p)) =
{

(ψp) ∈
∏
p∈I

HomC(M,EI(p)); for each m ∈M ,

ψp(m) = 0 for almost all p
}

of
∏
p∈I HomC(M,EI(p)) is viewed as the product in the category of pseudo-

compact K-vector spaces. One can show (see [5, p. 870] and [31, Section 3])
that

(4.7) Mp = [HomC(M,EI(p))]◦ = {m ∈M ; %−M (m) = ep ⊗m} = M · ep,

where %−M is the composite map M
%M−−→ (K�I) ⊗M π0−→ (K�I)0 ⊗M and

π0 : K�I → (K�I)0 = socK�I is the canonical K-linear projection (see
also [31, (3.2) and (4.6)] and [5, p. 870]).

We define the functor Φ of (4.6) by setting

(4.8) Φ(M) = (Mp, qϕp)p≺q,

where qϕp : Mp → Mq, for p ≺ q, is the K-linear map defined as follows.
Let pκq : EI(q) → EI(p) be the C-comodule homomorphism such that
ξqp(pκq) = epq, where ξqp : HomC(EI(q), EI(p))

'−→ Kepq is the isomor-
phism (2.6). We take for qϕp the induced K-linear map [HomC(M, pκq)]◦ :
[HomC(M,EI(p))]◦ → [HomC(M,EI(q))]◦.

Given f ∈ HomC(M,M ′), we set Φ(f) = (fp)p∈I , where the map fp =
[HomC(f,EI(p))]◦ : Mp →M ′p is induced by f . It is clear that we have thus
defined an exact faithful K-linear functor Φ : K�I-Comod→ RepK(I).

Now we show that, for any M in C-Comod, the representation Φ(M) =
(Mp, qϕp)p≺q is locally nilpotent and locally finite. First we assume that
dimKM is finite. In view of the isomorphism M ∼=

⊕
p∈IMp, each vector

space Mp is of finite K-dimension, and Mp = 0 for all but a finite number of
p ∈ I. It follows that the representation Φ(M) = (Mp, qϕp)p≺q is nilpotent
of finite length.
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Next we assume that M is arbitrary. Note that if M ′ is a C-subcomodule
of M then the inclusion M ′ ⊆M induces an embedding Φ(M ′) ↪→ Φ(M) of
representations of I. Moreover, if Mβ is a directed family of finite-dimension-
al C-subcomodules of M such that M =

⋃
βMβ, then the embeddings

Φ(Mβ) ↪→ Φ(M) induce the equality Φ(M) =
⋃
β Φ(Mβ) (see [27, Sections

3–4]). Since each representation Φ(Mβ) is nilpotent of finite length, it follows
that Φ(M) is locally nilpotent and locally finite. Consequently, Φ(M) lies in
the category Rep`fK (I) = Rep`n`fK (I).

It is clear that the functor Φ is fully faithful and exact. To show that it is
dense, we note that if (Mp, qϕp)p≺q is a nilpotent representation of I of finite
length then each Mp is of finite K-dimension, and Mp = 0 for all but finitely
many p ∈ I. Then M =

⊕
p∈IMp is of finite K-dimension and one easily

shows that the linear maps qϕp induce a left C-comultiplication δM : M →
C ⊗M on M such that M is a comodule and Φ(M) = (Mp, qϕp)p≺q. Hence,
by simple limit arguments, Φ is dense, and consequently it is an equivalence
of categories (see also [30, Proposition 3.3]).

(d) By applying (4.8) to the simple comodule M = SI(p), we get Mq =
[HomC(M,EI(p))]◦ = [HomC(SI(q), EI(p))]◦ ∼= K if p = q, and Mq = 0
if p 6= q, because SI(q) is the unique simple subcomodule of the injective
comodule EI(q) and SI(p) 6∼= SI(q) for p 6= q.

(e) Applying (4.8) to the injective comodule M = EI(p), the isomor-
phism (2.6) yields Mq = HomC(M,EI(p))◦ = HomC(EI(q), EI(p))∗ ∼= Kepq
∼= K if p � q, and Mq = 0 if p 6� q. Hence (e) follows.

5. Minimal injective resolutions of simple comodules. We recall
that a coalgebra C is said to be right semiperfect if every indecomposable
injective left C-comodule is finite-dimensional. The semiperfect incidence
coalgebras are characterised as follows.

Lemma 5.1. Let I be an intervally finite poset , and C = K�I.

(a) The coalgebra C is right semiperfect if and only if , for each b ∈ I,
the left cone Eb is finite.

(b) The coalgebra C is left semiperfect if and only if , for each a ∈ I, the
right cone aD is finite.

Proof. (a) We recall from Proposition 3.7(a) that CF
tr = cI and the

bth column of cI is the vector lgthEI(b). Hence, EI(b) is finite-dimensional
if and only if lgthEI(b) has a finite number of non-zero coordinates, or
equivalently, Eb is finite (apply Proposition 4.3(e)).

(b) Since C is left semiperfect if and only if Cop is right semiperfect, and
since by Lemma 2.4, there is a coalgebra isomorphism Cop ∼= K�I∗, where
I∗ is the poset opposite to I, it follows that (b) is a consequence of (a).
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Proposition 5.2. Let I be an intervally finite poset , and C = K�I.

(a) If b ∈ I is such that the left cone Eb is of finite width then the left
C-comodule EI(b) is artinian.

(b) If I is left locally bounded then the coalgebra C is locally left artinian
and left cocoherent.

Proof. (a) Assume that b ∈ I and Eb is of finite width w(Eb), that is,
Eb contains w(Eb) pairwise incomparable elements, and w(Eb) is maximal
with this property. We visualise the cone Eb and the interval [a, b] = aD∩Eb,
with a ≺ b, as follows:

�
◦
◦...
◦

. . .

. . .

