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Abstract. A finite-state stationary process is called (one- or two-sided) super-K if
its (one- or two-sided) super-tail field—generated by keeping track of (initial or central)
symbol counts as well as of arbitrarily remote names—is trivial. We prove that for every
process (α, T ) which has a direct Bernoulli factor there is a generating partition β whose
one-sided super-tail equals the usual one-sided tail of β. Consequently, every K-process
with a direct Bernoulli factor has a one-sided super-K generator. (This partially answers
a question of Petersen and Schmidt.)

1. Introduction and statement of results. A bilateral finite-state
ergodic stationary process . . . , x−1, x0, x1, . . . corresponds to an invertible
measure-preserving transformation T : X → X on a nonatomic Lebesgue
probability space (X,B, µ) and a finite measurable partition α={A1, . . . , Ar}
ofX according to the relationship xi = j ∈ {1, . . . , r} if and only if T ix ∈ Aj ,
i ∈ Z. In a convenient notation, we will also write α(T ix) = Aj , or even
α(T ix) = j. With such a process are associated the tail fields

T +(α) =
⋂

n≥0

B{xn, xn+1, . . .},

T −(α) =
⋂

n≥0

B{x−n, x−n−1, . . .},(1.1)

T ±(α) =
⋂

n≥0

B{xj : |j| ≥ n}.

The system (X,B, µ, T ) is called K or Kolmogorov if for every partition α
the tail field T +(α) is trivial, i.e. consists only of sets of measure 0 or 1. For
a unilateral stationary process x1, x2, . . . corresponding to an endomorphism
of (X,B, µ), this is equivalent to ergodicity of the measure µ for the action of
the group Γ of changes to finitely many coordinates of x (or the odometer),
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and to ergodicity of µ for the Gibbs equivalence relation for which two uni-
lateral sequences on the finite alphabet {1, . . . , r} are equivalent if and only
if they differ in only finitely many coordinates. The Kolmogorov Zero-One
Law states that independent identically distributed (i.i.d.) processes have
this property; in fact, bilateral i.i.d. processes also have trivial two-sided
tail fields. We deal mainly with bilateral processes and reserve the terms
“one-sided” and “two-sided” to refer to tail fields.

We now consider some finer tail fields, which keep track not only of which
cell of α is entered at times arbitrarily far out, but also of how many times
each cell of α has been entered up to that time. For this purpose we use the
vectors vmn (x) ∈ {0, 1, . . .}r defined by

vmn (x)(i) = #{j : n ≤ j ≤ m and xj ∈ Ai}.(1.2)

We will also abbreviate vm = vm0 , and for any set of coordinates H, let

vH(x)(i) = #{j ∈ H : xj ∈ Ai}.(1.3)

Now define the super-tail fields by

F+(α) =
⋂

n≥0

B{vn, vn+1, . . .},

F−(α) =
⋂

n≥0

B{v0
−n, v

0
−n−1, . . .},(1.4)

F±(α) =
⋂

n≥0

B{vj−j : j ≥ n}.

Evidently also
F+(α) =

⋂

n≥0

B{vn, xn+1, xn+2, . . .},(1.5)

and similarly in the other cases. These are special cases of cocycle-generated
tail fields determined by a function φ from {1, . . . , r} to a group G: if in the
above definitions vmn (x) is replaced by

v(φ)mn (x) = φ(xm) · · ·φ(xn),(1.6)

then the resulting fields are denoted F+
φ , F−φ , and F±φ , respectively. (The

special case G = Zr and φ(j) = ej, the jth standard basis vector, produces
the previous super-tail fields.)

We will call the process (α, T ) super-K+ in case F+(α) is trivial; super-
K− and super-K± are defined analogously. This idea was introduced in [7],
where it was also noted that triviality of the appropriate super-tail field cor-
responds to ergodicity under the group Π of permutations of finitely many
coordinates, and, in the unilateral case, to ergodicity of the adic transfor-
mation. There it was proved that many Gibbs measures, including mixing
Markov measures, are super-K±—more generally, many Gibbs measures are
quasi-invariant (nonsingular) and ergodic for countable equivalence relations
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on subshifts of finite type generated by certain kinds of cocycles taking val-
ues in discrete groups.

The super-K property on its face depends on the choice of the partition,
unlike the K property. In [7] the question was raised whether every K-
system has a super-K generator. In the one-sided case, when there is a
(positive-entropy) direct Bernoulli factor, we can answer this affirmatively.

