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Abstract. We classify one-directed indecomposable pure injective modules over
finite-dimensional string algebras.

1. Introduction. Let A be a finite-dimensional string algebra over a
field k (as an example one may consider the Gelfand–Ponomarev algebra
G2,3 given by generators α, β and relations αβ = βα = α2 = β3 = 0).
A classification of indecomposable finite-dimensional A-modules has been
known since Butler and Ringel [2]: they are exactly the so-called string and
band modules.

Although the classification of arbitrary infinite-dimensional modules over
a string algebra A is hardly possible, some particular classes of such modules
are of special interest. For instance, Ringel [13] announced a program to
classify indecomposable pure injective modules over string algebras. It is
known that over a finite-dimensional algebra pure injective modules may be
characterized as direct summands of direct products of finite-dimensional
modules (see [4, Ex. 7.10]).

Every indecomposable finite-dimensional module is pure injective, but
there are less obvious examples. For every band (see Section 2) C over a
string algebra A there are finitely many one-parameter families of “Prüfer”
modules and finitely many one-parameter families of “adic” modules. Also
there is one “generic” module corresponding to C. We will refer to these
modules as infinite-dimensional band modules.

Moreover, if v is a one-sided almost periodic string or a two-sided biperi-
odic string over A, then Ringel [12] associated to v a module M(v) which
is, in his terminology, a direct sum, direct product or “mixed” module and
which is pure injective and indecomposable.
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Roughly a finite-dimensional algebra is (tame) domestic if there are
finitely many one-parameter families of finite-dimensional A-modules that
cover all but finitely many finite-dimensional A-modules in each dimension
(see [17, S. 14.4] for a precise definition).

Conjecture 1.1 (Ringel’s conjecture—see [13, p. 48, p. 51]). Let A be a
finite-dimensional domestic string algebra. Then every infinite-dimensional
indecomposable pure injective A-module is either a band module or is of
the form M(v), where v is either a one-sided almost periodic string or a
two-sided biperiodic string.

There is a natural construction which assigns to every element m of a
pure injective module M over a string algebra A an (infinite) word w(m).
We will say that M is one-directed if for some m ∈M , w(m) is a one-sided
word. Otherwise M is two-directed. For instance, every finite-dimensional
string module is one-directed.

In this paper we classify one-directed indecomposable pure injective mod-
ules over a string algebra A. We prove in Theorem 5.4 that, if M is an inde-
composable pure injective A-module, and 0 6= m ∈ M is such that w(m) is
a one-sided word, then the isomorphism type of M is determined by w(m).
Moreover, for every one-sided word w there is an indecomposable pure in-
jective A-module M and m ∈ M such that w(m) = w, and we show that
this correspondence is bijective for infinite words (up to inversion of words).

Thus one-directed indecomposable pure injective modules over a string
algebra A are classified by one-sided words over A. Using this we show in
Corollary 6.1 that over a non-domestic string algebra A there are precisely
2ω non-isomorphic one-directed indecomposable pure injective modules.

However the methods used in the proofs do not give much information
about the structure of such modules. For domestic string algebras, using
Ringel’s results, we are able to give a completely satisfactory description of
one-directed indecomposable pure injective modules. Precisely, every such
module has the form M(v) from Ringel’s list, and M(v) ∼= M(w) iff v = w
or v = w−1.

Given a domestic string algebra A, we calculate the Cantor–Bendixson
rank of the open set in the Ziegler spectrum formed by the one-directed
indecomposable pure injective modules. We prove that this rank is equal to
n + 1, where n is the length of a maximal path in the bridge quiver of A.
Note that conjecturally the Cantor–Bendixson rank of the Ziegler spectrum
of a domestic string algebra A is equal to n + 2 (Schröer’s conjecture—see
[14, p. 84]); we prove that the rank is at least n+ 2.

The paper consists of two parts. In the first part we show how to analyze
the open subset of the Ziegler spectrum given by a chain in the lattice of pp-
formulae. This part works for modules over an arbitrary ring. In the second
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part we apply these results to the family of uniserial functors constructed
by Prest and Schröer [8] and combine them with Ringel’s results.

Note that the problem of classifying indecomposable pure injective mod-
ules over a non-domestic string algebra appears to be extremely difficult.
Some examples were collected in Baratella and Prest [1], and we use them
in this paper to illustrate results. Recently Puninski [10] proved that every
non-domestic string algebra over a countable field has pure injective modules
without indecomposable direct summands.

So, it may be instructive to see that a general model-theoretic approach
combined with relatively unsophisticated algebraic methods (what Ringel
[13, p. 48] refers to as “bare hands”) clarifies the situation without exhaustive
calculations.

2. String algebras. Almost everywhere in this paper modules will be
left modules over a finite-dimensional algebra A. Upper case letters such as
C, D and E will always denote finite strings.

Let Q = (Q0, Q1) be a finite quiver (that is, an oriented graph), where
Q0 is a set of vertices, and Q1 is a set of arrows. Let A = kQ be a (possibly
infinite-dimensional) k-algebra with a k-basis given by the paths in Q and
with multiplication given by the composition of paths. For instance, for every
vertex S ∈ Q0 there is the path of length 0 which is an indecomposable
idempotent eS ∈ A. Given an arrow α ∈ Q1, its starting point will be
denoted by s(α) and its end point will be denoted by e(α). Thus αβ (β
then α) is a path in Q if s(α) = e(β) (this fits with our convention that we
consider left modules).

We impose some monomial relations (i.e., relations of the form α1 . . . αn
= 0, where αi are arrows in Q forming a path) on A to make A finite-dimen-
sional. Then A is a string algebra (see [2, S. 3]) if the following holds:

1) every vertex is the starting point of at most two arrows and the end
point of at most two arrows;

2) if α, β, γ are arrows such that e(α) = s(β) = s(γ) (i.e., βα and γα
are paths in Q), then either βα = 0 or γα = 0 is a relation on A;

3) if α, β, γ are arrows such that s(α) = e(β) = e(γ) (i.e., αβ and αγ
are paths in Q), then either αβ = 0 or αγ = 0 is a relation on A.