◦bEb :

�
◦ ◦

◦...
◦ ◦

◦ ◦a b[a, b] :

By Proposition 4.3(e), the left C-comodule EI(b) is identified with the
representation EI(b) = (K(b)

q , sψ
(b)
q ) of I that is constant over Eb, that is,

K
(b)
q = K if q ∈ Eb, K(b)

q = 0 if q 6∈ Eb, sψ
(b)
q : K(b)

q → K
(b)
s is the identity

map if s ≺ q ≺ b, and sψ
(b)
q = 0 otherwise.

Let X = (Xq, sψ̃
(b)
q ) be a subrepresentation of EI(b). Then Xq is either

K or zero, and sψ
(b)
q : Xq → Xs is the identity map on K or the zero map.

The assumption that X is a subrepresentation of EI(b) implies that:

• if Xa = K, then Xp = K for all p ∈ [a, b],
• if Xa = 0, then Xp = 0 for all p � a.

Consider the support

S(X) = supp(X) = {a ∈ I; Xa 6= 0}

of X as a suposet of Eb ⊆ I; and set

S−(X) = {p ∈ Eb; Xp = 0}.

Obviously, Eb = S(X) ∪ S−(X). The previous observations yield:

• if a ∈ S(X), then [a, b] ⊆ S(X),
• if a ∈ S−(X), then Ea ⊆ S−(X).

Since I is assumed to be intervally finite, the set maxS−(X) of all maximal
elements of S−(X) is finite and the subposet

S+(X) = {b} ∪ {p ∈ Eb; q ≺ p for some q ∈ maxS−(X)}

of Eb is also finite. It is easy to see that, given a subrepresentation Y ⊆ X
of X ⊆ EI(b), we have S(Y ) ⊆ S(X), S−(Y ) ⊇ S−(X), and S(Y ) = S(X)
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if and only if X = Y . It follows that if S(X) is finite then the representation
X is artinian.

Suppose that X ⊆ EI(b) with S(X) infinite. Then S(X) has a cofinite
poset disjoint union presentation

(∗) S(X) = SX ∪ IX ,
where SX is a finite poset containing b and there is no relation p � q with
p ∈ SX and q ∈ IX . If, in addition, IX is infinite with no minimal elements,
then we call (∗) a fin-infinite presentation of S(X). One such presentation
is given by setting SX = S+(X) and IX = S(X) \ S+(X).

Now we prove that, given a subrepresentation X ⊆ EI(b), every proper
subrepresentation Y ⊂ X of X is artinian. We proceed by induction on the
width w(IX) of the poset IX in a fin-infinite presentation (∗) of S(X).

Assume that w(IX) = 1, that is, IX is of the form · · · → • → • → · · · →
• → •. Assume that Y ⊂ X is a proper subrepresentation of X. Then Yp = 0
for some p ∈ S(X). If p ∈ IX , then Yq = 0 for all q � p, and S(Y ) is finite. It
follows that Y is artinian, and we are done. Assume that p ∈ SX . It follows
that S(Y ) = SY ∪ IY with SY = SX \ S−(Y ) is a fin-infinite presentation
such that w(IY ) = 1. Note also that |SY | < |SX |.

If SY = {b} then, by the preceding arguments, every proper subrepresen-
tation Y ′ of Y is artinian. If SY 6= {b} and Y ′ is a proper subrepresentation
of Y , then S(Y ′) is finite (and Y ′ is artinian) or S(Y ′) has a fin-infinite
presentation S(Y ′) = SY ′ ∪ IY ′ , where |SY ′ | < |SY | and w(IY ′) = 1. Hence,
Y ′ is artinian, by an obvious induction on |SY ′ |. It follows that Y is also
artinian, and this finishes the proof in case w(IX) = 1.

Assume that w(IX) = r ≥ 2 and the claim is proved for all Z ⊆ EI(b)
such that w(IZ) ≤ r−1 for some fin-infinite presentation of S(Z). Fix a fin-
infinite presentation (∗) for X and take a proper subrepresentation Y ⊂ X.
Then Yp = 0 for some p ∈ S(X), that is, p ∈ S−(Y ) and Ep ⊆ S−(Y ).

Assume that p ∈ IX , and let p1, . . . , ps ∈ IX be all maximal elements
in S−(Y ) ∩ IX . It follows that 1 ≤ s ≤ r, the set S ′ = [p1, b] ∪ · · · ∪ [ps, b]
is finite, and the poset IY = IX \ S ′ has no minimal elements, because IX
has none. Now we show that IY = IX \ S ′ has width smaller than r. To
prove this, we note that every p′ ∈ IY ⊂ IX is incomparable with each pj ,
because obviously the relations p1 � p′, . . . , ps � p′ do not hold, and the
relation p′ � pj ∈ S−(Y ) for some j would yield p′ ∈ S−(Y ) ∩ IY = ∅, a
contradiction. Since s ≥ 1, we have w(IY ) ≤ r − s ≤ r − 1, as claimed.

Consequently, we get a cofinite presentation S(Y ) = SY ∪ IY , where
SY = S ′. If IY is empty, then S(Y ) is finite and Y is artinian. If IY is not
empty, it is infinite of width smaller than r and the presentation S(Y ) =
SY ∪ IY is fin-infinite. Then, by induction, every proper subrepresentation
Y ′ ⊂ Y of Y is artinian. It follows that Y is artinian, and we are done. In
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particular, this shows that any proper subrepresentation Y ⊂ X such that
S(Y ) has a cofinite presentation S(Y ) = SY ∪ IY with SY = {b} is artinian.

Assume that p 6∈ IX , that is, p ∈ SX . It follows that S(Y ) = SY ∪ IY
with SY = SX \ S−(Y ) is a fin-infinite presentation such that w(IY ) ≤ r.
Note that |SY | < |SX |. If SY = {b}, then Y is artinian. If SY 6= {b} and Y ′ is
a proper subrepresentation of Y , then S(Y ′) is finite (and Y ′ is artinian) or
S(Y ′) has a fin-infinite presentation S(Y ′) = SY ′ ∪ IY ′ , where |SY ′ | < |SY |
and w(IY ′) ≤ r. Hence, Y ′ is artinian, by an obvious induction on |SY ′ |. It
follows that Y is also artinian. This finishes the proof of our claim in case
w(IX) = r.