Theorem 1.1. Let T : X → X be a m.p.t. on a nonatomic Lebesgue
probability space and α a generating finite measurable partition of X. Sup-
pose that the process (α, T ) is isomorphic to the direct product of a positive-
entropy Bernoulli system (B, σ) and another system (Y, S). Then there is a
generating partition β for (X,T ) such that F+(β) = T +(β) = T +(α). Thus
every K process with a direct Bernoulli factor has a super-K+ generator.

We remark that the Ornstein–ShieldsK-automorphisms [5], the Feldman
non-loosely-Bernoulli K-automorphisms [1], Kalikow’s T, T−1 example [4],
and the examples produced by Hoffman’s K counterexample machine [3] all
have direct Bernoulli factors.

Our investigation actually began with the two-sided case, when we no-
ticed how to recode any process (α, T ) to an isomorphic one (β, T ) with
two-sided super-tail F±(β) equal to the ordinary two-sided tail T ±(α). Soon
this was obviated by a result of Schmidt [8], according to which α itself al-
ready has this property—and in fact T ±(α) = F±φ (α) for one-to-one φ taking
values in any countable discrete group with finite conjugacy classes.

There are also some results that go in the opposite direction, in that
they show how to recode a process so as to produce an isomorphic one with
a highly nontrivial tail field. According to a striking result of Ornstein and
Weiss ([6], see also [2]), every process has an isomorphic recoding for which
the two-sided tail field T ± equals B; thus even if the original process is K
(hence “completely nondeterministic”, at least in the one-sided sense), it
can be recoded to an isomorphic process (which is of course still K) which
is “two-sided deterministic”:

Theorem 1.2 ([6]). Given a m.p.t. T : X→X on a nonatomic Lebesgue
probability space and a finite measurable partition α of X, there is a refine-
ment β of α such that T ±(β) ⊃ α. Thus if α is a generator , (β, T ) is
isomorphic to (α, T ) and two-sided deterministic, in that T ±(β) = B.

We can establish a one-sided analogue of this for the super-tails. (Of
course a one-sided version involving the ordinary tails is not possible, since
for K-processes, T +(β) will be trivial for every β.)

Proposition 1.3. Given a m.p.t. T : X → X on a nonatomic Lebesgue
probability space and a finite measurable partition α of X, there is a refine-
ment β of α such that F+(β) ⊃ α.
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Proof. This proof is actually very easy: we just take β = α ∨ T−1α, the
recoding of the process (α, T ) by 2-blocks (α 2-names).

Let us see that F+(β) ⊃ α. Consider the finite directed graph whose
vertices are the elements Ai of α and for which there is an edge from Ai to
Aj if and only if µ(Ai ∩ T−1Aj) > 0; these edges are naturally labeled by,
indeed correspond to, the elements of β. We now claim that if we know, for
a point x and some possibly very large n, the β-symbol count vn(x) from
time 0 up to time n, and the β-symbol xn at time n, then we can determine
the cell of α to which x belongs (at time 0).

From looking at vm(x) we know how many times each edge of the graph
has been traversed from time 0 up to time n, and hence we know how many
times each vertex has been entered as well as how many times it has been
left. We also know the vertex at which the path terminates. Thus there are
two cases to consider. Either there is one vertex which has been departed
from one more time than it has been entered, and this must then be the
initial vertex; or else each vertex has been entered the same number of times
as it has been left, and then the initial vertex must be the same as the final
one.

Remark 1.4. Unlike the situation with the ordinary tails, for the fine
tails we can have F+(β) ) F±(β): if α is the time-0 partition of a Bernoulli
shift and β = α ∨ T−1α, then F+(β) ⊃ α by the preceding proposition,
while F±(β) is trivial [7].

2. Proof of Theorem 1.1

2.1. Stability of probabilities of probable count vectors. A key ingredient
of the proof is the asymptotic local flatness of the symbol count distribution
for Bernoulli shifts (a strong version of the Hewitt–Savage Zero-One Law),
as expressed in the following lemma, in which |s| = |s1|+· · ·+|sq| denotes the
L1 norm of a vector s ∈ Zq and s · 1 = s1 + · · ·+ sq. The lemma asserts that
a high-probability set of points ω have accumulated symbol count vectors
vn0 (ω) whose probabilities are fairly stable when the vector is translated by
a bounded amount.