For instance,

R1

◦
S1

α

��

β

		◦
S2

γ

ee
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with relations γα = 0 and βγ = 0 is a string algebra (the relations are
indicated by dotted curves).

For every arrow α we introduce a formal inverse α−1 with s(α−1) = e(α)
and e(α−1) = s(α). A string (of length k) over A is a sequence of letters
(that is, arrows or inverses of arrows) C = c1 . . . ck such that

1) s(ci) = e(ci+1) for all 1 ≤ i ≤ k − 1;
2) cici+1 is neither of the form αα−1 nor of the form β−1β for any

arrows α or β, for 1 ≤ i ≤ k − 1;
3) ci+1 . . . ci+t, 1 ≤ i+ 1 < i+ t ≤ k, is neither of the form α1 . . . αt nor

of the form α−1
t . . . α−1

1 , where α1 . . . αt = 0 is any relation on A.

Roughly, a string represents a reduced, non-zero “walk” in Q where ar-
rows may be traversed in either direction.

For instance, αβ−1αγ is a string over R1 (interpreted as “go along γ
then along α, then lift through β and go along α again”). If C = c1 . . . ck is
a string, then set e(C) = e(c1) and s(C) = s(ck), that is, C ends before c1

and starts after ck.
Every string C = c1 . . . ck over A defines a string module M(C) as fol-

lows. M(C) is a (k + 1)-dimensional vector space with basis z0, z1, . . . , zk.
Informally ci will be between zi−1 and zi in M(C) and the action of ci will
be to map zi to zi−1 or vice versa. If ci is a direct arrow (that is, an arrow),
say ci = α, then put zi−1 = αzi. If ci is an inverse arrow, say ci = β−1, then
set βzi−1 = zi. For each such relation αzi = zj, say s(α) = k and e(α) = l,
set ekzi = zi and elzj = zj. All the remaining actions of generators of kQ on
these basis elements zi are defined to be zero. It is easy to check that M(C)
is a left A-module.

In what follows we will draw direct arrows from the upper right to the
lower left and inverse arrows from the upper left to the lower right. Thus
the string module M(αβ−1αγ) over R1 has the following diagram:

◦γ

������

z4

◦
α
������

β ��8888
z1

◦
α
������ z3

◦
z0

◦
z2

It is known (see [2]) that any string module is indecomposable, and
M(C) ∼= M(D) iff either C = D or C−1 = D.

An infinite sequence of letters v = c1c2 . . . is called a one-sided string
if c1 . . . ck is a string for every k. Similarly we can define a one-sided string
v = . . . c−2c−1 directed to the left. For instance, ∞(β−1α), meaning
. . . β−1αβ−1α, is a one-sided string over R1, and analogously for (β−1α)∞,
meaning β−1αβ−1α . . . .
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For every one-sided string v = c1c2 . . . we define a direct sum module
with basis z0, z1, . . . such that ci acts between zi and zi−1 as in a finite-
dimensional string module. If we admit arbitrary (not necessarily finite)
tuples and use the same action “pointwise”, we obtain a direct product mod-
ule.

A one-sided string v is called almost periodic if v = CD∞ or v = ∞DC
for finite strings C and D. According to Ringel [12, Prop. 1] every almost pe-
riodic string is either “expanding” or “contracting” (depending on whether
the last letter of D is direct or inverse); we will not need the definitions of
these terms here.

Fact 2.1 ([12, p. 424], [13, p. 50]). Let v be a one-sided almost periodic
string over a string algebra A. If v is expanding then the direct product
module, which we denote by M(v), is pure injective and indecomposable. If
v is contracting , then the direct sum module, denoted M(v), is pure injective
and indecomposable.

Note that we use M(v) to denote either the direct sum or direct product
module depending on whether v is contracting or expanding (in the above
references, M(v) is used for the direct product module).

A band over A is a string C = c1 . . . ck such that:

1) every power Cm is defined;
2) C is not a power of a proper substring;
3) c1 is a direct arrow and ck is an inverse arrow.

Thus every band C over A is of the form α . . . β−1, and clearly α 6= β.
Note that then C−1 = β . . . α−1 is also a band. For instance, over R1 we
have the following bands: C = αβ−1 and C−1 = βα−1.

For the following it will be convenient to use the ε-σ-formalism as in [2,
p. 158]. Precisely, we introduce two functions ε, σ : Q1 → {−1, 1} with the
following properties:

1) if α 6= β are arrows with s(α) = s(β), then σ(α) = −σ(β).
2) If α 6= β are arrows with e(α) = e(β), then ε(α) = −ε(β).
3) If α, β are arrows such that s(α) = e(β) and αβ is not a relation

in A, then σ(α) = −ε(β).

Now extend these functions to finite strings in the following way. Set
ε(α−1) = σ(α) and σ(α−1) = ε(α). If C = c1 . . . ck is a string, then put
ε(C) = ε(c1) and σ(C) = σ(ck). It particular, if CD is a string, then σ(C) =
−ε(D).

For every vertex S of Q0 we introduce two strings 1S,1 and 1S,−1, where

e(1S,t) = s(1S,t) = S and 1−1
S,t = 1S,−t. Set σ(1S,t) = −t and ε(1S,t) = t. If C

is a string of length ≥ 1, then C1S,t = C if σ(C) = −ε(1S,t) = −t, and define
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C1S,t to be zero otherwise. Similarly, let 1S,tC = C if ε(C) = −σ(1S,t) = t,
and 1S,tC = 0 otherwise.

From now on we consider any string algebra to be provided with a fixed
pair of such functions ε and σ. For instance, for R1 we can take σ(α) = −1,
σ(β) = σ(γ) = 1; and ε(α) = ε(γ) = 1, ε(β) = −1.

As soon as ε and σ are fixed, we can separate strings going in and out
of a particular vertex into two classes. Precisely, if S is a vertex, we define
H−1(S) to be the set of strings C such that s(C) = S and C1S,1 = C, that
is, σ(C) = −1. Similarly, let H1(S) consist of strings D such that e(D) = S
and 1S,1D = D, that is, ε(D) = 1.

For instance, if A = R1 and S = S2, then H−1(S) consists of 1S,1 and
all strings C = c1 . . . ck, where ck = β−1. Also H1(S) consists of 1S,1 and all
strings D = d1 . . . dl, where d1 = α or d1 = γ−1.

