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Abstract. The main results of this paper are:

1. No topologically transitive cocycle R™-extension of minimal rotation on the unit
circle by a continuous real-valued bounded variation Z-cocycle admits minimal
subsets.

2. A minimal rotation on a compact metric monothetic group does not admit a topo-
logically transitive real-valued cocycle if and only if the group is finite.

Introduction. This paper is devoted to the problem of minimal subsets
of cylinder transformations. Let X be a compact metric space and T': X —
X be a homeomorphism of X. Let ¢ : X — R be a continuous function. By
a cylinder transformation we mean a homeomorphism 7, : X x R — X xR
(or rather the Z-action generated by it) given by the formula

Ty(z,r) = (Tx,o(x)+1).

We will also consider the case of R instead of R. It was essentially proved by
Besicovitch in [2] that the cylinder transformation cannot itself be minimal.
We also mention a deep result of Le Calvez and Yoccoz saying that there
is no minimal homeomorphism on the infinite annulus or more generally on
the two-dimensional sphere with a finite set of points removed ([10]). This
of course generalizes Besicovitch’s result.

The problem of the minimal subsets of a cylinder transformation turns
out to be related to the problem of possible forms of w-limit sets. H. Poincaré
was the first to consider flows (generated by differential equations) on R? that
had time one homeomorphisms topologically isomorphic to cylinder cocycle
extensions over irrational rotations ([15]). He made an attempt at classifying
possible forms of the vertical sections of w-limit sets. His classification turned
out to be partial and only Krygin gave the full classification in [6]. In [7]
Krygin gave a full classification in the differentiable situation proving that
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actually there are four possibilities: either {0} (the case of coboundary), or R
(the case of transitive point), or R* or R™.

In Sections 2 and 3 of this paper we show that there are no minimal
sets for any transitive cylinder transformation defined by bounded variation
cocycles over an irrational rotation on the circle (Theorem 2.4) and over
adding machines (Theorem 3.4). Moreover, the only compact monothetic
groups that do not admit transitive cocycles are finite cyclic groups (Theo-
rem 4.6).

The authors would like to express their gratitude to Mariusz Lemaiiczyk
whose contribution to Section 2 is substantial. We also thank Bassam Fayad
for a creative discussion on the subject and for calling our attention to Kry-
gin’s papers.

1. Preliminaries. Let 7" be a homeomorphism of a locally compact
metric space (X, d). We will call the pair (X, T) a (locally compact) flow. If X
is compact, then we call (X, T') a compact flow. In what follows we will often
refer to (X, T) as either X or 7. When (X, T) is a flow and A C X, we write
Orb(A) = {T*z : x € A, k € Z} to denote the orbit, and Orb(A) = Orb(A)
to denote the orbit closure of the set A. We say that a set M C X is T-
minimal if M is closed, non-empty and invariant (i.e. 7-'(M) = M) and M
has no proper subset with these properties. In particular, the flow (X, T) is
minimal iff Orb(z) = X for each € X. A minimal subset is either discrete
or perfect. It follows that a compact minimal set is either perfect or finite,
while a locally compact and non-compact minimal set is either perfect or
the orbit of any of its points. If X itself is T-minimal then (X, T) is called
minimal. A point 2 € X is said to be almost periodic if Orb(x) is a compact
minimal set. Each compact flow admits a minimal subset; for general flows
this is not true. If there exists a point z € X such that Orb(z) = X, then
(X,T) is called topologically transitive.

The simplest examples of minimal flows are minimal rotations on com-
pact metrizable monothetic groups. If X is such a group and {xzf : n € Z}
= X for some g € X, then the map T'(z) = xox is a minimal homeomor-
phism.

Following [4] we say that a flow (X, T) is uniformly rigid if there exists
an unbounded sequence (n;);>1 of integers such that 7" — Idy uniformly
as t — oo. In that case the sequence (n:);>1 is called a rigidity time for T
Clearly all minimal rotations on compact metrizable monothetic groups are
uniformly rigid.

