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A 3G-THEOREM FOR JORDAN DOMAINS IN R2

BY

LOTFI RIAHI (Tunis)

Abstract. We prove a new 3G-Theorem for the Laplace Green function G on an
arbitrary Jordan domain D in R2. This theorem extends the recent one proved on a
Dini-smooth Jordan domain.

1. Introduction. In this paper we prove a new 3G-Theorem for the
Laplace Green function G on an arbitrary Jordan domain D in R2 which
extends the one recently proved by Selmi in [15] on a Dini-smooth Jordan
domain and improves the ones due to Chung and Zhao [4]. The 3G-Theorem
is of independent interest in potential theory. In particular, it is the key in
proving the existence and comparison of the continuous perturbed Green
functions associated with ∆ − µ, when µ is in a general class of signed
Radon measures (see [13] and [14]). We also derive other inequalities for
the Laplace Green function G on the Jordan domain D. In particular,
we provide new and simple proofs of the ones proved in the Dini-smooth
case.

In Section 2, we give some notations and we state some known results
that will be used in this work. In Section 3, we prove the inequalities for the
Laplace Green function G on the Jordan domain D.

2. Notations and known results. A domain D in R2 is called a
Jordan domain if D is bounded and ∂D consists of finitely many disjoint
closed Jordan curves.

If D1 and D2 are two domains in R2, then we say that a function Φ
from D1 onto D2 is an extended conformal mapping if Φ is a 1-1 conformal
mapping from D1 onto D2 which can be extended to a homeomorphism from
D1 onto D2.

In this paper we consider a Jordan domain D in R2 and we denote by
G the ∆-Green function on D, where ∆ is the Laplace operator. We recall
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that for all x, y ∈ D,

G(x, y) = log
1

|x− y| + w(x, y),

where w(·, y) is harmonic in D and G(z, y) = 0 for z ∈ ∂D (see [17]).
From Lemma 6.17 in [4], we know the following.

Lemma 2.1. There exists an extended conformal mapping Φ from D onto
a bounded C∞-domain Ω.

Remark 2.2. In the special case when D is Dini-smooth we know by
Theorem 3.5 in [12] that the derivative Φ′ has a continuous extension from
D onto Ω.

In the following Ω denotes a bounded C∞-domain in R2 and Φ an ex-
tended conformal mapping from D onto Ω. We denote by GΩ the ∆-Green
function on Ω. For x ∈ Ω, let δ(x) = d(x, ∂Ω), the distance from x to the
boundary ofΩ. We also denote by d(Ω) the diameter ofΩ. From Lemma 6.18
in [4] we have

Lemma 2.3. For all x, y ∈ D, we have

G(x, y) = GΩ(Φ(x), Φ(y)).

From Theorem 6.23 in [4], we also have the following estimates.

Theorem 2.4. There exists a constant C = C(Ω) > 0 such that for all
x, y ∈ Ω,

1
C

log
(

1 +
δ(x)δ(y)
|x− y|2

)
≤ GΩ(x, y) ≤ C log

(
1 +

δ(x)δ(y)
|x− y|2

)
.

In this paper we also fix a point x0 in D and we set ϕ(x) = 1∧G(x, x0)
for all x ∈ D. We put z0 = Φ(x0). For u ∈ R2, let g(u) = (log 1

|u|) ∨ 1. We
will also use the inequalities

(i) log(1 + t) ≤ t for all t ≥ 0,

(ii) log(1 + t) ≥ t/2 for all t ∈ [0, 1].

3. Inequalities for the Green function G. In this section we prove
a new 3G-Theorem on the Jordan domain D which extends the recent one
proved in the Dini-smooth case in [15] and the ones due to Chung and Zhao
in [4]. We also derive other inequalities on the Green function. We have

Theorem 3.1 (3G-Theorem). There exists a constant C = C(D) > 0
such that for all x, y, z ∈ D, we have

G(x, z)G(z, y)
G(x, y)

≤ C
[
ϕ(z)
ϕ(x)

G(x, z) +
ϕ(z)
ϕ(y)

G(z, y)
]
.

To prove Theorem 3.1, we need the following lemma.
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Lemma 3.2. There exists a constant C = C(D) > 0 such that for all
x ∈ D, we have

C−1δ(Φ(x)) ≤ ϕ(x) ≤ Cδ(Φ(x)).

Proof. In view of Lemma 2.3, it suffices to prove

C−1δ(z) ≤ 1 ∧GΩ(z, z0) ≤ Cδ(z) for all z ∈ Ω.