Lemma 2.1. Fix a Bernoulli system B(p1, . . . , pq) with shift-invariant
probability measure P and let L ∈ N. Given ε > 0 there is N1 ∈ N such that
if n ≥ N1 then

(2.1) P

{
ω : for all s ∈ Zq with |s| ≤ L,

∣∣∣∣
P{ξ : vn0 (ξ) = vn0 (ω)}

P{ξ : vn+s·1
0 (ξ) = vn0 (ω) + s}

− 1

∣∣∣∣ < ε

}
> 1− ε.
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Proof. The distribution of the symbol count vector vn0 is given by the
multinomial probabilities

P{ξ : vn0 (ξ) = (t1, . . . , tq)} =
(n+ 1)!
t1! · · · tq!

pt11 · · · p
tq
q ,(2.2)

(ti ≥ 0, t1 + . . .+ tq = n + 1). Assume for convenience that all si ≥ 0 and
define

a0 = 0, aj =
j∑

i=1

si for j = 1, . . . , q.(2.3)

Then, abbreviating vj = vn0 (ω)(j) for j = 1, . . . , q, the quotient of the prob-
abilities appearing in the statement of the lemma is

q∏

j=1

vj + sj
(n+ 1) + aj

vj + sj − 1
(n+ 1) + aj − 1

· · · vj + 1
(n+ 1) + aj−1 + 1

1
p
sj
j

.(2.4)

Now the result follows from the Weak Law of Large Numbers for Bernoulli
processes, according to which for large enough n and for all ω not in a set
of small measure, each vj/n ≈ pj . The case when not necessarily all si ≥ 0
is an immediate consequence.

2.2. Asymptotic conditional independence. We would like to construct
towers and code within them, taking precautions against the possible per-
sistence of symbol count information from the beginnings of names. For
example, even in an aperiodic subshift of finite type there might exist sym-
bols a and b for which one cannot find a symbol z and blocks U and V such
that the blocks aUz and bV z occur in the subshift and are permutations
of one another. In such a case, knowing the symbol count vn0 and xn could
determine x0, thereby forcing nontriviality of F+ (see §4 of [7]). We want
to recode so that this sort of thing cannot happen.

We want to construct a finite partition β which generates under T the
same measure-preserving system as (α, T ) and such that F+(β) = T +(β) =
T +(α). Since β and α generate the same process, each has tail equal to the
Pinsker algebra P(T ) of that process: T +(β) = T +(α) = P(T ). So we need
to show that F+(β) ⊂ T +(β).

Recall that for finite partitions γ and η,

γ ⊥ε η means
∑

G∈γ,N∈η
|µ(G ∩N)− µ(G)µ(N)| < ε.(2.5)

For σ-algebras G and N ,

G ⊥ε N means that γ ⊥ε η for every finite partition γ by G-meas-(2.6)

urable sets and η by N -measurable sets;
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equivalently (perhaps with a slightly different ε),

G ⊥ε N means |H(G) +H(N )−H(G ∨ N )| < ε.(2.7)

Definitions when we condition on a third σ-algebra F are analogous:

G ⊥εF N means |H(γ | F) +H(η | F)−H(γ ∨ η | F)| < ε(2.8)

for all finite G-measurable partitions γ and finite N -measurable partitions η.
Definitions employing conditional expectations or measure disintegrations
over F can also be stated, e.g. for all finite partitions γ and η as above,∑

G∈γ
N∈η

‖E(χG | F)E(χN | F)− E(χGχN | F)‖1 < ε.(2.9)

Write vn0 (β) for the partition generated by the β-symbol counts vn0 (x) and,
as usual, βmn =

∨m
k=n T

−kβ.

Lemma 2.2. Suppose that a generating partition β has the following
asymptotic independence property :

(2.10) given k ∈ N and ε > 0, there is N ∈ N such that n ≥ N implies

that βk−k ⊥εβ∞n vn0 (β),

or equivalently ,

H(vn0 (β) |β∞n )−H(vn0 (β) |βk−k ∨ β∞n ) < ε if n ≥ N.(2.11)

Then

F+(β) ⊂ P(T ) = T +(β).(2.12)

Proof. It is known (see [9]) that every system is relatively K over its
Pinsker factor:

if n ≥ N is large enough then βk−k ⊥εP(T ) β
∞
n .(2.13)