Suppose that (X, T) is a flow, and G a locally compact metric group with
unit element e. For a continuous map ¢ : X — G one can define a Z-cocycle
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e(T"a)p(T" 2z) - p(Tx)p(x), n>1,

#M@)=1 e, n=0
p(Tz) Lp(T )=t p(T 7 )™, n < -1,

Then the cocycle condition o™ +*)(z) = (™) (T*2)*)(2) is satisfied. Thus
a continuous map ¢ defines a Z-cocycle ¢(™). Conversely, each Z-cocycle ¥ :
Zx X — G is of the form ¥ (n, z) = ¢ (z), where ¢(z) = ¥(1,z). Therefore
we will call a continuous function ¢ : X — G a Z-cocycle; moreover, ¢
is a coboundary if o(z) = (f(Tz))"'f(x) for some continuous function f.
Suppose now that ¢ : X — G is a cocycle. Define a homeomorphism

(1) T, X xG—XxG, Ty(x,9)= Tz, ¢(x)g).

The flow (X x G,T,,) defined by (1) is said to be a cocycle group extension,
or, indicating the group, a cocycle G-extension of (X, T).

For a compact minimal flow (X, T), a locally compact metric group G
and a cocycle ¢ we define the notion of essential value of ¢ in the following
way. Denote by G the Aleksandrov compactification of G: Goc = GU{o0}.
We say that g € G is an essential value of ¢ if for each non-empty open
set U C X and each neighbourhood V of g there exists N € Z such that

(2) UNnTNUN{zeX:oM(@)eVy+0.

The set of all essential values of ¢ will be denoted by Eo(¢). It is not empty
as it always contains the neutral element of the group G (take N = 0 in the
definition of Ex(¢)). Put also E(¢) = Ex(¢) NG. The set E(y) is always a
closed subgroup of G ([11, Proposition 3.1]). By [11, Proposition 3.2], T, is
topologically transitive iff F(¢) = G. On the other hand, the Z-cocycle ¢ :
Z x X — G is a bounded function iff ¢ is a coboundary iff E(¢) = {0} (see
e.g. [11, Proposition 3.4]). In that case the cocycle G-extension (X x G,Ty,)
is a union of compact minimal subsets of the form {(z, f(x)g) : z € X},
where p(z) = (f(Tx)) "' f(x) and g € G.

If G is Abelian, then a cocycle ¢ is called regular if there exists a con-
tinuous function ¥ : X — F(y) such that ¢ and v differ by a coboundary:
¢ =1+ foT — f for some continuous f : X — G (for Abelian groups
we will often use the additive notation). Note that for Abelian groups,
E+(¢) = Ex(¢) whenever the cocycles ¢ and ¢ differ by a coboundary
([11, Proposition 3.2]).

In this paper we will concentrate on the following situation. The flows
(X, T) will be minimal rotations on compact metric monothetic groups, G =
R or G = R™ for some positive integer m. In such cases the group E(y) of
essential values of ¢ is a linear subspace of R™ ([13, Theorem 3.5]), and,
whenever ¢ has zero mean, ¢ is regular ([13, Theorem 4.9]). In particular,
for ¢ : X — R there is a trichotomy:
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(a) either §, @du # 0 (then T, is transient: all orbits are discrete); or

(b) T, is topologically transitive; or

(¢) ¢ is a coboundary.

Let us now recall the Denjoy—Koksma inequality. For the definition of
discrepancy and the proof of Theorem 1.1 below we refer to [8] (or [9]).

THEOREM 1.1 ([9, Chapter 2, Theorem 5.1|, see also [8]). Let ¢ be a

function of bounded variation on [0,1] and z1,...,xx € [0,1). Then
| N 1
T 2 o) ~ folt) ] < Var(oD5.
n=1 0
where D3 denotes the discrepancy of the sequence {z1,...,zN}. =

We use this theorem in the particular case when S(l) e(t)dt = 0, z, =
z+na mod 1 (« is irrational), N = gj, where (g)r>1 is the sequence of the
denominators of the continued fraction expansion of «. Since, in that case,
D} < 1/qr+1/qrs1 (see e.g. [9, Chapter 2, (3.17)]), we obtain the following
estimate:

(3) (@) < 2 Var(e)

(here and in what follows, || - || denotes the supremum norm in the space of
continuous functions); we will use it in the proof of Theorem 2.4.