From Theorem 2.4, we have

C−1
(

1∧log
(

1+
δ(z)δ(z0)
|z − z0|2

))
≤ 1∧GΩ(z, z0) ≤ C

(
1∧log

(
1+

δ(z)δ(z0)
|z − z0|2

))
.

If δ(z) ≥ δ(z0)/2, then

1 ∧GΩ(z, z0) ≤ 2
δ(z0)

δ(z).(1)

If δ(z) ≤ δ(z0)/2, then by using (i) and the inequality |δ(x)−δ(y)| ≤ |x−y|,
for all x, y ∈ Ω, we have

1 ∧GΩ(z, z0) ≤ C δ(z)δ(z0)
|z − z0|2

≤ C δ(z)δ(z0)
|δ(z)− δ(z0)|2 ≤

4C
δ(z0)

δ(z).(2)

Combining (1) and (2), we obtain

1 ∧GΩ(z, z0) ≤ 4C
δ(z0)

δ(z) for all z ∈ Ω.

Now we prove the lower bound. If δ(z)δ(z0)/|z − z0|2 ≥ 1, then

1 ∧GΩ(z, z0) ≥ log 2
C
≥ log 2
Cd(Ω)

δ(z).(3)

If δ(z)δ(z0)/|z − z0|2 ≤ 1, then by using (ii), it follows that

1 ∧GΩ(z, z0) ≥ 1
2C

δ(z)δ(z0)
|z − z0|2

≥ δ(z0)
2Cd(Ω)2 δ(z).(4)

Combining (3) and (4), we obtain

1 ∧GΩ(z, z0) ≥ C ′δ(z) for all z ∈ Ω,
with C ′ = δ(z0)/2Cd(Ω)2.

Corollary 3.3. If D is Dini-smooth, then there exists a constant C =
C(D) > 0 such that for all x ∈ D, we have

C−1d(x) ≤ ϕ(x) ≤ Cd(x),

where d(x) means the distance from x to the boundary of D.

Proof. Since D is Dini-smooth, then as pointed out in Remark 2.2, Φ′ has
an extended continuous extension from D onto Ω. Let x ∈ D and z ∈ ∂D
be such that d(x) = |x− z|. We have z ∈ B(x, d(x)) ⊂ D and then

|Φ(x)− Φ(z)| ≤ |x− z| sup
D

|∇Φ| ≤ Cd(x).



4 L. RIAHI

Since Φ(z) ∈ ∂Ω it follows that

δ(Φ(x)) ≤ |Φ(x)− Φ(z)| ≤ Cd(x).

In the same way by considering supΩ |∇Φ−1| ≤ C, we obtain

d(x) ≤ Cδ(Φ(x)).

Proof of Theorem 3.1. By Lemmas 2.3 and 3.2, the inequality in Theo-
rem 3.1 is equivalent to

GΩ(x, z)GΩ(z, y)
GΩ(x, y)

≤ C
[
δ(z)
δ(x)

GΩ(x, z) +
δ(z)
δ(y)

GΩ(z, y)
]

for all x, y, z ∈ Ω. In view of Theorem 2.4, it suffices to prove

N(x, y) ≤ C[N(x, z) +N(z, y)],(5)

where

N(x, y) =
δ(x)δ(y)

log
(
1 + δ(x)δ(y)

|x−y|2
) .

By using (i), we obtain

N(x, z) +N(z, y) ≥ |x− z|2 + |z − y|2.(6)

Case 1: δ(x)δ(y)/|x− y|2 ≤ 1. From (ii), we have

N(x, y) ≤ 2|x− y|2 ≤ 4(|x− z|2 + |z − y|2).(7)

Hence the inequality (5) holds from (6) and (7) with C = 4.

Case 2: δ(x)δ(y)/|x− y|2 ≥ 1. By symmetry, we may assume |x− z| ≥
|z − y|.

Subcase 1: |x− z| ≥ 1
2 [δ(x) ∧ δ(y)]. We have

δ(x)∨ δ(y) ≤ δ(x)∧ δ(y) + |x− y| ≤ δ(x)∧ δ(y) + |x− z|+ |z− y| ≤ 4|x− z|,
and then

δ(x)δ(y) ≤ 8|x− z|2.
Hence

N(x, y) ≤ δ(x)δ(y)
log 2

≤ 8
log 2

|x− z|2.(8)

The inequality (5) holds from (6) and (8) with C = 8/log 2.