To finish the proof of (a), assume that

EI(b) ⊇ X(1) ⊇ X(2) ⊇ · · ·
is a chain of subrepresentations of EI(b). It terminates, because otherwise
some of the inclusions is proper; then some X(m) is a proper subrepresenta-
tion of EI(b), and since by our claim,X(m) is artinian, we get a contradiction.

(b) First we consider the special case when each cone Eb has finite width.
It follows from (a) that the C-comodule EI(b) is artinian, that is, C is left
locally artinian. Hence it follows easily that C is left cocoherent (see [13,
Proposition 1.3]). The proof in the general case when I is left locally bounded
(that is, no Eb contains infinitely many pairwise incomparable elements) is
analogous. It depends on (a) extended to the case of Eb without infinitely
many pairwise incomparable elements. The argument given above adapts to
this situation.

To formulate the main result of this section, we need some notation.
Given two finite subsets I1, I2 of a poset I, we write

I2 E I1 or I1 D I2

if I1 ∩ max I2 6= ∅ and for any i2 ∈ I2 there is an i1 ∈ max I1 such that
i2 ≺ i1. We write

I2 ≺ I1
if I1 ∩ I2 = ∅, i1 6� i2 for all i1 ∈ I1 and i2 ∈ I2, and for any i2 ∈ I2 there is
an i1 ∈ I1 such that i2 ≺ i1.

Given M in C-Comod, the subposet

supp(M) = supp(lgthM) = {p ∈ I; (lgthM)p = `p(M) 6= 0}
of I is called the support of M , where `p(M) = dimK HomC(M,EI(p)) (see
[30, Proposition 2.6(b)]).

We recall from [30, Definition 4.15] that a basic coalgebra C with in-
decomposable left C-comodule decompositions socC =

⊕
j∈IC S(j) and

C =
⊕

j∈IC E(j), is a left Euler coalgebra if dimK HomC(E(i), E(j)) is finite
for all i, j ∈ IC , ExtmC (S(i), S(j)) = 0 for m sufficiently large, and every S(j)
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admits an injective resolution 0 → S(j) → E
(j)
0 → E

(j)
1 → · · · such that

E
(j)
m is socle-finite for m ≥ 0, and for each i ∈ IC there exists mi ≥ 0 such

that HomC(E(j)
r , E(i)) = 0 for all r ≥ mi.

It is shown in [30] that for any finite-dimensional comodules M and N
over a left Euler coalgebra C,

bC(lgthM, lgthN) = χC(M,N) + ∂C(M,N),

where bC is the Euler form and ∂C(M,N) ∈ Z is the defect in the sense of
[30, Definition 4.12].

Now we show that C = K�I is a left Euler coalgebra, by describing
the structure of the mininimal injective resolution of any artinian left C-
comodule.

Theorem 5.3. Let I be a left locally bounded and intervally finite poset ,
and let C = K�I with the decompositions (2.7).

(a) C is a locally left artinian and left Euler coalgebra, the left Cartan
matrix CF = ctr

I ∈ M�I (Z) has a right and a left inverse, the Euler
defect ∂C : Z(I) ×Z(I) → Z [30, (4.23)] is zero, for any M and N in
C-comod the Euler characteristic χC(M,N) is an integer , and

bC(lgthM, lgthN) = χC(M,N).

(b) Assume that N is an artinian left C-comodule and

(5.4) 0→ N
hN
0−−→ EN0

hN
1−−→ EN1

hN
2−−→ · · ·

is a minimal injective resolution of N . Given m ≥ 0, we set ΩN
m =

ImhNm ⊆ ENm and INm = supp(socΩN
m). Then

(b1) IN0 = supp(socN) and , for any m ≥ 0, INm is a finite subset
of supp(EN0 ) ⊆ I, the injective comodule ENm is socle-finite
artinian, and ENm has the decomposition

(5.5) ENm =
⊕
a∈IN

m

EI(a)d
N
ma ,

where dNmp, with p ∈ INm , is a non-zero integer if INm 6= ∅,
(b2) the following relations hold:

supp(EN0 ) ⊇ supp(EN1 ) ⊇ supp(EN2 ) ⊇ · · ·
||

∪
↑

∪
↑ · · ·

IN0 = supp(socN) D IN1 D IN2 D · · ·

(b3) for each a ∈ I such that a ≺ b for some b ∈ IN0 , there exists
ma ≥ 0 such that

• a 6� q for all q ∈ INm and m ≥ ma,
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• HomC(ENm , EI(a)) = 0 for all m ≥ ma,
• ExtmC (SI(a), N) = 0 for all m ≥ ma.

Proof. First we prove (b). Since N is artinian, socN is finite-dimensional.
Hence, the set IN0 = supp(socΩN

0 ) = supp(socN) is finite and dN0p =
dimK HomC(SI(p), socN) is finite for all p ∈ IN0 . It follows that the injec-
tive envelope EN0 of N has the form (5.5) with m = 0. Since the coalgebra
C is locally left artinian (Proposition 5.2(b)), each C-comodule E(p) is ar-
tinian, and hence so is EN0 . It follows that the C-comodule ΩN

1 = ImhN1
is artinian, and hence the comodule socΩN

1 is finite-dimensional, the set
IN1 = supp(socΩN

1 ) is finite and dN1p = dimK HomC(SI(p), socΩN
1 ) is fi-

nite for all p ∈ IN0 . It follows that the injective envelope EN1 of ΩN
1 has

the form (5.5) with m = 1, and is an artinian C-comodule. Continuing
this procedure, we show that the resolution (5.4) consists of socle-finite
artinian comodules of the form (5.5), the condition (b1) is satisfied, and
supp(EN0 ) ⊇ supp(EN1 ) ⊇ · · · .

To prove (b2), for any m ≥ 0, we consider the set

max INm = {bN1 , . . . , bNsm
}.