2. The problem of minimality for cylinder extensions of minimal
rotations on a circle. In this section we will use the following standard
notations. Let T be the unit circle on the complex plane with its natural topo-
logical group structure; we will often identify T with the interval [0, 1) mod 1.
Then denote by CBV(T) the Banach space of continuous real functions on T
with bounded variation: ¢ € CBV(T) iff ¢ is continuous and Var(y) < oc.
Let CBV(T) be the subspace of CBV(T) consisting of all functions of zero
mean with respect to the Lebesgue measure on T. Note that if || - || denotes
the supremum norm on the space C'(T), then the norm Var on CBV((T) sat-
isfies ||¢|| < Var(v), in particular the usual norm || - ||+ Var(-) on CBV(T) is
equivalent on CBV(T) to Var(-). Let ACy(T) be the subspace of CBV(T)
of all absolutely continuous functions of zero mean.

The following theorem was essentially proved by Besicovitch in [2]. Al-
though in [2] the case of X = T is considered, it is an immediate observation
that Besicovitch used only compactness of T. We repeat the proof of Besi-
covitch in our general situation for the paper to be more self-contained.

THEOREM 2.1 ([2]). Let (X, T) be a compact metric flow, and p : X — R
a continuous map. Then T, : X x R — X x R is not minimal.
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Proof. We may assume that (X,7’) is minimal and T, is topologically
transitive. Let (29,0) € X x R be a topologically transitive point for Ty,
i.e. Orb(zg,0) = X x R. By [5, Theorem 9.23] we may assume that (g, 0)
is extensively transitive, i.e. both positive (this case will be used in our
reasoning) and negative semi-orbits of (zo,0) are dense in X x R:

{T2(20,0) :n >0} = X xR, {T%(20,0):n <0} =X xR.

Therefore we can find three sequences of integers (m;);j>1, (7j)n>1, (55)j>1
such that m; < s; <mnj, j > 1, and

gp(mj)(gjo) < _j7 Sp(n])(x()) < _ja SO(Sj)(xO) > j7 j > 1.

As ¢ is continuous and X is compact,

(4) mj —sj — —00, Nj —8§j — 00.

We may assume that

(5) 1) (g) = max{p™ (wo) : mj <m <my},  j>1.
Consider the points

(2, 77) = T " (wo, =) (20)) = (T "0, (™) (w0) — 09 ()

= (T% %2, (T 20)), neZ,j>1.
Then, for m; — s; <n <n; —s;, j > 1, we have

(6) rl=0, Ty}, rf)=(aft it

Take a convergent subsequence x?k — Z. Then, by (6), for each n € Z the
subsequence

(h .75 ) = (@, o™ (Tka0)) = Tj(af,,0), k=1,

Lo T Ik
is also convergent, (z7 77 ) — (1", ©(™(F)). By (4), for each given integer
n the inequalities m;, — s;, < n < mnj, — s;, hold for k large enough, hence,
by (6) and by (5), »(™(Z) < 0. In particular for each (x,r) € Orb(Z,0) we
have r < 0, therefore Orb(z,0) is not dense in X x R. m

COROLLARY 2.2. Let (X, T) be a compact metric flow, and ¢ : X — R™
a continuous map. Then T, : X x R™ — X x R™ 4is not minimal.