Indeed, α−1, β−1 and γ is a complete list of (direct and inverse) arrows
starting in S2. We have σ(α−1) = ε(α) = 1, hence α−1 6∈ H−1(S). Also
σ(β−1) = ε(β) = −1, hence β−1 ∈ H−1(S). Since σ(γ) = 1, it follows that
γ 6∈ H−1(S).

Similarly, α, β and γ−1 is a complete list of arrows ending in S2, and
β 6∈ H1(S), but α, γ−1 ∈ H1(S).

In the following picture the strings in H−1(S2) are drawn to the left of
the dotted line, and strings in H1(S2) are drawn to the right.

•
β !!CCC •α

}}{{{
•

S2
γ
!!CCC

•
Thus we may consider the strings in H−1(S) as “left handed” and the

strings in H1(S) as “right handed”. Note that the sets H−1(S) and H1(S)
are the main ingredients of the hammock order in Schröer [16, S. 3].

Suppose that CD is a string such that s(C) = e(D) = S. Then either
C ∈ H−1(S) and D ∈ H1(S), or D−1 ∈ H−1(S) and C−1 ∈ H1(S). Thus
we may always assume that CD is oriented such that C ∈ H−1(S) and
D ∈ H1(S).

Now we define a (linear) order on the set of right handed strings con-
nected with a vertex S. Let C,D be finite strings in H1(S). Define C < D
if one of the following holds:

1) D = CβD′, or
2) C = Dγ−1C ′, or
3) C = Eγ−1C ′ and D = EδD′ for some strings C ′,D′, E and arrows

β, γ, δ.

Clearly < is a linear order. Also every string C ∈ H1(S) (except the maximal
one) has an immediate successor C+ with respect to this order. For instance,
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if Cβ is a string for some arrow β, then C+ = Cβγ−1 . . . (as many inverse
arrows as possible).

For example, if A = R1 and S = S2, then αβ−1, α ∈ H1(S) and αβ−1

< α. Also, if D = αβ−1, then D+ = αβ−1αβ−1γ−1α−1.
This order obviously can be extended to infinite strings v such that

e(v) = S and 1S,1v = v; we will consider these strings as “right handed”.
Then v defines a cut on the set of finite strings in H1(S): the “lower part”
of this cut is {C | C < v} and the “upper part” is {D | D > v}.

Similarly we may define the “left order” <′ on the set of strings from
H−1(S). Precisely, if C,D ∈ H−1(S), then C−1 and D−1 are “right handed”
strings such that C−1 = 1S,−1C

−1 and D−1 = 1S,−1D
−1. We may compare

C−1 and D−1 in a right order < as above. Then set C <′ D if C−1 < D−1.
The immediate successor of C with respect to this order will be denoted
by +C.

Note that < and <′ are defined separately for each particular vertex S
of the quiver of A.

3. Some model theory. We recall some basic notions from the model
theory of modules. For more on this the reader is referred to [5]. A more
algebraic approach to the theory of pure injective (= algebraically compact)
modules can be found in [4, Ch. 7].

A pp-formula ϕ(x) (in one free variable x) is a formula of the form ∃y
(Byt = btx), where yt is the column transpose of the row y = (y1, . . . , yn),
B is a k × n matrix over A and bt is a column over A with k rows. This
pp-formula is interpreted as “B divides btx”. For instance, a divisibility for-
mula is a pp-formula of the form ∃y (ry = x) where r ∈ A; we write r |x
for short.

Let ϕ be a pp-formula as above and let m be an element of a module M .
We say that ϕ is satisfied by m in M , written M |= ϕ(m), if there is a tuple
m = (m1, . . . ,mn) ∈ Mn such that Bmt = btm. Then ϕ(M) = {m ∈ M |
M |= ϕ(m)} is a pp-definable subgroup of M . Note that ϕ(M) is a (right)
S-submodule of M , where S = End(M). For instance, for a divisibility
formula we have (r |x)(M) = rM .

Let ϕ and ψ be pp-formulae. We write ψ → ϕ (ψ implies ϕ) if ψ(M) ⊆
ϕ(M) for every module M . The implication relation is reflexive and tran-
sitive, therefore defines a (quasi-) order on the set of all pp-formulae. Thus
we will often write ψ ≤ ϕ instead of ψ → ϕ. We say that pp-formulae
ϕ and ψ are equivalent if ψ ≤ ϕ ≤ ψ, that is, ψ(M) = ϕ(M) for every
module M .

Factorizing the set of all pp-formulae by the equivalence relation, we
obtain a partial order L(A). In fact L(A) is a modular lattice, where the meet
operation ∧ (“and”) is conjunction of pp-formulae and the join operation
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+ is given by the rule (ϕ + ψ)(x) = ∃y (ϕ(y) ∧ ψ(x − y)). If ψ < ϕ are
pp-formulae then (ϕ/ψ) will, in this paper, denote the interval [ψ;ϕ] in
L(A).

A pp-type p(x) is a collection of pp-formulae which is closed with respect
to implication and (finite) conjunction. For instance, if m is an element of a
module M , then the set of all pp-formulae satisfied by m in M is a pp-type,
denoted ppM (m). By [5, Ch. 4] for every pp-type p there is a “minimal”
pure injective module M = N(p) containing an element m ∈ M such that
p = ppM (m). This module is unique (up to isomorphism over m) and will
be called a pure injective envelope of p.

We say that a pp-type p is indecomposable if N(p) is an indecomposable
module. The positive part, p+, of a pp-type p consists of all pp-formulae
ϕ ∈ p (i.e., p+ = p) and its negative part p− consists of those pp-formulae ψ
with ψ 6∈ p.

We say that an interval (ϕ/ψ) is open in a pp-type p, written p ∈ (ϕ/ψ),
if ϕ ∈ p+ and ψ ∈ p−. In this case p defines a cut on (ϕ/ψ), whose “upper”
part consists of pp-formulae in p+ (and below ϕ) and whose “lower” part
consists of pp-formulae in p− (and above ψ):

◦ N
E

�

y
p

p
y

�

E
N

ϕ

p+
. poo

..