According to Proposition 4.3, the C-comodules ΩN
m and ENm can be viewed

as K-linear representations ΩN
m = (ΩN

m,p, qϕ
N,m
p ) and ENm = (ENm,p, qψ

N,m
p )

of I. It follows from the form of the simple representations SI(p) and the
indecomposable injective representations EI(p) that Np = EN0,p for any p ∈
max IN0 , supp(N) ⊆ supp(EN0 ), and supp(EN0 ) = EbN1 ∪ · · · ∪EbNs0 has the
form

�
...

. . .

. . .

. . .

. . .

•

•

bN1

bNs0

supp(EN0 ) :

Since ΩN
1
∼= EN0 /N , we have ΩN

1,p = 0 for all p ∈ max INm = {bN1 , . . . , bNsm
},

and hence

supp(ΩN
1 ) ⊆ supp(EN1 ) ⊆ supp(EN0 ) \max INm

= (EbN1 ∪ · · · ∪ EbNs0) \ {bN1 , . . . , bNsm
}.

It follows that IN1 = supp(socΩN
1 ) ⊆ (EbN1 ∪· · ·∪EbNs0)\{bN1 , . . . , bNsm

}, and
so IN1 E IN0 . By applying similar arguments to the artinian C-comodules
ΩN

1 ⊆ EN1 , ΩN
2 ⊆ EN2 , . . . , we get the relations · · · E IN2 E IN1 required

in (b2).
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To prove (b3), fix a ∈ I such that a ≺ b for some b ∈ IN0 . Since, by
our assumption, [a, b] is finite, we can choose b ∈ max IN0 such that [a, b]
is of maximal length; say b = bN1 and ` = `[a, b]. Assume, to the contrary,
that for each s ≥ 1 there are m ≥ s and q ∈ INm such that a � q. By (b2),
for each m ≥ 1 + `, there is a path a → a1 → · · · → am → bj for some
bj ∈ max IN0 , and we get a contradiction with the maximality of the length
of [a, b]. Hence, the first statement of (b3) follows. To prove the second,
assume to the contrary that HomC(ENm , E(a)) 6= 0 for some m ≥ ma. It
follows that there is a direct summand E(q) of ENm , with q ∈ INm , such that
HomC(E(p), E(a)) 6= 0. Thus, the formula (2.6) yields a � q, contrary to
the first statement of (b3). To prove the third statement in (b3), we note
that, by the minimality of the injective resolution (5.4) of N , the following
four conditions are equivalent:

• ExtmC (SI(a), N) = 0,
• EI(a) is a direct summand of ENm ,
• there is a monomorphism SI(a) ↪→ ΩN

m ,
• a ∈ supp(socΩN

m) = INm .

It follows that, for m ≥ ma, we have ExtmC (SI(a), N) = 0, because a 6∈ INm ,
by the first statement in (b3).

To prove (a), we recall from Propositions 2.5, 5.2, and Corollary 2.9, that
the coalgebra C is Hom-computable, locally left artinian, left cocoherent, the
left Cartan matrix CF = ctr

I ∈M�I (Z) has a right and a left inverse, and the
Euler form bC : Z(I)×Z(I) → Z is defined. By (b) applied to N = SI(b), the
minimal injective resolution of each SI(b) is socle-finite, left artinian, has
the form (5.4) and the conditions (b1)–(b3) are satisfied. To prove that C is
a left Euler coalgebra it is sufficient to show that HomC(ESI(b)

m , EI(a)) = 0
and ExtmC (SI(a), SI(b)) = 0 for m sufficiently large. This is a consequence of
(b3) if a � b. Assume now that a 6� b. It follows from Proposition 4.3 that
supp(EI(b)) = Eb. Hence, in view of (2.6), we get

HomC(ESI(b)
m , EI(a)) ∼=

⊕
q∈ISI (b)

m

HomC(EI(q), EI(a))d
SI (b)
mq = 0

for any m ≥ 0, because we assume that a 6� b. Then (b1) yields

ISI(b)
m = supp(socΩSI(b)

m ) ⊆ supp(ESI(b)
m ) ⊆ supp(ESI(b)

0 ) = Eb,

and consequently a 6� q for all q ∈ ISI(b)
m .

Moreover, ExtmC (SI(a), SI(b)) = 0 for m ≥ 0, as ExtmC (SI(a), SI(b)) 6= 0
would yield SI(a) ↪→ Ω

SI(b)
m ⊆ ESI(b)

m ; hence a ∈ supp(socΩSI(b)
m ) = I

SI(b)
m ⊆

I
SI(b)
0 = Eb, a contradiction. This finishes the proof that C is a left Euler

coalgebra.



INCIDENCE COALGEBRAS 285

Since C is a left Euler coalgebra and, by [30, Theorem 4.18],

bC(lgthM, lgthN) = χC(M,N) + ∂C(M,N)

for all M and N in C-comod, it remains to show that ∂C(M,N) = 0. Since
∂C : C-comod×C-comod→ Z is an additive function in each variable, it is
sufficient to show that ∂C(SI(a), N) = 0 for any a ∈ I.

We recall that CF = ctr
I ∈M�I (Z). Hence, in view of [30, Theorem 4.18]

and its proof, if m0 ≥ 0 is the minimal integer such that ExtjC(SI(a), N) = 0
and HomC(SI(a), ENj ) = 0 for all j ≥ m0 + 1, then, for s = 2, 3, . . . ,

∂C(SI(a), N) = (−1)m0+s · [lgthSI(a)] · (c−1
I · [lgthΩN

m0+s]
tr)

is a well defined integer. For this purpose, we recall from Proposition 2.5(d)
that, given b ∈ I, the transpose of lgthEI(b) = (cpb)p∈I ∈ Z(I) is the bth
column of cI . Then the equality c−1

I ·cI = E implies that c−1
I · [lgthEI(b)]tr

is defined. Hence, c−1
I · [lgthENj ]tr is defined for all j ∈ I, and consequently

c−1
I · [lgthΩN

m0+s]
tr is defined.