Proof. Let ¢ = (p1,...,0m) : X — R™ be a continuous map. By the
above there exists a point € X such that the orbit of (z,0) via T, is not
dense in X xR, hence the orbit of (Z,0,...,0) via T, is not dense in X xR™.
In particular T}, is not minimal. =

Our next aim is to show that no continuous bounded variation cocycle
on T admits minimal subsets (Theorem 2.4). The method of the proof of this
theorem is similar to the proof of |7, Proposition 2] of Krygin’s paper on the
Poincaré sets for smooth cocycles, i.e. the vertical sections of limit sets in
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T x R. Together with Lemma 2.3 below some ideas of Krygin’s proof of |7,
Proposition 2|, after modifications, will give the proof of our result.

LEMMA 2.3. Let (X,T) be a minimal rotation on a compact monothetic
group, ¢ : X — R™ a continuous map. Suppose M C X x R™ is a T,-
minimal set. Define M, = ({x} x R™)N M. Then card M, < 1 for every
z e X.

Proof. First consider the case m = 1. If T, is not topologically transitive,
then either it is a coboundary or T, is transient. In the first case M is the
graph of some continuous function f: X — R (see [11, Proposition 5.1]), in
the second M is equal to the orbit via T, of some point (see [11, Remark 4]).
In both cases card M, < 1. Thus we may assume that T, is topologically
transitive.

Observe that as T is minimal, the set D = {x € X : M, # (0} is dense
inX.Put H={reR: M+r =M} (here M+r = {(x,s+r) : (z,s) € M}).
It is easy to see that H is a closed subgroup. Similarly to [3, Lemma 3.1] or
[16, Lemma 2.6.1] we see that if M, # () then M, = r + H for every r € R
such that (z,r) € M.

First assume that H = R. Then for x € D we have M, = R, which
implies M = X X R, a contradiction with Theorem 2.1.

Now let H = aZ. Take a T -transitive point (,0) € X x R. Find a
sequence x; € D, ¢ > 1, that converges to z, and numbers r; € R such
that (x;,7;) € M. Since H = aZ, the numbers r; may be chosen from
[0,a), thus by passing to a subsequence if necessary, we may assume that
the points (z;,r;) converge to (z,7) € M. But (x,r) is a transitive point, a
contradiction.

It follows that H = {0}, which gives the result.

Suppose now m is arbitrary. For any linear functional L : R™ — R define
a factor map L : X x R™ — X x R by setting L(x,r) = (2, L(r)). Then
the set NL = L(M) is minimal and card NX < 1 for each 2 € X. Suppose
r,s € My, 7= (r1,-..,"m), $ = (81,...,8m). Fix i, 1 < i < m, and take
L = p;, the projection onto the ith coordlnate. Then pz(x, r) = (x, r;) € NY
and p;(x,s) = (z,s;) € NE, hence 7; = s;. We have shown r = s and the
result follows. m

THEOREM 2.4. Let T' be a minimal rotation on T. If o € CBVy(T) and
¢ s not a coboundary then T, has no minimal subsets.

Proof. Identify T with [0,1) mod 1 and let Tz = x + « mod 1, where «
is an irrational number. Let (¢,,),>1 be the sequence of denominators in the
continued fraction expansion of a.

Assume that M C T x R is a T,-minimal set and (x,0) € M. Choose
e > 0. By Lemma 2.3 we find § > 0 such that the positive semi-orbit
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{(Ty)"(x,0) : n > 0} of (z,0) intersects neither B~ = (x — d,z + 0) X
(—e — 2Var(¢), —¢) nor BT = (z — §,z +d) x (g, + 2 Var(y)).

Choose a positive odd integer n so large that ||g,«|| < d (here ||3|| denotes
the distance of the number [ from the set of integers). Then I = [z —
lgn+1el, 2 + |lgne||) C (z — 6,2+ 9). If t € I and m(t) denotes the first
return time of ¢ to I, then

m (t) _ {Qn+1> te [x,x—i— anaH)v
! Gy, tE[z—|gnal, ).