◦
ψ

p−

The following result says that the pure injective envelope of an indecom-
posable pp-type p is uniquely determined by any (local) cut of p.

Fact 3.1. Let ψ < ϕ be pp-formulae and let p, q ∈ (ϕ/ψ) be indecom-
posable pp-types which define the same cut on the interval (ϕ/ψ). Then
N(p) ∼= N(q).

Proof. We have ϕ ∈ p, q and ψ ∈ p−, q−. If N(p) and N(q) were non-
isomorphic then, by a result of Ziegler ([18], see [5, Lemma 9.2]), there
would exist a pp-formula θ such that ψ < θ < ϕ and either θ ∈ p \ q or
θ ∈ q \ p. Thus p and q would define different cuts on the interval (ϕ/ψ), a
contradiction.

In general not every cut on an interval (ϕ/ψ) leads to an indecomposable
pp-type. But this is the case if (ϕ/ψ) is a chain.

Lemma 3.2. Given any cut on a chain (ϕ/ψ) there is an indecomposable
pp-type q which defines this cut on (ϕ/ψ). Moreover the (indecomposable
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pure injective) module N(q) is uniquely (up to isomorphism) determined by
the original cut.

Proof. Since (ϕ/ψ) is a chain, the upper part of the cut, denote it p+,
is closed with respect to conjunctions, and the lower part of the cut, p−, is
closed with respect to sums. Also the set p+∪¬p− of formulas is consistent.

Let us extend p+ ∪ ¬p− to a maximal pp-type q (that is, such that
q+ ⊇ p+ and is maximal with respect to q+∩p− = ∅). From [5, Thm. 4.33] it
follows that q is indecomposable. By the construction, q defines the original
cut on the chain (ϕ/ψ). Suppose that q′ is another indecomposable pp-type
that defines the same cut on (ϕ/ψ). Then N(q) ∼= N(q′) by Fact 3.1.

We say that an indecomposable pure injective module M opens an in-
terval (ϕ/ψ), written M ∈ (ϕ/ψ), if there is m ∈ M such that m ∈
ϕ(M) \ ψ(M), that is, p ∈ (ϕ/ψ), where p = ppM (m).

Thus we obtain the following “rough” classification of indecomposable
pure injective modules living on the chain.

Theorem 3.3. Let (ϕ/ψ) be a chain in the lattice of all pp-formulae
over A. Then there is a natural surjection from the set of cuts on (ϕ/ψ) to
the set of (isomorphism types of ) indecomposable pure injective A-modules
opening this interval.

Proof. This follows from Lemma 3.2.

In general this map is not monic: different cuts may lead to isomorphic
indecomposable pure injective modules.

4. Preliminary results. Let S be a vertex of a quiver of a string
algebra A, and let D = d1 . . . dl be a finite string over A from H1(S), in
particular e(D) = S. Thus D = 1S,1, or d1 = α, where α is a direct arrow
such that e(α) = S and ε(α) = 1; or d1 = β−1, where β−1 is an inverse
arrow such that s(β) = S (hence e(β−1) = S) and σ(β) = 1 (hence ε(β−1) =
σ(β) = 1).

Now we define “right handed” pp-formulae (.D). Given D ∈ H1(S), let
CD be a maximal string such that C ∈ H−1(S) consists of direct arrows.
Let M = M(CD) be the corresponding string module with a canonical
basis z0, . . . , zk such that zi goes before D. Define (.D) to be a pp-formula
equivalent to the pp-type of zi in M .

For instance, let A = R1, S = S2 and D = αβ−1. Then we cannot add a
direct arrow before D, hence (.D) generates the pp-type of z0 in M(D):

◦
z1

α
������ β

��8888

•
z0

◦
z2
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Thus (.D) is the pp-formula ∃z1, z2 (x = αz1∧e1z1 = z1∧βz1 = z2∧γz2 = 0),
where e1 is a basic idempotent corresponding to the vertex S1.

Now we define “left handed” pp-formulae (C.). Given C ∈ H−1(S), let
CD be a maximal string such that D ∈ H1(S) consists of inverse arrows.
Let M = M(CD) be the corresponding string module with a canonical
basis z0, . . . , zk such that zi goes after C. Define (C.) to be a pp-formula
equivalent to the pp-type of zi in M .

For instance, if A = R1, S = S2 and C = β−1 ∈ H−1(S), then D =
γ−1α−1, hence M = M(CD) is the following module:

◦ β
��8888

z0

• γ

��8888
z1

◦
α
��8888

z2

◦
z3

Thus (C.) is the pp-formula

∃z0, z2, z3 (e1z0 = z0 ∧ αz0 = 0 ∧ βz0 = x ∧ γx = z2 ∧ αz2 = z3),

which is equivalent to ∃z0 (αz0 = 0 ∧ βz0 = x).
If C ∈ H−1(S) and D ∈ H1(S), then (C.D) will denote the conjunction

of (C.) and (.D). In most cases where the previous definition applies, CD
is a string. But, since formulae (C.) and (.D) are defined separately, this
definition makes sense even if (CD) is not a string.

We say that a pair (M,m) is a free realization of a pp-formula ϕ(x) if
M is a finitely presented (= finite-dimensional in the context of modules
over finite-dimensional algebras) module, M |= ϕ(m), and ϕ→ ψ for every
pp-formula ψ such that M |= ψ(m). In particular ppM (m) is generated as
a pp-type by ϕ. By [5, Ch. 8] every pp-formula has a free realization. For
instance, the pair (A, r) is a free realization of the formula r |x.

The following example of a free realization will be of special importance.
Let M = M(CD) be a string module over a string algebra A (we allow
C = 1S,1 or D = 1S,1) and let z be the element of a canonical basis of M
lying between C and D (in the sense of the construction of string modules).

Remark 4.1. Let M = M(CD) be a string module and let z be an
element of the canonical basis of M between C and D. Then (M, z) is a free
realization of (C.D).