We recall from Proposition 2.12 that c−1
I = [c−ij ]i,j∈I , with c−ij defined

by (2.13). In particular, c−ij = 0 if i 6� j. Given m ≥ 0, we set lgthΩN
m =

[. . . , ωNp , . . .]p∈I . Since ωNp = 0 for p 6∈ supp(ΩN
m), we get

[lgthSI(a)] · (c−1
I · [lgthΩN

m ]tr) = ea · (c−1
I · [lgthΩN

m ]tr) =
∑
p∈I

c−ap · ωNp

=
∑

p∈supp(ΩN
m)

c−ap · ωNp .

First we assume that a 6∈ supp(EN0 ) ⊇ supp(ΩN
m). Then a 6� p and

c−ap = 0 for all p ∈ supp(ΩN
m), and hence the last sum is zero.

Next we assume that a ∈ supp(EN0 ) ⊆ Eb, that is, a � b, for some
b ∈ IN0 = supp(socEN0 ) = supp(socN). By (b3), there exists ma ≥ 0 such
that a 6� q for all q ∈ INm and m ≥ ma. It follows from (b1) and (b2) that,
for any m ≥ ma, we have a 6∈ supp(ENm) ⊇ supp(ΩN

m), that is, a 6� p and
c−ap = 0 for all p ∈ supp(ΩN

m). Hence, the above sum is again zero. This
shows that, for any a ∈ I, there exists na ≥ m0 + 1 such that

∂C(SI(a), N) = (−1)m[lgthSI(a)] · (c−1
I · [lgthΩN

m ]tr)

= (−1)m
∑

p∈supp(ΩN
m)

c−ap · ωNp = 0

for each m ≥ na. This finishes the proof of the theorem.

The following corollary is a consequence of Theorem 5.3 and its proof.

Corollary 5.6. Assume that I is a left locally bounded and intervally
finite poset , and C = K�I with the decompositions (2.7). Let N be an
artinian left C-comodule with minimal injective resolution (5.4).
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(a) For any a ∈ I, there exists ma ≥ 0 such that HomC(ENm , EI(a)) = 0
for all m ≥ ma.

(b) For any left C-comodule M of finite K-dimension there exists mM,N

≥ 0 such that ExtmC (M,N) = 0 and HomC(M,ENm) = 0 for all
m ≥ mM,N .

(c) ∂C(M,N) = 0 and b̂C(lgthM, lgthN) = χC(M,N) for any left C-
comodule M of finite K-dimension, where b̂C : K+

0 (C)×K̂+
0 (C)→ Z

is the Z-bilinear form defined in [30, (4.11)].

We finish this section by the structure theorem on finitely copresented
left K�I-comodules and the Grothendieck group K0(K�I-Comodfc) of the
category K�I-Comodfc of finitely copresented left K�I-comodules defined
in the usual way (see [1] and [27]).

Theorem 5.7. Let I be a left locally bounded and intervally finite poset.

(a) The category K�I-Comodfc is abelian and coincides with the cat-
egory of artinian left K�I-comodules. Moreover , K�I-Comodfc is
closed under taking extensions, contains K�I-comod and K�I-inj,
has enough injectives, and every comodule N in K�I-Comodfc has
an injective resolution in K�I-Comodfc.

(b) The Grothendieck group K0(K�I-Comodfc) contains the subgroup
K0(K�I-comod) + K0(K�I-inj). The group K0(K�I-inj) is free
abelian of rank |I|, the classes [EI(a)], with a ∈ I, form its free Z-
basis and the group homomorphism lgth : K0(K�I-Comodfc)→ ZI ,
[X] 7→ lgthX, restricts to the group isomorphism

lgth : K0(K�I-inj) '−→
⊕
a∈I

Z · e(a) ⊆ ZI ,

where e(a) = lgthEI(a) ∈ ZI .
(c) If I is of width at most two then

K0(K�I-Comodfc) = K0(K�I-comod) + K0(K�I-inj),

that is, the group K0(K�I-Comodfc) is generated by the classes
[SI(a)] of the simple comodules SI(a) and the classes [EI(a)] of
their injective covers EI(a), with a ∈ I. The homomorphism lgth :
K0(K�I-Comodfc)→ ZI defines the epimorphism (cf. [30, (4.8)])

(5.8) lgth : K0(K�I-Comodfc)→
⊕
a∈I

Z · ea +
⊕
a∈I

Z · e(a) ⊆ ZI .

(d) If I is of width at most two and every simple left K�I-comodule is
of finite injective dimension then K0(K�I-comod) ⊆ K0(K�I-inj)
and K0(K�I-Comodfc) = K0(K�I-inj) ∼= Z(I).
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Proof. (a) By Theorem 5.3, each K�I-comodule EI(a) is artinian. Since
every finitely copresented left K�I-comodule M is socle-finite, M embeds
in a direct sum EI(a1) ⊕ · · · ⊕ EI(am) and hence is artinian. Conversely,
every artinian left K�I-comodule M is socle-finite and therefore embeds
in E = EI(a1) ⊕ · · · ⊕ EI(am). Since E/M is artinian, it is socle-finite.
This implies that M ∈ K�I-Comodfc. Consequently, K�I-Comodfc is an
abelian category, coincides with the category of artinian K�I-comodules,
and contains K�I-comod and K�I-inj. Hence we also deduce the remaining
statements in (a).

(b) The first statement follows from (a). For the second, we note that,
according to Proposition 2.5(d), K�I is Hom-computable and hence every
artinian K�I-comodule N is computable, lgthN ∈ ZI , and we have a group
homomorphism lgth : K0(K�I-Comodfc)→ ZI (see [30, Section 2]) that re-
stricts to the group isomorphisms lgth : K0(K�I-comod) '−→ Z(I) ⊆ ZI and
lgth : K0(K�I-inj) '−→

⊕
a∈I Z · e(a) ⊆ ZI . In view of Proposition 4.3(e),

the subset {e(a)}a∈I of ZI is Z-linearly independent.
(c) Assume that M is a finitely copresented K�I-comodule. Then M is

socle-finite and there is an embedding M ↪→ E = EI(a1)⊕ · · · ⊕EI(am) for
some a1, . . . , am ∈ I.