It follows that every point of the orbit of x under 7" has the first return
time to I equal either to g, or to ¢,.1. Now, by (3), we have | (z)| < ¢
whenever T'z € I, I > 0, since the positive semi-orbit of (x,0) does not
intersect B~ U B™T. Moreover, the set {I > 0 : Tfo(x, 0) € I x[—¢&,e]} C Nhas
bounded gaps, thus the positive semi-orbit of (x,0) is bounded. Therefore,
by [5, Theorem 14.11], ¢ is a coboundary. We have reached a contradic-
tion. =m

REMARK 2.5. In [17] Sidorov constructs for each irrational rotation on T
a topologically transitive cocycle without discrete orbits (recall that a dis-
crete orbit is always a minimal set). Below, using rather standard methods,
we generalize this by showing that over every irrational rotation there exists
a cocycle without minimal sets.

On the other hand, Besicovitch ([2]) constructs a particular irrational
rotation and a topologically transitive cocycle that admits a discrete orbit. It
remains an open problem whether there exist topologically transitive cylinder
cocycles with minimal sets other than discrete orbits.

Now we will show the following:

For every minimal rotation T on T there exists ¢ € ACy(T) that is
topologically transitive.

Proof. Assume that T is a minimal rotation on T, Tx = x + «, such
that all ¢ € ACy(T) are coboundaries, i.e. for every ¢ € ACy(T) there exists
ge € C(T) such that ¢ = g, — g, o T. By minimality of 7" we may assume
that g, is a zero mean function. We have obtained a well defined linear map
CBV(T) D ACy(T) > ¢ — g, € Co(T). For the purpose of this proof we
consider the space ACy(T) with the variation norm Var. With this norm the
map ¢ — g, is continuous by the Closed Graph Theorem. Thus there is a
constant M > 0 such that

(7) 9ol < M - Var(p)

for every ¢ € ACy(T). However, we will see that there exists a sequence
(PN)nN>0 of real polynomials on T such that
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: [P
8 1 =
(®) "M Var(Py — PyoT)
(which will give a contradiction to (7)).
To see this consider Py (z) = Zﬂv ane®™® N >0, such that a, = a_,
for n > 0, a, = 0 for n # qx, ag, > 0 (here (gx)r>1 is the sequence of
denominators of the continued fraction expansion of «), and

. Yag,
9) lim W — 0.
We have | |
P]/V - P],V (¢] T — 27‘{'@ Z qkaqk(l _ e?ﬂlqka)ez'ﬂ'zqu'

Since |1 — 2™ < ||gra|| and qi|/gra|| < 1 (recall that ||3|| denotes the
distance of 3 from the set of integers), we have

(10) Var(PN—PNoT) = HPJ/V_P]/VOTHLl
5 \1/2
SHP]’V—P]’VOTHngconst-(Za ) :

9k

Now, the equality ||Py| =2 ag, (recall that || - || denotes the supremum
norm), (10), and the assumption (9) imply (8). We have obtained a contra-
diction with (7) and we are done. =

For more general results on the existence of topologically transitive co-
cycles over irrational rotations see [12, Theorems 3 and 6].

REMARK 2.6. Consider a linear map @ : Co(T) > f+— f— foT € Cy(T).
Assume for a moment that ¢(Cy(T)) € CBVy(T). Then, by the Closed
Graph Theorem, the map & : Cy(T) — CBV(T) is continuous. Thus there
is a constant M > 0 such that Var(f — foT) < M| f] for all f € Co(T).
On the other hand, it is not difficult to find f € Cy(T) with ||f|| = 1 and
arbitrarily large variation of f — f o T, which is a contradiction. This rather
standard consideration shows the following:

For every minimal rotation T on T there exists f € Co(T) such that
f— foT is not of bounded variation.

Theorem 2.4 together with Remarks 2.5 and 2.6 shows that there are also
unbounded variation cocycles without minimal sets.

3. The problem of minimality for cylinder extensions of adding
machines. Let 7 = (r,),>1 be a sequence of integers such that r, > 2,
n>1.Set \g=1, A\, =711, n > 1. Let

(11) Z(F) = {Zan)\n tan € 0,1, Tt — 1}}
n=0
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be the compact group of 7-adic numbers with the product topology induced
from [[>2,{0,1,...,7, — 1}. This topology may be defined by the metric
A" apAn, Y bpAn) = 1/\,, where m = min{n : a,, # b, }.