This is true because β∞n ↘ P(T ) implies that for large enough n,

H(βk−k | P)−H(βk−k |β∞n ∨ P) < ε.(2.14)

Combining (2.10) and (2.13), for large enough n we will have

βk−k ⊥2ε
P(T ) (β∞n ∨ vn0 (β)).(2.15)

Since

F+(β) =
∞⋂

n=0

(β∞n ∨ vn0 (β)),(2.16)

this latter statement implies that

β∞−∞ ⊥P(T ) F+(β),(2.17)

and hence

F+(β) ⊂ P(T ) = T +(β).(2.18)

Thus our goal is produce a partition β that satisfies (2.10).
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2.3. New alphabets. By hypothesis the system (X,T, µ) has a positive-
entropy direct Bernoulli factor (B, σ, P ), so that

(X,T, µ) ≈ (Y, S, ν)× (B, σ, P ).(2.19)

Let γ be a finite generating partition for (Y, S) and % the (independent)
time-0 partition of the Bernoulli factor (B, σ). Trying to avoid unnecessarily
complicated notation, we regard elements of a partition, which are sets, also
as symbols comprising the alphabet of the associated symbolic system; and
usually the alphabets will be {1, . . . , n} for some n ∈ N. Thus each x ∈ X
is a string (xk) = (yk, ωk), k ∈ Z, with yk ∈ γ and ωk ∈ % for all k. We
denote the length of any block C by |C|, and for a sequence x and an
interval I = [i, i+1, . . . , i+ l], we denote the length of I by |I| and the block
xixi+1 . . . xi+l by xI .

First we need a new alphabet, β0 = {1, . . . , q}, for Y , with q large enough
that, with a value of t to be determined below, for all i = 0, 1, . . . , q|%| − 1
each γ-name of length i + tq|%| can be matched to a different permutation
of a single β0-name E = (1t 2t . . . qt)|%| in which each symbol appears the
same number of times. And we will not use arbitrary permutations of E, but
concatenations of permutations of selected sub-blocks, matching γ-names to
β0-names of the form

E′ = (1t 2t . . . qt)′(1t 2t . . . qt)′ . . . (1t 2t . . . qt)′,(2.20)

where the primes indicate arbitrary, possibly different, permutations of the
blocks to which they are applied.

Using Stirling’s Formula, for large t a block of length qt on t of each of
q symbols has on the order of q(qt+1/2)t(1−q)/2 permutations. Thus if q and
t are large enough (say choose q � 4|γ × %| and then t very large), we will
have

(qqt+1/2t(1−q)/2)|%| > |γ × %|(t+1)q|%|,(2.21)

which is what we will need to be able to set up our one-to-one correspon-
dences between γ-blocks and special β0-blocks.

Our new alphabet for the system Y ×B will be

β = (β0 × %) ∪ {(0, 0)i = (0i, 0i) : i = 0, 1, . . . , q|%| − 1}.(2.22)

The symbols (0, 0)i are fillers for residual blocks after “free intervals” are
cut into sub-blocks of length q|%|.

2.4. Correspondences between blocks. Having fixed a new alphabet β0 =
{1, . . . , q} for Y with q large enough, we set up two correspondences.

First, denote by F1 the family of all β0-blocks

E′ = [τ1(1t 2t . . . qt)][τ2(1t 2t . . . qt)] . . . [τ|%|(1
t 2t . . . qt)],(2.23)

where τ1, . . . , τ|%| are permutations acting on blocks of length tq. We have
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chosen q and t large enough that there exists a one-to-one function

φ1 :
q|%|−1⋃

i=0

γi+tq|%| → F1.(2.24)

Next, let us enumerate the alphabet of β0× % as {g0, . . . , gq|%|−1}, define

H = g0 . . . gq|%|−1,(2.25)

so that H contains exactly one of each β0 × %-symbol, and let F2 denote
the set of all permutations of H. Our choice of q is large enough that there
exists a one-to-one function

φ2 : (γ × %)q|%| → F2.(2.26)

2.5. The marker block in B. We form a special marker block W over
the alphabet % of the Bernoulli factor B:

W = 1tq 2tq . . . |%|tq.(2.27)

Notice that this block has length |W | = tq|%| and that it consists of a
concatenation of strings of consecutive repetitions, tq times, of the symbols
of the %-alphabet in order. In particular, W cannot overlap itself in any
sequence in B (no prefix of W equals any suffix of W ).