Subcase 2: |x− z| ≤ 1
2 [δ(x) ∧ δ(y)]. We have

2|x− z| ≥ |x− z|+ |z − y| ≥ |x− y|,(9)

and
|δ(z)− δ(y)| ≤ |z − y| ≤ 1

2δ(y),

which yields
1
2δ(y) ≤ δ(z) ≤ 3

2δ(y).(10)
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From (9) and (10), we obtain

δ(x)δ(z)
|x− z|2 ≤ 6

δ(x)δ(y)
|x− y|2 ,

which implies

log
(

1 +
δ(x)δ(z)
|x− z|2

)
≤ log 6 + log

(
1 +

δ(x)δ(y)
|x− y|2

)
(11)

≤
(

log 6
log 2

+ 1
)

log
(

1 +
δ(x)δ(y)
|x− y|2

)
.

Hence from (10) and (11), we get

N(x, y) ≤ 2
(

log 6
log 2

+ 1
)
N(x, z),

which implies (5) with C = 2
( log 6

log 2 + 1
)
.

Remark 3.4. In the special case when D is Dini-smooth, Theorem 3.1
and Corollary 3.3 imply Theorem 1 in [15]. The idea in [15] to prove The-
orem 1 is based on the result for the unit disk and the extended conformal
mapping Riemann theorem when D is simply connected, and by repeat-
ing the technique finitely many times, the result holds when D is multiply
connected. Here a new and a short proof based on Theorem 2.4 is given.

The following lemma extends Proposition 7 in [15] to arbitrary Jordan
domains. Here also a different and simple proof is given.

Lemma 3.5. There exists a constant C = C(D) > 0 such that for all
x, y ∈ D, we have

ϕ(y)
ϕ(x)

G(x, y) ≤ C(1 +G(x, y)).

Proof. In view of Lemma 2.3, Lemma 3.2, and Theorem 2.4, it suffices
to prove

δ(y)
δ(x)

log
(

1 +
δ(x)δ(y)
|x− y|2

)
≤ C

[
1 + log

(
1 +

δ(x)δ(y)
|x− y|2

)]
(12)

for all x, y ∈ Ω.
If δ(y) ≤ 2δ(x), then (12) holds with C = 2.
If δ(y) ≥ 2δ(x), then |x− y| ≥ δ(y)− δ(x) ≥ 1

2δ(y). Hence by using (i),
we obtain

δ(y)
δ(x)

log
(

1 +
δ(x)δ(y)
|x− y|2

)
≤ δ(y)2

|x− y|2 ≤ 4,

and (12) holds with C = 4.



6 L. RIAHI

Lemma 3.6. There exists a constant C = C(D) > 0 such that for all
x, y ∈ D, we have

1 +G(x, y) ≤ Cg(x− y).

Proof. For all x, y ∈ D, we have

G(x, y) = log
1

|x− y| + w(x, y),

where w(·, y) is harmonic in D and G(z, y) = 0 for z ∈ ∂D. Hence, for
z ∈ ∂D we have

w(z, y) = log |z − y| ≤ log(d(D)),

and by the maximum principle, we obtain w(x, y) ≤ log(d(D)) for all
x, y ∈ D. This yields

G(x, y) ≤ log
1

|x− y| + log(d(D)),

and the assertion follows.

From Theorem 3.1 and Lemmas 3.5 and 3.6, we derive Theorems 6.24
and 6.15 (3G-Theorems) proved by Chung and Zhao in [4].

Corollary 3.7. There exists a constant C = C(D) > 0 such that for
all x, y, z ∈ D, we have

G(x, z)G(z, y)
G(x, y)

≤ C[1 +G(x, z) +G(z, y)].

Corollary 3.8. There exists a constant C = C(D) > 0 such that for
all x, y, z ∈ D, we have

G(x, z)G(z, y)
G(x, y)

≤ C[g(x− z) + g(z − y)].

Consequences. As shown for domains in Rn with n ≥ 3 (see [13]
and [14]), the 3G-inequality allows us to prove the existence and uniqueness
of the continuous Green function Gµ for the Schrödinger operator ∆−µ on
D and its comparability to G when µ is in a class of signed Radon mea-
sures more general than the well known Kato class introduced in [2] and
later used by several authors to study the potential theory of ∆− V (x) = 0
(see [3] and [9]). The comparability result also covers the bounded and small
perturbations studied in [11], [10], and [1], and as an important consequence
it implies that ∆− µ and ∆ have the same potential theory when µ is in a
large class of signed Radon measures (see also [5]–[8] and [16]).
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