Proof. By definition (C.D) ∈ p = ppM (z). Let ψ ∈ ppM (z); we need
to prove that ϕ → ψ, that is, ϕ(N) ⊆ ψ(N) for every module N . Let
N |= ϕ(n) for some n ∈ N . From the description of (C.D) it is easy to



INDECOMPOSABLE PURE INJECTIVE MODULES 99

construct a morphism f : M → N such that f(z) = n. From M |= ψ(z) we
obtain N |= ψ(n), as desired.

If M is a module and D is a string then (.D)(M) is a pp-subgroup of M .
It is quite straightforward to check that, if E,F ∈ H1(S) are finite strings
such that E ≤ F , then (.F ) → (.E). Similarly, if C,D ∈ H−1(S) are finite
strings such that C ≤′ D, then (D.)→ (C.).

The following lemma says that (.D) defines a homogeneous subspace in
every direct sum or direct product module (we allow the sum below to be
infinite in a direct product module).

Lemma 4.2. Let M = M(v) be either the direct sum or direct product
module corresponding to a one-sided (or two-sided) string v and let D ∈
H1(S) be a finite string. Then (.D)(M) is a homogeneous subspace of M ,
that is,

∑
i λizi ∈ (.D)(M) if and only if zi ∈ (.D)(M) for every i such that

λi 6= 0 (where zi are elements of a canonical basis of M(v)).

Proof. Similar to [1, Lemma 3.4].

The following (almost obvious) lemma will be useful in what follows.

Lemma 4.3. Let (M,m) be a free realization of a pp-formula ϕ. Suppose
that m = n+k, that (M,n) is a free realization of ϕ1, and that M |= ϕ2(k).
If ψ is a pp-formula such that ϕ2 → ψ, then ϕ+ ψ is equivalent to ϕ1 + ψ.

Proof. Since (M,m) is a free realization of ϕ, and M |= (ϕ1 + ϕ2)(m),
we obtain ϕ→ ϕ1 + ϕ2 → ϕ1 + ψ. Therefore ϕ+ ψ → ϕ1 + ψ.

So it remains to prove that ϕ1 + ψ → ϕ+ ψ. Since (M,n = m− k) is a
free realization of ϕ1, and M |= (ϕ+ϕ2)(n), we conclude that ϕ1 → ϕ+ϕ2.
Then ϕ1 + ψ → ϕ+ ϕ2 + ψ = ϕ+ ψ.

The next result is a key one in what follows.

Lemma 4.4. Let CD be a string over a string algebra A. Then every
formula in the interval (C.D)/(+C.D), apart from (+C.D), is equivalent to
a formula (+C.D) + (C.Di) for some Di ≥ D such that CDi is a string. In
particular the interval (C.D)/(+C.D) is a chain.

Proof. All this follows from [8, Thm. 3.2]. We just add some explana-
tions.

It is clear that the formulae (C.Di) with Di ≥ D are linearly ordered,
therefore the same is true for the formulae (+C.D)+(C.Di). Thus it suffices
to prove that every pp-formula strictly between (C.D) and (+C.D) is of the
required form. Note that such a formula can be obtained in the following
way: take any pp-formula ϕ below (C.D) and add (+C.D).

Let z be the element of a canonical basis of M = M(CD) between C
and D. Let (N,m) be a free realization of ϕ. Since (C.D) ≥ ϕ, there is a
morphism f : M → N taking z to m. Since any sum of pp-formulas of the
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form (+C.D) + (C.Di) is equivalent to a single one of them we may assume
that N is indecomposable, therefore is either a string or a band module.

If N is a band module, then from the proof of Theorem 3.2 in [8] it
follows that ϕ→ (+C.D), therefore ϕ is taken to (+C.D) by summation.

Otherwise N is a string module, therefore, by Crawley-Boevey [3], f =∑
i λifi, λi ∈ k, is a linear combination of graph maps fi : M → N = Mi =

M(CiDi), i = 1, . . . , n, where fi(z) = z′i with z′i lying between Ci and Di.
We will assume that each z′i is located in N to the left of z′i+1 (so z′1 is
utmost left, and z′n is utmost right).

To understand the situation better let us look at the following example of
pp-formulas over R1, where S = S2 and (C.D) is the formula ∃z1 (x = αz1∧
e1z1 = z1 ∧ γβz1 = 0) (that is stronger than α |x):

◦
α

������� β

��<<<<< ◦
α

�������
β ��<<<<< ◦

α

������� β

��<<<<<

•
(C.D)

◦ ◦ •
(+C.D)

◦55

Thus C = 1S,1 in this case, and (+C.) is β |x.
Let fi : M → N , i = 1, 2, 3, extend the map z 7→ z′i as the following

diagram shows:

◦
α

������� β

��<<<<<

•
z

◦

◦
α������� β

��<<<<< ◦
α������� β

��<<<<< ◦
α������� β

��<<<<<

•
z′1

•
z′2

◦ ◦ γ

��<<<<<

◦
α ��<<<<< ◦β

�������
α ��<<<<<

◦ •
z′3

f1

��

f2

��

f3

��

Let f = f1 + f2 + f3 : M → N , in particular m = f(z) = z′1 + z′2 + z′3.
Note that f1, f2 preserve the orientation of M , but f3 flips it over. By

Remark 4.1, (Ci.Di) generates the pp-type pi of z′i in N . We show how to
“eliminate” z′2 and z′3 from consideration, that is, we prove that (+C.D)+ϕ
is equivalent to (+C.D) + (C1.D1).

Clearly there is an endomorphism h of N which sends z′1 to z′3 such that
h is in the Jacobson radical of End(N). Since 1 + h is an automorphism
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of N , the pp-type of (1 + h)(z′1) = z′1 + z′3 = n in N is p1 = pp(z′1), hence is
generated by ϕ1 = (C1.D1).

Note that p2 includes β |x, hence ϕ2 = (C2.D2) → ψ = (+C.D). If
k = z′2, then m = n + k. By Lemma 4.3, ψ + ϕ (that is, (+C.D) + ϕ) is
equivalent to ψ + ϕ1 = ψ + (C1.D1), that is, to (+C.D) + (C1.D1).