We use the marker W to decompose the index set Z into intervals of
two kinds. An interval of coordinates [j, . . . , j + l(W ) − 1] across which W
appears in ω ∈ B will be called a marked interval, and the remaining places
[j + l(W ), . . . , j + m − 1] before the next appearance of W will be called
a free interval. Numbering these intervals consecutively so that M0 is the
first marked interval that includes nonnegative numbers and Fj is the free
interval immediately to the right of Mj for all j, we have Z =

⋃
j(Mj ∪Fj).

2.6. The idea behind the coding. Our coding will be accomplished by
working on each Mj ∪ Fj separately. On Mj the B-coordinates will not
be changed, and the Y -coordinates will be changed by using φ1 (taking
into account also a few (i) extra entries in Y ), in such a way that every
β0×%-symbol appears the same number of times across Mj—see Property 1
below. The free interval Fj is cut into subintervals of length q|%|, on each
of which the γ × %-name is changed by applying φ2, thereby changing both
the Y and B entries. If |Fj| > 0, we add one extra β0 × %-symbol, gi, with
i = |Fj| mod q|%|, plus enough extra filler symbols (0i, 0i) to make up the
rest of |Fj | (see Property 2). Note that the extra symbol gi depends only
on the length of Fj , which is determined by the appearances of W in the
sequence ω in B.

The two different coding mechanisms just described work as follows. Any
information residing in β-symbol counts across marked intervals is removed
by making the β0 × %-symbol count vector across each marked interval a
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constant vector. Across a union of free intervals the β0×%-symbol count has
for excess from a constant vector (multiple of (1, 1, . . . , 1)) a function of a
finite-state Bernoulli process (W ′, σ′W , P

′
W ) (described in the next section),

and the count of the filler symbols (0, 0)i is also a function of this process.
This will allow us to show that the pair symbol count across a long interval
that is an exact union of marked and free intervals is asymptotically flat.

If we start and stop our symbol counting at times interior to marked
or free intervals, we will obtain a (pair) β-symbol count that is a vector
translate of a symbol count across a complete union of marked and free
intervals Mj ∪ Fj . With high probability, W appears with bounded gap,
so the norm of this translate is bounded, as is the norm of the translate
for the corresponding symbol counts of the finite-state Bernoulli process
(W ′, σ′W , P

′
W ), and Lemma 2.1 applies. Thus as long as

∑ |Fj| is sufficiently
large, which will be the case if we have hit W enough times, i.e. if we are
summing over a long enough interval of coordinates, the distribution of all
such symbol counts will be approximately flat.

2.7. The countable-alphabet process in the gaps and its clumping. In the
Bernoulli factor (B, σ, P ), the first-return map σW : [W ] → [W ] to the
cylinder set [W ], together with the normalized measure PW = P/P [W ], is
isomorphic to a Bernoulli system on the countable alphabet %W consist-
ing of all %-blocks WU , with U a %-block (possibly the empty one ε) not
containing W . This can be checked as follows. Write each ω ∈ [W ] as

ω = . . .WωF−1 .WωF0WωF1WωF2 . . . ,(2.28)

with each WωFj ∈ %W , so that

σWω = . . .WωF0 .WωF1WωF2WωF3 . . . .(2.29)

Recall that W does not overlap itself, so there is no confusion in this rep-
resentation. The probability of a symbol WUi in this first-return system is
P (WUiW )/P (W )=P (WUi), while the probability of a blockWUi1 . . .WUir
is PW (WUi1 . . .WUirW ) =

∏r
i=1 P (WUi), so the independence of cylinder

sets with nonoverlapping coordinate ranges follows.
We define a surjective map ψ : %W → β0 × %, i.e. a clumping of this

countable alphabet onto the main part β0 × % of the finite alphabet β, as
follows. We have fixed a numbering β0 × % = {gi : i = 0, . . . , q|%| − 1}. Let
ψ(Wε) = (0, 0)0. For each nonempty %-block V that does not contain W ,
let

ψ(WV ) = gi, with i ≡ |V | mod q|%|.(2.30)

Define Ψ(ω)0 = ψ(WωF0). Then Ψ determines a factor map from the count-
able-state Bernoulli system ([W ], σW , PW ) onto a finite-state Bernoulli sys-
tem (W ′, σ′W , P

′
W ).
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For a free interval F , the extra symbol that will occur in the recoding of
the string (y, ω)F will then be ψ(WωF ) (for F 6= ε).