We show by induction on m ≥ 1 that

[M ] ∈ K0(K�I-comod) + K0(K�I-inj).

Assume that m = 1 and let M be a non-zero subcomodule of EI(a),
where a = a1. Following the notation in Proposition 4.3(e) and in the proof
of Proposition 5.2(c), we note that the support of EI(a) is the left cone Ea,
and EI(a) viewed as a representation of I is a constant diagram over Ea,
with K over all j ∈ Ea, and zero over all j ∈ I \ Ea. Since M 6= 0 we have
Ma 6= 0, dimKMj ≤ 1 for all j ∈ I \ Ed, and if Md = 0 then Mj = 0 for all
j ∈ I \ Ed.

Consider the subposet IM = {j ∈ I; Mj = 0} of Ea. If IM is empty then
M = E(a) and we are done, because [M ] ∈ K0(K�I-inj). Assume that IM
is not empty. If there is a unique maximal element b ∈ IM ⊆ Ea then there
exists an exact sequence 0 → M → EI(a) → EI(b) → 0 in K�I-Comodfc,
and we are done. If there are more than one maximal element in IM then
there are precisely two, say b and b1, because we assume that I has width
at most two. It is easy to check that there exists an exact sequence

0→M → EI(a)→ K(b, b1)→ 0

in K�I-Comodfc, where

K(b, b1) = (K(b, b1)j , jϕq)q≺j
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viewed as a representation of I is defined as the constant diagram over
Eb ∪Eb1 ⊆ IM ⊆ Ea, with K(b, b1)j =K for j ∈ Eb∪Eb1, and K(b, b1)j = 0
for j ∈ I \ (Eb ∪ Eb1). Since I has width at most two, only the following
three cases can arise.

Case 0: Eb ∩ Eb1 = ∅. Then K(b, b1) is a direct sum of EI(b) and
EI(b1). Hence [M ] = [EI(a)] − [K(b, b1)] = [EI(a)] − [EI(b)] − [EI(b1)] ∈
K0(K�I-inj).

Case 1: There is a unique maximal element c in Eb ∩ Eb1. It is easy to
check that there exists an exact sequence

0→ K(b, b1)→ EI(b)⊕ EI(b1)→ EI(c)→ 0

in K�I-Comodfc. Then [K(b, b1)] = [EI(b)] + [EI(b1)] − [EI(c)] belongs to
K0(K�I-inj) and hence so does [M ] = [EI(a)]− [K(b, b1)].

Case 2: There are precisely two maximal elements c, c1 in Eb∩ Eb1. By
assumption, [c, b] ∪ [c1, b] is finite, and hence so is Eb \ Eb1 ⊂ [c, b] ∪ [c1, b].
Define the K�I-comodule N = (Nj , jκq)q≺j as the constant diagram over
Eb \ Eb1 ⊆ I, with Nj = K for every j ∈ Eb \ Eb1, and Nj = 0 for every j ∈
I \(Eb\Eb1). Obviously, N is a subcomodule of K(b, b1) lying in K�I-comod
and there exists an exact sequence

0→ N → K(b, b1)→ EI(b1)→ 0

in K�I-Comodfc. Then [K(b, b1)] = [N ]− [EI(b1)] belongs to the Grothen-
dieck group K0(K�I-comod) + K0(K�I-inj), and hence so does [M ] =
[EI(a)]− [K(b, b1)]. This completes the proof of our claim for m = 1.

Assume that m ≥ 2 and the claim is proved for m − 1. Consider the
commutative diagram

0 → E′
u−→ E

π−→ E′′ → 0
↑ ↑ ↑

0 → M ′
u′−→ M

π′−→ M ′′ → 0

with exact rows, where E′ = EI(a1), E′′ = EI(a2) ⊕ · · · ⊕ EI(am), u is
the canonical injection, π is the canonical projection, M ′ = M ∩ E′, M ′′ =
π(M) ⊆ E′′, and the vertical arrows are the canonical injections. It follows
that [M ] = [M ′] + [M ′′] and, by the induction hypothesis, we get [M ] ∈
K0(K�I-comod) + K0(K�I-inj). This completes the proof of (b).

(d) By our assumption and (a), every comodule SI(b) has a finite injective
resolution

0→ SI(b)→ E
(b)
0 → E

(b)
1 → · · · → E(b)

m → 0

and the injective comodules E(b)
0 , E

(b)
1 , . . . , E

(b)
m are socle-finite and artinian,

that is, they lie in K�I-inj. Hence, [SI(b)] ∈ K0(K�I-inj) and, in view of (b),
the statement (c) follows.
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Corollary 5.9. Let I be a poset of width at most two. If M is a subco-
module of EI(a) for some a ∈ I, then one of the following three statements
hold :

(i) inj.dimM ≤ 1, the first syzygy comodule Ω1(M) = EI(a)/M is
injective and socΩ1(M) is a direct sum of at most two simple co-
modules,

(ii) inj.dimM = 2 and there exists an exact sequence

0→ Ω1(M)→ EI(b1)⊕ EI(b2)→ EI(c)→ 0

in K�I-Comodfc with b1, b2, c ∈ I,
(iii) there exists a finite-dimensional subcomodule N of Ω1(M) such that

Ω1(M)/N is an indecomposable injective comodule.

Proof. Apply the proof of Theorem 5.7(b).

6. Bass numbers for pairs of simple K�I-comodules. Assume that
I is a left locally bounded and intervally finite poset, and C = K�I. Then
C is basic, locally left artinian, left cocoherent, and, by Theorem 5.3, every
artinian left C-comodule N admits a socle-finite artinian minimal injective
resolution (5.4).