For m > 1 and 0 < k < A, define the sets W* = [ag a1 ... am—1] by

(12) W,T:{LL‘GZ(F):x:an)\n, T = a;, z':(),l,...,m—l},
n=0

where a; € {0,1,...,r;i41 — 1} are such that ) ", a;\; = k. Let W™ =
{wgr, wit, ., Wit} Clearly the sets W™ are closed-open and (JW™ =
Z(F). Let p denote the normalized Haar measure on Z(7). Observe that
diam(W[") = p(W}"*) = 1/A,. We define a homeomorphism T' : Z(7) — Z(T)
by Tz = x + 1, thus obtaining a minimal rotation on the compact metric
monothetic group Z(7). Then the metric d defined above as well as the
measure p are T-invariant. Moreover TW;™ = W/ |, where k + 1 is taken
mod A,. The flow (Z(7),T) is called an adding machine.

Denote by C(Z(7)) the space (algebra) of all continuous real functions on
Z(7). Equip C(Z(T)) with the topology of uniform convergence. Observe that
each real function that is constant on elements of some W™ is continuous.

DEFINITION 3.1. We say that ¢ € C(Z(T)) has bounded variation if

Am—1
Var ;= sup Vi, < 0o, where V,, = max ¢ — min ).
() = sup Vin() () kZ:O (maxy - mine)

The family of such functions is denoted by CBV(Z(7)); moreover, as usual,
CBV(Z(T)) stands for the subfamily of CBV(Z(T)) consisting of all func-
tions with zero mean with respect to u.

REMARK 3.2. Let (X, d) be a compact metric space and ¢ : X — R be
a continuous function. Recall that a function M, = M : R, — R defined by
M(h) = sup [p(z) = @(y)]
d(z,y)<h
is called a continuity modulus of p. Now take X = Z(T) and consider a family
of functions ¢ € C(Z(7)) such that M,(1/X\;) = O(1/A;) (i.e. the sequence
(MeMy(1/Ak))k>1 is bounded). Since obviously

V() < AmM(1/A),

this family is contained in CBV(X); actually this inclusion may be strict in
general.

We intend to prove that a topologically transitive bounded variation co-
cycle over an adding machine does not admit minimal subsets. Such a cocycle
is constructed in Example 4.2. We start with a lemma that contains a kind
of Denjoy—Koksma inequality for cocycles over adding machines.
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LEMMA 3.3. Let ¢ € CBV(Z(F)). Then

1 1
S0 - | )] < 3 V(o)
for every x € Z(F).
Proof. Fixing m > 1 and x € Z(F) we may assume that z € W{". Then

Am—1
P @) = A | ey dt] < 37 [eTra) = A | el dt]

Z(F) k=0 wim
Am—1
< Z Am | lo(TF2) — o(t)] dt
wir
Am—1
<
< Z Am Sm nv}/axgo IVnVincp)dt Vi (p)
k
< Var(go). .

In the case of ¢ € CBV((X) the inequality from Lemma 3.3 takes the
form

(13) I < Var(p).

THEOREM 3.4. Let (X,T) be an adding machine. If p € CBV((X) and
@ 1s not a coboundary then T, admits no minimal subsets.

Proof. The proof is similar to that of Theorem 2.4. We consider the
rigidity time (\p,)m>1 instead of (g)r>1 and use (13) instead of (3). The
interval [ is replaced by one of the levels of W™ for appropriate n. =

4. Existence of topologically transitive cocycles over compact
monothetic groups. Our next aim is to show that all minimal rotations on
compact infinite metrizable monothetic groups admit topologically transitive
real cocycles. Gottschalk and Hedlund ([5]) have developed a theory of real
cocycles over minimal rotations on connected and locally connected mono-
thetic groups. However also rotations on disconnected monothetic groups
may admit transitive cocycles.