Now we consider the general case. We may assume that z′1 goes after C
at the left end of N . Indeed, otherwise the pp-type of z ′1 contains the formula
(+C.D), hence f1 can be eliminated from the sum

∑
i λifi. Similarly we may

assume that the right end of N after z′n is C−1. Then the pp-type p1 of λ1z
′
1

in N and the pp-type pn of λnz
′
n in N are comparable. Since E 6= E−1

for every finite string E, p1 and pn do not coincide. By symmetry we may
assume that p1 ⊂ pn.

As above, using Lemma 4.3 (i.e., dropping the elements z ′2, . . . , z
′
n), we

conclude that (+C.D) + ϕ is equivalent to (+C.D) + (C1.D1), that is, to
(+C.D) + (C.D1).

As we have already mentioned, the formula (+C.D) makes sense even if
+CD is not a string. For example, let A be the following string algebra:

◦α << βbb

with relations α2 = β2 = αβα = βαβ = 0. Let C = α−1 and D = β−1,
hence M = M(CD) is the following module:

◦ α
��;;;

• β
��;;;

x
◦

Now +C = βαβ−1α−1, hence (+C.D) is equivalent to the pp-type of x in
the module M(βαβ−1α−1):

◦α
����� β

��;;;

◦
β����� ◦ α

��;;;

◦ •
x

Thus, adding (+C.) we impose a new relation βx = 0 on x.

5. One-directed pure injective modules. Let M be an indecom-
posable pure injective A-module, and let m ∈ eSM , where eS is the basic
idempotent corresponding to some vertex S. As we have mentioned before,
we can separate strings going in and out of the vertex S into two classes,
such that the notions of a “right hand” string and a “left hand” string make



102 M. PREST AND G. PUNINSKI

sense. If D ∈ H1(S) is a (finite) right hand string, then m ∈ DM means
m ∈ (.D)(M). We will consider an infinite string v = v1v2 . . . to be right
handed if every finite string v |n = v1 . . . vn is in H1(S). The notion m ∈ vM
is defined as for finite strings (or see [11]).

For every n let un be a maximal (with respect to <) string of length
≤ n such that m ∈ unM . Then (see [11, p. 29]) there is a (usually infinite)
string u such that u |n = un for every n. (Since M is pure injective we even
may assume that m ∈ uM , but we do not use this fact in what follows.)
Similarly m determines a left hand (infinite) string v. Then w(m) = vu is a
(two-sided) string constructed using m.

Definition 5.1. An indecomposable pure injective module M is said
to be one-directed if M opens an interval (C.D)/(+C.D) for some string
CD (then say that M ends with C on the left) or M opens an interval
(C.D)/(C.D+) (then say that M ends with D on the right). Otherwise we
say that M is two-directed.

Clearly this is the same as to say that there exists m ∈M such that the
string w(m) is one-sided.

For instance, every finite-dimensional string module M(CD) opens both
pairs (C.D)/(+C.D) and (C.D)/(C.D+), hence M(CD) is one-directed.
Also, if v is a one-directed almost periodic string, then (the direct sum
or direct product) module M(v) from Ringel’s list is one-directed.

Let M be a one-directed indecomposable pure injective module and,
with notations as in the definition, choose m ∈ (C.D)(M) \ (+C.D)(M)
(and such that m ∈ eSM for a basic idempotent that corresponds to the
vertex S between C and D). Then the pp-type p = ppM (m) defines a cut,
by intersection with p+ and p−, in the chain (C.D)/(+C.D):

◦

?�

(C.D)

•p+

p // ◦(C.E)

•p−
◦

� _

(+C.D)
◦(C.F )

Moreover, by Fact 3.1, M is determined up to isomorphism by this cut.
However this cut (therefore this pp-type) may be “non-homogeneous”. For
instance, it is (at least conjecturally) possible to have (C.E) ∈ p− but
(+C.D) + (C.E) ∈ p+. To avoid this possibility we will improve p slightly.
We say that a pp-type p ∈ (C.D)/(+C.D) is homogeneous (with respect to
this chain) if (+C.D) + (C.E) ∈ p+ implies (C.E) ∈ p+ for every E ≥ D
such that CE is a string.
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Lemma 5.2. Let p ∈ (C.D)\(+C.D) be an indecomposable pp-type. Then
there is a homogeneous pp-type q such that N(p) ∼= N(q).

Proof. First include in q+ all pp-formulae (C.E) such that (+C.D) +
(C.E) ∈ p+. Since C is fixed, these formulae in q+ form a chain. Now include
in q− all pp-formulae (+C.D) + (C.F ) ∈ p−. These also form a chain.

We prove that q+ ∪¬q− is consistent. Indeed, otherwise we deduce that
(C.E)→ (+C.D)+(C.F ) for some E and F such that (+C.D)+(C.E) ∈ p+

and (+C.D) + (C.F ) ∈ p−. Note that (.E) > (.F ). If M = M(CE) and z is
between C and E in the canonical basis of M , then, by Remark 4.1, (M, z)
is a free realization of (C.E).

Since z ∈ (C.E)(M) and (C.E) → (+C.D) + (C.F ), it follows that
z ∈ (+C.D)(M) + (C.F )(M). By Lemma 4.2 we deduce that either z ∈
(+C.D)(M) or z ∈ (C.F )(M), therefore either (C.E)→ (+C.D) or (C.E)→
(C.F ).

If (C.E)→ (+C.D), then (+C.D) = (+C.D) + (C.E) ∈ p+, a contradic-
tion. Also (C.E) → (C.F ) implies (+C.D) + (C.F ) ∈ p+, a contradiction
again.

Thus q+ ∪ ¬q− is consistent. Now we extend this type to a maximal
pp-type containing q+ and omitting q−. The result (denote it also by q) will
be indecomposable by [5, Thm. 4.33] and N(p) ∼= N(q) by Fact 3.1 and
Lemma 4.4.

Recall that the Ziegler spectrum ZgA of A is a topological space whose
points are isomorphism types of indecomposable pure injective A-modules
(e.g. see [7]). The topology on ZgA is given by basic open sets (ϕ/ψ) = {M ∈
ZgA |ψ(M) < ϕ(M)}, where ψ < ϕ are pp-formulae. It is known that ZgA
is quasi-compact.