Following [29, Section 4] (see also Bass [3] and [17]), given a simple
K�I-comodule S, an artinian left K�I-comodule N , and m ≥ 0, we define
the mth Bass number (or Betti number) µIm(S,N) of the pair (S,N) to be
the number of indecomposable direct summands isomorphic to E(S) (the
injective envelope of S) in a fixed (finite) indecomposable decomposition
(5.5) of the mth term ENm of the injective resolution (5.4). It is clear that
µIm(S,N) does not depend on the resolution (5.4), nor on the decomposition
(5.5) of ENm , by the Krull–Remak–Schmidt–Azumaya theorem. It is easy to
check that

(6.1) µIm(S,N) =
dimK ExtmK�I(S,N)

dimK EndK�IS
= dimK ExtmK�I(S,N),

because EndK�IS ∼= K (see [29, (4.24)]). IfN is a simpleK�I-comodule then
µIm(S,N) does not depend on the choice of the field K, by Proposition 2.5
and the proof of Theorem 5.3.

It follows from Corollary 5.6(a) that for each pair (S,N) there exists an
integer m0 ≥ 0 such that µIm(S,N) = 0 for all m ≥ m0.

Now we show that, for any a, b ∈ I, the Bass number µm(SI(a), SI(b))
is non-zero for at most one m ≥ 0, and then (−1)mµIm(SI(a), SI(b)) is the
entry c−ab in the ath row of the matrix c−1

I .

Theorem 6.2. Let I be a connected intervally finite poset , let C = K�I,
and let a, b ∈ I.
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(a) If c−ab = 0 then µIm(SI(a), SI(b)) = 0 for every m ≥ 0.
(b) If c−ab 6= 0 then a � b and there exists a unique integer mab ≥ 0 such

that

(6.3) µIm(SI(a), SI(b)) =
{ 0 for m 6= mab,

(−1)mc−ab for m = mab,

and mab ≤ `(a, b) (see (2.13)).
(c) If a 6� b then µIm(SI(a), SI(b)) = 0 for every m ≥ 0.

Proof. Fix b ∈ I. By Theorem 5.3 and its proof, the minimal injective
resolution

(6.4) 0→ SI(b)
h
(b)
0−−→ E

(b)
0

h
(b)
1−−→ E

(b)
1

h
(b)
2−−→ · · · h

(b)
m−−→ E(b)

m

h
(b)
m+1−−−→ E

(b)
m+1 → · · ·

of SI(b) is socle-finite, artinian, there exist pairwise disjoint finite subsets
I

(b)
0 = {b}, I(b)

1 , . . . , I
(b)
m , . . . of I and integers d(b)

am ≥ 0 such that

E
(b)
0 = EI(b), E(b)

m =
⊕
a∈I(b)m

EI(a)d
(b)
ma =

⊕
a∈I

EI(a)d
(b)
ma for m ≥ 1,

d
(b)
b0 = 1, d(b)

ma = 0 for a ∈ I \ I(b)
m , and the following four conditions are

satisfied:

(i) d
(b)
mp ≥ 1 if p ∈ I(b)

m ,
(ii) · · · E I(b)

2 E I(b)
1 E I(b)

0 = {b},
(iii) · · · ⊆ supp(E(b)

2 ) ⊆ supp(E(b)
1 ) ⊆ Eb,

(iv) for each a ∈ I with a ≺ b there exists ma ≥ 0 such that a 6� q for
all q ∈ I(b)

ma .

Note that supp(E(b)
0 ) = Eb, by Proposition 4.3(e).

Since the finite sets I(b)
0 = {b}, I(b)

1 , I
(b)
2 , . . . are pairwise disjoint, it fol-

lows that if EI(a), for some a ∈ I, is a direct summand of E(b)
m , then EI(a)

is not a direct summand of E(b)
n for any n 6= m. In other words, if d(b)

ma ≥ 1,
then d

(b)
na = 0 for all n 6= m.

We recall that µIm(SI(a), SI(b)) = d
(b)
ma. By Theorem 5.3, C is a left Euler

coalgebra, cI has a unique left inverse c−1
I , and c−1

I = (CF−1)tr. Hence c−1
I

is the transpose of the matrix CD = [d(b)
a ]a,b∈I constructed in [30, (4.22)]. It

follows that

(6.5) c−ab =
∞∑
m=0

(−1)md(b)
ma =

∞∑
m=0

(−1)mµIm(SI(a), SI(b)).

(a) Assume that c−ab = 0. Hence, d(b)
ma = 0 for all m ≥ 0, because otherwise

d
(b)
am ≥ 1 for some m0, and by the above remarks, d(b)

an = 0 for all n 6= m0.
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But this yields 0 = c−ab = (−1)m0d
(b)
m0a 6= 0, a contradiction. This shows that

µIm(SI(a), SI(b)) = d
(b)
ma = 0 for all m ≥ 0.

(b) Assume that c−ab 6= 0. Then d
(b)
maba 6= 0 for a unique integer mab ≥ 0,

and d
(b)
an = 0 for all n 6= mab, by the above observation. Hence, in view of

(6.4), c−ab = (−1)mabd
(b)
maba = (−1)mabµImab

(SI(a), SI(b)).

It remains to show that mab ≤ `(a, b). Since d(b)
maba 6= 0, E(a) is a direct

summand of E(b)
mab and therefore a ∈ I(b)

mab . Hence, in view of (ii), we have
a ∈ I

(b)
mab E · · · E I

(b)
2 E I

(b)
1 E I

(b)
0 = {b} and so there exists a chain

a ≺ amab−1 ≺ · · · ≺ a2 ≺ a1 ≺ b in [a, b] with aj ∈ I(b)
j for j = 1, . . . ,mab−1.

This shows that mab ≤ `(a, b).
(c) If a 6� b then c−ab = 0, by (2.11); hence (c) is a consequence of (a).

The preceding theorem suggests the following definition.

Definition 6.6. Let I be a connected intervally finite poset. The re-
duced length of the pair (a, b) of elements of I is the integer r`I(a, b) ≥ −1
defined by the formula

(6.7) r`I(a, b) =
{
−1 if c−ab = 0,
mab if a � b and c−ab 6= 0,

where mab ≥ 0 is the unique integer such that the equalities (6.3) hold.