2.8. The recoding and the new partition β. Consider MjFj as above,
a marked interval followed by a free interval, and let us suppress the sub-
script j. Let d = |F |/(q|%|) and i = |F | mod q|%|. Regarding F as a string
of integers (as well as an interval), factor F into a concatenation F =
F0F1 . . . Fd, with |F0| = i and |Fr| = q|%| for r = 1, . . . , d. Define g0 (00, 00)−1

= ε, the empty block. Our recoding of the γ×%-block acrossMF to a β-block
across MF is defined by

(2.31) xMxF = (yM , ωM )(yF0 , ωF0) (yF1 , ωF1) . . . (yFd , ωFd)

→ [φ1(yMyF0), ωM)][gi (0i, 0i)i−1][φ2(yF1 , ωF1)] . . . [φ2(yFd , ωFd)].

Applying this procedure on each MjFj defines a map

φ : (γ × %)Z → βZ, φ(y, ω) = (ỹ, ω̃).(2.32)

Note that no new appearances of W can be created in the B coordinate,
and, as stated earlier, previous appearances ofW are preserved. The symbols
(0, 0)0 and (0, 0)1 are not used, but that is all right.

The recoding is shift-invariant and determines a partition β ofX = Y ×B
according to the time-0 symbol. The original γ × %-sequence is recoverable
from the β-coding since our correspondences φ1 and φ2 are one-to-one, so β
generates the full σ-algebra of Y ×B under S × σ.

2.9. Properties of the recoded system. The recoding has been constructed
so as to have the following properties:

Property 1. Across each marked interval M in a recoded point (ỹ, ω̃),
each β-symbol appears the same number r of times, except for the special
symbols (0, 0)i, which do not appear at all.

Property 2. Across each free interval F in a recoded point (ỹ, ω̃),
each β-symbol appears the same number r′(|F |) of times—except that if
|F | > 0 and i = |F | mod |%|q, then the special symbol ψ(WωF ) = gi ap-
pears r′(|F |) + 1 times and the filler symbol (0, 0)i appears i− 1 times.

For a sequence ω ∈ B = %Z and an interval [k, k′] ⊂ Z, denote by
vψ[k,k′](ω) the vector that counts the W ′-symbols ψ(ωF ) as F runs through
the free subintervals of [k, k′].

Property 3. Consider a long interval [k, k′] ⊂ Z and points x = (y, ω)
for which ω[k,k′] begins and ends with the marker W . Each β-symbol count
v[k,k′](x) (which is actually a function only of ω) uniquely determines the

W ′-symbol count vψ[k,k′](ω), and vice versa.
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Proof. Given a β-symbol count v across this interval, for each i = 1, . . . ,
q|%| − 1 the number v((0, 0)i) of appearances of the filler symbol (0, 0)i is a
multiple of i−1, and for i = 2, . . . , q|%|−1 the quotient ni = v((0, 0)i)/(i−1)
gives the number of times that gi was used as the “extra” symbol in re-
coding x[k,k′] (these entries constitute what we call the “excess vector”).
Thus the difference b(i) = v[k,k′](x)(gi)− v((0, 0)i)/(i− 1) is constant in i =
2, . . . , q|%|−1. Moreover, g0 is never used as an “extra” symbol, so automat-
ically also v(g0) = b(i), i = 2, . . . , q|%| − 1. If we also define b(1) to take this
same constant value, then the vector b gives the constant “base” count of the
β0×%-symbols which does not include the special symbols ψ(ωF ). Therefore

v(gi)− b(i) = vψ[k,k′](ω)(i), i = 0, . . . , q|%| − 1,(2.33)

the count of the “extra” symbols ψ(ωF ) over all free subintervals F of [k, k′].
Conversely, a symbol count vψ[k,k′](ω) of the ψ(ωF ) over all free subinter-

vals F of [k, k′] specifies the number ni of times that each length congruence
class i = 1, . . . , q|%|−1 mod q|%| appears among the nonempty free intervals,
equivalently the number of each “extra” gi, i = 1, . . . , q|%|−1. The ni are the
entries in the corresponding “excess” β-symbol count vector, and they also
determine the number ni(i− 1) of appearances of each filler symbol (0, 0)i,
i = 1, . . . , q|%|−1. The remaining entries in the β-symbol count v[k,k′](x) are
apportioned equally among all the β0 × %-symbols (the number of entries
still undetermined being necessarily divisible by q|%|).