EXAMPLE 4.1. Let X = Zy x [0,1) and T(i,z) = (i + 1,z + «), where
the addition on the first coordinate is taken mod 2 while the addition on the
second coordinate is taken mod 1. Take a continuous function ¢ : [0,1) — R
and define ¢ : X — R by ¢(i,2) = ¢(x). Assume ¢ is a coboundary, i.e.
there exists a continuous g : X — R with ¢(i,z) =g(i + 1,2 + o) — g(i, x).
Putting ¢ : [0,1) — R, g(z) = $(3(0,2) + g(1,z)) we have

oo+ a) — gla) = 3 (F(1L7) + 3(0,2)) = p(a).
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Now, taking a transitive cocycle ¢ on ([0, 1), «) we get, by the construction
above, a transitive cocycle ¢ over a disconnected, locally connected mono-
thetic group.

Notice that in the example above, g is an integral of g with respect to
the normalized Haar measure on the kernel of the projection onto the second
coordinate. This simple observation gives rise to Lemma 4.3.

Now we show that also adding machines that are not locally connected
admit topologically transitive cocycles.

EXAMPLE 4.2. Let X = Z(7) and T be a minimal rotation on X. Put

Xs(ni;an)\n> = exp <2m’ %@).

Observe that (the character group) X is {xL:5>1,0<1< \s—1}. Define

p:X — Rby
.- o~ Xs X
— — s
PPl P

Clearly ¢ € Cy(X). Assume that ¢ is a coboundary, ¢ = goT — g for some
g € Co(X). Represent g = 37 o1 > g 4cn, @stXs- For s > 1 we have

1
if t =1
No(exp(2mi/ag) — 1) ’
ast =14 0 ifl<t<Ais—1,
1
if t =\s — 1.
No(exp(—2mi/Ag) — 1)
Simple calculations show that
1 1

pu— — = oy v\ > o
’as,l‘ ‘a87)‘3 1‘ 2)\3 SiH(TF//\s) —2r’

which is impossible. Therefore ¢ is a topologically transitive cocycle over the
adding machine. It turns out that ¢ € CBV((X). To see this observe first
that xs, hence also s, is constant on the levels of W' for ¢t > s. Moreover
s takes on levels of W* the values 2 cos(27l/As)/As, 0 <1 < Ag, as x5 takes
the values exp(27il/As), 0 < 1 < As. Therefore

4
max ¢ — minp < (max pgs — min ) < —
BT S 2 e e < 2,

for m > 1. Thus
£ Ao 8
- — mi Am
Vi(p) = D (maxe—ming) <4} 3= < <4.

7=0 s>m Tm+1

Consequently,
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Var(¢) = sup Vi, (p) < 4
m>1

and ¢ has bounded variation.

LEMMA 4.3. Let m : X — Y be a continuous group epimorphism of
compact metric monothetic groups. Let T : X — X, Tx = z + «, and
S:Y =Y, Sy=y+ 3, where f = m(«), be minimal rotations. Then for
any topologically transitive cocycle ¢ : Y — R the cocycle ¢ : X — R defined
by ¢(x) = p(n(x)) is also topologically transitive.

Proof. Assume that ¢ : Y — R is a topologically transitive cocycle. Then
{oduy =0, hence {@dux = 0, where ux and py denote the normalized
Haar measures on X and Y respectively. By [11, Theorem 1], either T} is
topologically transitive or ¢ is a coboundary. Assume ¢ : X — R, ¢ = o,
is a coboundary over the rotation by o € X, i.e. there exists a continuous
g : X — R with g(x) = gz + a) — g(x). Set K = kern and identify YV
with X/K; then 5 = o + K. Define a continuous function g : ¥ — R by
g(x + K) = §,. g(x + k) dk. We have

glr+a+K)—gz+K)=\Ga+a+k) —Ga+k)dk

K
=B +k)dk = o+ K)dk ==+ K).
K K

Thus we have shown ¢ to be a coboundary over the rotation by 3, which is
a contradiction. m

In the following theorem we generalize Lemma 4.3.