Lemma 5.3. Let q be a homogeneous pp-type as in Lemma 5.2. Then the
pairs (C.E)/((+C.D) + (C.F )), where D ≤ E < F are such that CF is a
string , (C.E) ∈ q+ and (+C.D) + (C.F ) ∈ q−, form a neighborhood basis of
open sets for N(q).

Proof. Since p opens the interval (C.D)/(+C.D), by Ziegler [18, Thm.
4.9], a neighborhood basis of N(q) can be taken to be those pairs (ϕ/ψ)
such that (+C.D) ≤ ψ < ϕ ≤ (C.D). It remains to apply Lemma 4.4 and
homogeneity of q.

Now we are in a position to prove the main theorem of the paper.

Theorem 5.4. Let A be a finite-dimensional string algebra. Then there
is a natural one-to-one correspondence between the set of pairs {v, v−1} of
one-sided strings over A and the set of isomorphism types of one-directed
indecomposable pure injective A-modules.
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Proof. LetM be a one-directed indecomposable pure injectiveA-module.
First we assign to M a one-sided string w = w(M).

Since M is one-directed, M opens a pair, say (C.D)/(+C.D), on a (non-
zero) m ∈M (such that m ∈ eSM for some basic idempotent eS).

Shifting along C we may further assume that C = 1S,1. Thus M opens
the interval ((.D)/(+.D)), and this interval is a chain by Lemma 4.4.

Moreover, by Lemmas 5.2 and 3.2, we may assume that m is such that
p = ppM (m) is a homogeneous pp-type, so M = N(p). Then the isomor-
phism type of M is determined by the cut of p on the above interval (see
Lemma 3.2). If E is a string, then (.E) + (+.D) ∈ p+ ∩ (.D)/(+.D) iff E is
an initial part of the one-sided string w determined by m (as before Defini-
tion 5.1). Thus the cut and the string determine each other and we assign
this string to M .

Conversely, let w be a one-sided infinite (right handed) string. Take any
finite string D ∈ H1(S) such that D ≤ w. Then the interval (.D)/(+.D) is
a chain and w defines a cut on it as above. By Lemmas 5.2 and 3.2, there
is an indecomposable (homogeneous) pp-type p such that p defines on this
interval the same cut as w.

Then we assign to w the (one-directed) indecomposable pure injective
module N(p). Since N(p) is determined by w, we may use the notation
N(w).

It remains to prove that for different one-sided strings v 6= w, both
infinite to the right, the corresponding modules M = N(v) and N = N(w)
are not isomorphic. Assume first that v and w start at the same vertex (so
we may compare v and w with respect to the ordering < on strings).

Looking for a contradiction, we may assume that v < w and M ∼= N .
By Lemma 5.3, a basis for N in ZgA can be chosen to consist of pairs of the
form (.G)/((.H) + (+.)), where G ≤ w < H are finite strings. Choose G,H
such that G |n = H |n for some n large enough that the initial segments of v
and w of length n are different. In particular, M ∼= N ∈ (.G)/((.H) + (+.)).

Similarly, a basis of open sets for M can be chosen to consist of pairs of
the form (.E)/((.F ) + (+.)), where E ≤ v < F are finite strings. We have
two neighborhood bases of M so we may choose E, F such that (.E)/((.F )+
(+.)) ⊆ (.G)/((.H) + (+.)). We prove that this leads to a contradiction.

Indeed, let vk be an initial part of v of length k. If k is large enough,
E ≤ vk < F , and also vk < G by the choice of G and H. Let Mk = M(vk) be
the corresponding indecomposable string module with the basis z0, . . . , zk.
Clearly Mk ∈ (.E)/((.F ) + (+.)), where z0 realizes the corresponding pp-
type. By choice of E and F , Mk ∈ (.G)/((.H) + (+.)), therefore there is
z ∈Mk which opens this pair.

By homogeneity (see Lemma 4.2) we may assume that z is one of the
basis elements zi. Since (+.) is in the pp-type of zi for 1 ≤ i ≤ k − 1, we
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conclude that z = z0 or z = zk. From vk < G it follows that the pp-type of
z0 does not contain (.G), hence we must have z = zk.

Thus for every (large enough) k, the pp-type of zk in Mk would open the
pair (.G)/(.H), in particular the n-initial part of the string defined from zk
in Mk would be equal to w |n, which is clearly not possible (as k varies).

Now assume that v and w start at different vertices, but N(v) and N(w)
are isomorphic. We show that this leads to a contradiction.

As above, choose a basis for N(v) in ZgA consisting of pairs (.E)/(.F ) +
(+.), where E ≤ v < F are strings ending in S. Similarly N(w) has a basis
in ZgA consisting of pairs (.G)/(.H) + (+.), where G ≤ w < H are strings
ending at a vertex S′, S′ 6= S.

Since N(v) ∼= N(w), we obtain (.E)/(.F ) + (+.) ⊆ (.G)/(.H) + (+.) for
some E, F, G and H as above. Let vk be an initial part of v of length k,
and let Mk = M(vk) have a canonical basis z0, . . . , zk. If k is large enough,
then Mk ∈ (.E)/(.F ) + (+.), hence Mk ∈ (.G)/(.H) + (+.).

By homogeneity, some element zi of the canonical basis of Mk should
satisfy (.G) but not (+.). Since zi does not satisfy (+.), we must have i = 0
or i = k, that is, zi is either the first or the last element of the basis of Mk.
Since zi satisfies (.G), we conclude that eS′zi = zi, hence zi must be the last
element of the basis. Thus we have eS′zk = zk for every large enough k, a
contradiction.

Corollary 5.5. Let M,N be one-directed indecomposable pure injec-
tive modules over a string algebra A. If M and N are topologically indis-
tinguishable in ZgA, then they are isomorphic.

6. Applications. Given a string algebra A, nd(A) will denote the num-
ber of one-parameter families required to cover all but finitely many inde-
composable A-modules of dimension d. We say that A is domestic if there
is N such that for every d, nd(A) ≤ N .

Corollary 6.1. Let A be a non-domestic string algebra. Then there are
2ω one-directed indecomposable pure injective modules over A.

Proof. Since A is non-domestic, by Ringel [12, Prop. 2], A has 2 ω one-
sided (non-periodic) strings. So we can apply Theorem 5.4.