Property 4. Translation of a β-symbol count vector v by at most L
in each entry produces a translation in the corresponding W ′-symbol count
vector f(v) by at most 3L in each entry. (In this setting it is more convenient
to use the L∞ norm rather than the equivalent L1 norm on Zd in connection
with Lemma 2.1.)

2.10. How to verify asymptotic conditional independence. Now we will
verify that the property (2.10) holds for β. Let ε > 0, δ � ε, and first of
all choose K such that the columns of the return tower over W that have
height less than or equal to K cover all but δ of X:

if BK = π−1
B

[ K⋃

j=0

σ−jW ∩
K⋃

j=0

σjW
]
, then µ(BK) > 1− δ.(2.34)

Apply Lemma 2.1 to the Bernoulli process (W ′, σ′W , P
′
W ) (the clumping

of blocks across free intervals) with the translate bound L = 2K + 2k+ 1 to
find an N1 such that if n ≥ N1, then most symbol count vectors (i.e., coming
from a set B(δ, L) of ω ∈ B of measure greater than 1 − δ) resulting from
any n observations ψ(WωF0), . . . , ψ(WωFn−1) have very nearly the same
probability (their quotient is within a distance δ of 1) as their translates by
vectors of size no more than 3L.
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Choose N large enough to ensure that for most x ∈ X (all but a set of
measure less than δ), within the time interval [0, N ] the marker W has been
hit at least N1 times, in fact that we have encountered at least N1 nonempty
free intervals. Let n ≥ N .

Notation. 1. Abbreviate

A = vn0 (β), B = βk−k, C = β∞n .(2.35)

2. Write a ≈δ b to mean that |a/b − 1| < δ, equivalently (for a, b > 0)
(1 − δ)b < a < (1 + δ)b (a form well adapted for summing over a
and b).

Formula (2.10) will follow if we can show that conditioned on C most
symbol counts have probabilities that are stable under small changes of the
symbols being fixed by B and C. For this purpose we use Rokhlin’s theory
of Lebesgue spaces, complete sub-σ-algebras, and the corresponding factor
spaces or partitions and disintegrations of measures. We want to show that
for each cell C of the (Rokhlin) partition corresponding to the σ-algebra C,
with corresponding disintegrated measure µC , for a set of cells A of A form-
ing a set of measure greater than 1− δ, for any cell R ∈ B,

µC(A | R) ≈δ µC(A).(2.36)

2.11. Fixing some more coordinates. We have to refine the partitions
involved in order to keep track of the various possible strings that can appear
between time k and the time u1 of the next entrance to W , as well as strings
starting at the time ul of the last complete appearance of W before time
n and ending at time n − 1. (These “edge” coordinates [k + 1, u1 − 1] ∪
[ul + l(W ) + 1, n− 1] may include parts of marked intervals as well as free
intervals.)

Define
u1(ω) = inf{i > k : σiω ∈W},
ul(ω) = sup{i ≤ n− l(W ) : σiω ∈W}.

(2.37)

Fix k1 ∈ (k, k +K] and kl ∈ [n− l(W )−K,n− l(W )] and let

Ωk1,kl = BK ∩ π−1
B {ω : u1(ω) = k1, ul(ω) = kl},

Dk1,kl = βk1−1
k+1 ∨ βn−1

kl+l(W )+1.
(2.38)

Lemma 2.3. To prove formula (2.10) (A ⊥εC B), it is enough to show
that there is δ > 0 such that for each cell C of C, for a large-measure set of
atoms A of A, for each k1 and kl and each choice of cells D1,D2 ∈ Dk1,kl ,
and R1, R2 ∈ B,

µC(A |Ωk1,kl ∩R1 ∩D1) ≈δ µC(A |Ωk1,kl ∩R2 ∩D2).(2.39)
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Proof. From the hypothesis (2.39) it follows that

(2.40) µC(A ∩Ωk1,kl ∩R ∩D) ≈δ µC(A)µC(Ωk1,kl ∩R ∩D)

for all R,D.