THEOREM 4.4. Let w : X — Y be a continuous group epimorphism of
compact metric monothetic groups, and let T : X — X and S :Y — Y,
where mo T = S om, be minimal rotations. Then E(p) = E(p o) for each
continuous cocycle p : Y — R™.

Proof. If ¢ is transient, then clearly ¢ o 7 is also transient. Suppose S,
is conservative, hence regular (see [13, Theorem 4.9]). Let L : R™ — R be
linear. By [13, Theorem 3.5], both E(y) and E(¢p o 7) are linear subspaces
of R™. Then, by [14, Proposition 3.1],

E(Loy)=L(E(¢)), E(Lopom)=L(E(pon)).
By Lemma 4.3, E(Loy) =E(Loyom)so L(E(p)) = L(E(pom)). As L is
arbitrary, F(¢) = E(pom). m
REMARK 4.5. Define ¢ : [0,1) — R by setting
— 1 11
_ _ 2mi —2mi
o(z) = ; o cos 2mqRxr = 3 ;1 “ (e2miak® | o= 2migka)
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(by Euler’s formula). Since ) 1/g) converges, ¢ is a well defined continuous
(and zero mean) function. We will show that ¢ is topologically transitive (cf.
[5, 14.14]). Suppose to the contrary that ¢ is a coboundary, i.e. p = g—goT
for some continuous function g. Let a,, = { g(x)e ™" dz, n € Z. By the
Lebesgue—Riemann Lemma, lim a,, = 0. Simple calculations show that

1 1 .
5o = G (1—eT, k21 ai=0, nde, k21
However |e27%x® — 1| < 8/q;41 and it follows that
8 1
16]ag, | = — - —— > Bl s
qk |62mqka _ 1| qk

which gives a contradiction. Thus the cocycle ¢ is not a coboundary, hence
© is topologically transitive.

Using the topologically transitive cocycle ¢ we have defined above one
may construct for any m a topologically transitive cocycle @ : T — R™. To
see this consider m pairwise disjoint subsequences (¢ ;)r>1, j = 1,...,m, of
the sequence (qi)x>1 such that none of the sequences (1/cy, j|e*™*i%—1|);>1,
j=1,...,m, is convergent. Setting

1
QOj(IE):Z—COSQTI'CkJ:C, j=1,...,m,
Ck’]
k>1
we see that no non-zero combination by + ... + by@m is a coboundary.
By Atkinson’s theorem ([1, Theorem 1] or [13, Proposition 4.8]), the cocycle
© = (p1,...,pm) is topologically transitive.

Using Example 4.2, Lemma 4.3 and Remark 4.5 we get the following.

THEOREM 4.6. Assume that X is an infinite compact metric monothetic
group. Let T : X — X be a minimal rotation on X. Then (X,T) admits a
topologically transitive real cocycle. m

Remark 4.5 allows us to give a slight generalization of Theorem 4.6.

COROLLARY 4.7. Assume that X is an infinite compact metric mono-
thetic group. Let T : X — X be a minimal rotation. Then for each integer
m > 1 and for each linear subspace V- C R™ there exists a continuous cocycle
v : X — R™ such that E(p) =V.

Proof. Suppose V' C R™ is a linear subspace. Let v = (¢1,...,0m) :
X — R™ be a topologically transitive cocycle. If dimV = 0, then any
coboundary is suitable. Suppose dimV = k > 0. Let e1,...,¢€, be the
standard basis of R™. Without loss of generality we may assume that V is
generated by €1,.. ., €. Indeed, by [13, Theorem 4.9], all zero mean cocycles
with values in R are regular, and application of [14, Proposition 3.1] finishes
the argument. Let ¢ = (p1,..., %, 0,...,0). Again by [14, Proposition 3.1],
we have E(p) =V. n
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