By applying the definition, Proposition 4.3 and the proof of Theorem
5.3, we get:

• r`I(a, b) = 0 if and only if a = b,
• r`I(a, b) = 1 if and only if there is an arrow a→ b in the Hasse poset

of I,
• r`I(a, b) = 2 if a ≺ b, `(a, b) = 2 and [a, b] ⊆ I is not a chain,
• r`I(a, b) = −1 if either a 6� b, or a � b and [a, b] ⊆ I is a chain of

length at least two,
• if Eb = Eb1 ∪ [b1, b] for some b1 ≺ b, then r`I(a, b) = −1 for all a ≺ b1.

The following corollary is an immediate consequence of Theorem 6.2.

Corollary 6.8. Let I be a connected intervally finite poset.

(a) For any m ≥ 0 and a, b ∈ I,
µm(SI(a), SI(b)) = dimK ExtmC (SI(a), SI(b))

=
{

0 if m 6= r`I(a, b),
(−1)mc−ab if m = r`I(a, b),

(b) For any a ∈ I and m ≥ 0, the C-comodule EI(a) is a direct sum-
mand (with multiplicity µm(SI(a), SI(b))) of the mth term E

(b)
m of

the resolution (6.5) if and only if c−ab 6= 0 and m = r`I(a, b).
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Proof. Apply Theorem 6.2, the formula (6.4) and the definition of
r`I(a, b).

Example 6.9. Let I be the poset of Example 3.11. Then

r`I(0, 0) = 0, r`I(0, 1) = r`I(0, 2) = −1,
r`I(0, 3) = r`I(0, 4) = r`I(0, 5) = 1,
r`I(0, 6) = r`I(0, 7) = r`I(0, 8) = 2,
r`I(0, 9) = r`I(0, 10) = r`I(0, 11) = 3,

µI1(SI(0), SI(3)) = µI1(SI(0), SI(4)) = µI1(SI(0), SI(5))

= |c−03| = |c
−
04| = |c

−
05| = |−1| = 1,

µI2(SI(0), SI(6)) = µI2(SI(0), SI(7)) = µI2(SI(0), SI(8))

= c−06 = c−07 = c−08 = 2,

µI3(SI(0), SI(9)) = µI3(SI(0), SI(10)) = µI3(SI(0), SI(11))

= |c−09| = |c
−
0 10| = |c

−
0 11| = |−4| = 4.

More generally, µI1(SI(0), SI(b)) = |c−0b| for b = 3, 4, . . . .

Example 6.10. Let I be the infinite poset with Hasse quiver

�QI :
. . . −→ −4 −→ −2 −→ 0 3 −→ 5 −→ 7

. . . ↗↘ ↗↘ ↗↘ ↘ ↗ ↘
. . . −→ −3 −→ −1 −→ 1 −→ 2 −→ 4 −→ 6 −→ 8 −→ 9

A direct calculation shows that

r`I(9, 9) = 0,
r`I(7, 9) = r`I(8, 9) = 1,
r`I(5, 9) = r`I(6, 9) = −1,
r`I(3, 9) = r`I(4, 9) = 2,
r`I(2, 9) = 3, r`I(a, 9) = −1 for all a ≤ 1.

Remarks 6.11. (a) By applying Theorem 6.2 and Corollary 6.8, one
can describe the minimal injective resolution (6.4) of any simple left K�I-
comodule SI(b), because we easily compute the matrix c−1

I = [c−ij ]i,j∈I by
applying the recursive rules (2.11) and (2.13), and hence we can read off the
Bass numbers µIm(SI(a), SI(b)), by applying Corollary 6.8(a). However, to
perform this procedure, we need to find a simple formula for the reduced
length r`I(a, b) of any pair a, b ∈ I such that a ≺ b. We formulate this below
as an open problem.

(b) The computation of r`I(a, b) in I reduces to a finite subposet J = Jab
of I as follows. It follows from Theorem 6.2 that r`I(a, b) ≤ `(a, b) for a ≺ b.
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Hence, in view of (ii), a belongs to one of the finite sets of the chain

I(b)
m E · · · E I

(b)
2 E I(b)

1 E I(b)
0 = {b}

of subsets of supp(E(b)
0 ) = Eb, where m = `(a, b). Since I is intervally

finite, one can find a finite and intervally finite subposet J = Jab of Eb

containing the finite set I(b)
m ∪· · ·∪I(b)

2 ∪I
(b)
1 ∪I

(b)
0 = {b}. Then the restriction

functor resJ : K�I-Comod → K�J-Comod is exact, carries SI(a), SI(b) to
SJ(a), SJ(b), and the injective resolution of SI(b) to an injective resolution
of SJ(b), and HomK�I(SI(a), EI(j)) ∼= HomK�J(SJ(a), EJ(j)) for j ∈ J , so
resJ induces the isomorphisms

ExtnK�I(SI(a), SI(b)) ∼= ExtnK�J(resJSI(a), resJ(SI(b))
∼= ExtnK�J(SJ(a), SJ(b))

for n ≤ m. Here we follow the localisation technique for coalgebras studied
in [11], [19], [29], [37]. It follows that µIn(SI(a), SI(b)) = µJn(SJ(a), SJ(b)) for
1 ≤ n ≤ m, and the computation of r`I(a, b) in I reduces to the computation
of r`J(a, b) in the finite subposet J = Jab of Eb ⊆ I.

Open problems 6.12. (a) Give a combinatorial description of the re-
duced length r`I(a, b) of elements a ≺ b of I in terms of the finite inter-
val [a, b] viewed as a subposet of I. Does the length r`I(a, b) depend only
on [a, b]?

(b) Following Theorem 5.7 and Corollary 5.9, describe the structure of
the Grothendieck group K0(K�I-Comodfc), where I is a left locally bounded
and intervally finite poset of width ≥ 3. Prove that the homomorphism (5.8)
is an isomorphism.
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