Sum on D ∈ Dk1,kl to conclude that for most A ∈ A and all R ∈ B,

µC(A ∩Ωk1,kl ∩R) ≈δ µC(A)µC(Ωk1,kl ∩R).(2.41)

Finally, sum over all k1, kl to conclude that for most A ∈ A and all R ∈ B,

µC(A ∩R) ≈δ µC(A)µC(R),(2.42)

and hence (if δ is small enough and “most” is enough)

A ⊥εC B.(2.43)

2.12. Proof of formula (2.39). The key idea here is that changing the
edge conditions (symbol counts over the intervals [k+ 1, u1− 1]∪ [ul + l(W )
+ 1, n− 1]) translates interior symbol counts (over times [u1, ul + |W |]).

We define a set of “good points” as follows. The good points x are among
those in the large-probability set BK whose images under πB hit the set W
in the Bernoulli factor B within K steps in both forward and backward time
and very many times (way more than N1) during the interval from 0 to n.
We also demand that x ∈ π−1

B B(δ, L), so that ω = πBx has a good (stable)
symbol count for the clumped process across free intervals.

Fix a symbol count vn0 (x) = cA of such a “good” point, with A the
corresponding atom of A, and the times k1, kl of the first and last complete
appearances of W between times k and n. Let us determine the relative
probabilities of such a symbol count, given R1 ∩ D1 ∈ B ∨ Dk1,kl , versus
given R2 ∩D2, with respect to the measure µC .

Let I = [k1, kl + l(W )] denote the “interior” range of coordinates, con-
sisting of the set of indices made up of full passes through marked and
free intervals in the interval [0, n]. A key point is that replacing R1,D1 by
R2,D2 changes at most 2K + 2k+ 1 coordinates in the β-name of x, and if
we are to preserve the symbol count cA across the interval [0, n], the symbol
count across I must be translated by a corresponding vector whose norm is
bounded by 2K + 2k + 1.

For i = 1, 2 let vi denote the β-symbol count vector across the set of
indices [0, n] \ I determined by each point in Ωk1,kl ∩ Ri ∩ Di. Recall that
our recoding is done between occurrences of the marker W , so the β-symbol
count across the interval I, which is just a function of the direct Bernoulli
factor B, is independent of all the original γ × %-symbols, and hence of
all the new β-symbols, on any range of coordinates disjoint from I. This
independence also holds conditioned on C and on Ωk1,kl . Therefore,
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(2.44) µC(A ∩R1 ∩D1 |Ωk1,kl)

= µC({vI = cA − v1} ∩R1 ∩D1 |Ωk1,kl)

= µC({vI = cA − v1} |Ωk1,kl)µC(R1 ∩D1 |Ωk1,kl),

and hence
µC(A ∩R1 ∩D1 ∩Ωk1,kl)
µC(R1 ∩D1 ∩Ωk1,kl)

= µC({vI = cA − v1} |Ωk1,kl).(2.45)

Referring to Property 3 and denoting by fI the ψ(%W )-symbol count for
the finite-state Bernoulli process W ′ determined by the %-blocks appearing
across the free subintervals of I, we see that Ωk1,kl ∩ {vI = cA − v1} =
Ωk1,kl ∩{fI = f(cA−v1)}, and similarly for v2. Since cA−v1 and cA−v2 are
translates of one another by vectors of L∞ size no more than L, it follows
that f(cA−v1) and f(cA−v2) are translates of one another by vectors of size
no more than 3L (see Property 4). Therefore we may apply the flatness of
symbol counts for the process (W ′, σ′W , P

′
W ) given by Lemma 2.1, and again

using independence as above, we can complete this calculation as follows:

(2.46) µC(A |R1 ∩D1 ∩Ωk1,kl) = µC({vI = cA − v1} |Ωk1,kl)

≈δ µC({vI = cA − v2} |Ωk1,kl) = µC(A |R2 ∩D2 ∩Ωk1,kl),

proving (2.39).

3. Questions. 1. Will the conclusion of Theorem 1.1 hold if the hy-
pothesis of existence of a direct Bernoulli factor is removed?

2. Can our recoding be accomplished in a unilateral way? If so, every
exact endomorphism with a finite generator would have a finite super-K
generator (cf. [7, 8]).

3. Is F+(α) trivial if and only if F−(α) is trivial? Of course the analogous
result for T + and T − is true.

4. Does there exist a K-system for which every generator β has T ±(β) =
B? If so, exactly which systems have T ±(β) = B (equivalently F±(β) = B)
for every generator β?

5. Is the set of super-K+ partitions first category in every system? (From
Proposition 1.3 it follows that the set of non-super-K+ partitions is dense.)
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