If the field k is countable, the existence of 2 ω points in the Ziegler spec-
trum of A was already known and can be proved as follows. By [16, Prop. 2]
there is a dense chain of pp-formulae over A. Since A is countable, we can
apply [6, p. 450].

We have defined a one-directed pure injective module M to be a module
with an elementm such that the string w(m) is one-sided. A negative answer
to the following question would allow us to separate one-directed and two-
directed pure injective modules completely.
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Question 6.2. Let M be a one-directed indecomposable pure injective
module. Is it possible to have m ∈M such that the string w(m) is two-sided?

It will follow from what we show below that the answer to this question
is negative for domestic string algebras.

The following characterization of domestic string algebras is contained
in [12, Prop. 8.2].

Fact 6.3. A string algebra A is domestic if and only if every one-sided
string over A is almost periodic.

For instance, the following string algebra

R2 :

◦
α1

��

α2

��

◦δoo

◦
β

// ◦

γ2

EE

γ1

YY

(all zero-relations have length 2 and are shown by dotted curves) is domestic.
Indeed up to inversion every (one-sided or two-sided) string v over R2 is a
substring of either

∞(α−1
1 α2)δγ1(γ−1

2 γ1)nβ(α1α
−1
2 )∞, n ∈ Z,

or
∞(α−1

1 α2)δγ1(γ−1
2 γ1)∞, or ∞(γ−1

2 γ1)β(α1α
−1
2 )∞,

hence v is almost periodic.

Theorem 6.4. Let M be a one-directed indecomposable pure injective
module over a domestic string algebra A. Then M is isomorphic to a module
M(v) from Ringel’s list , where v is a one-sided string. Moreover , M(v) ∼=
M(w) if and only if v = w or v = w−1.

Proof. As in the proof of Theorem 5.4, we may assume that 0 6= m ∈M
such that u(m) (the left handed string determined by m) is 1S,1, hence
v = w(m) is a right handed string. Moreover, we may further assume that
M = N(v) = N(p), where p is a pp-type homogeneous in the interval
(.D)/(+.D) for some finite string D ≤ v.

Since A is domestic, Fact 6.3 implies that v is almost periodic. Let M =
M(v) be the direct sum or direct product module determined by v. Let z0

be the first element of a standard basis of M , and let q = ppM (z0). By
Lemma 4.2, q is homogeneous with respect to (.D)/(+.D).

Calculating in M(v) we see that q and p coincide on formulas (.E),
E ≥ D (since realizations of q and p define the same string v). Since p and q
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are homogeneous, they define the same cut on the chain (.D)/(+.D). Then
N(v) ∼= M(v) by Fact 3.1.

Also, by Theorem 5.4, N(v) ∼= N(v′) iff v = v′ or v−1 = v′.

Question 6.5. What is the algebraic structure of one-directed indecom-
posable pure injective modules over a non-domestic string algebra?

To highlight that some new effects may occur in a non-domestic case, let
us consider some examples.

Example 6.6 ([1]). Let A = G2,2 be the Gelfand–Ponomarev algebra,
that is, a k-algebra with generators α, β and relations α2 = β2 = αβ =
βα = 0. Suppose that the characteristic of k is not equal to 2, and let M be
the following direct sum module:

◦α
������

β ��>>>>
z1

◦α
������

β ��>>>>
z3

◦α
������ β

��>>>>
z5

◦
z0

◦
z2

◦
z4

◦
z6

. . .

Let p = ppM (z0). If D = αβ−1, then p is homogeneous in (.D)/(+.D) but
decomposable. Moreover the embedding of M into the corresponding direct
product module is not pure.

Proof. The pp-type p is homogeneous by Lemma 4.2. Also we have z0 =
1
2 ·(z0 +z2)+ 1

2 ·(z0−z2). But clearly (α±β) | x ∈ ppM (z0±z2). Calculating
strings on z0 ± z2 as in [1, p. 26] we obtain p ⊂ ppM (z0 ± z2). That p is
decomposable then follows from [5, Cor. 4.30].

Since (α − β)(z1 + z3 + · · · ) = z0, we see that α − β divides z0 in the
corresponding direct product module M . Also clearly α− β does not divide
z0 in M . Thus M is not pure in M .

Note that in this example the defining string v = (αβ−1)∞ for M is
expanding. Therefore in the direct product module M(v) the pp-type of z0

is indecomposable.
But in general there are indecomposable pp-types of a completely dif-

ferent shape. If v = v1v2 . . . is a one-sided string, then v(i) will denote the
string vivi+1 . . . , and recall that v | i denotes the string v1 . . . vi.

Lemma 6.7. Let v be a one-sided string over a string algebra A and
let M = M(v) be a direct sum module with the standard basis z0, z1, . . . .
Suppose that there is i such that for some n, v(i) |n 6= v(j) |n for every
j 6= i. Then the pp-type ppM (zi) is indecomposable.

Proof. Similar to [1, Prop. 6.2].
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Example 6.8. Let A = G2,3, a = αβ−1, b = αβ−2 and v = aba2ba3b . . . .
Let M = M(v) be the corresponding direct sum module, and let zi be an
element of the canonical basis of M . Then the pp-type pi = ppM (zi) is
indecomposable.

Proof. Using Lemma 6.7 it is easy to check that pi is indecomposable.
For instance, for z0 we may take n = 5, i.e., ab, as the required part of v.

Nevertheless, even in this case we do not know if the pure injective
envelope of M is indecomposable.

7. The Cantor–Bendixson rank. The Cantor–Bendixson analysis on
ZgA runs as follows. At the first step we delete from ZgA the isolated points,
that is, by [5, Cor. 13.4] exactly the indecomposable finite-dimensional A-
modules. What remains is a closed subset, Zg′A, the first derivative of ZgA.
Removing isolated points from this space we obtain the second derivative

Zg′A and so on. At limit stages we put Zg
(λ)
A =

⋂
µ<λ Zg

(µ)
A .

If this process reaches the empty set at stage λ+ 1, then the CB-rank of
ZgA is defined to be λ. In this case for every point M ∈ ZgA we may define

the CB-rank of M to be the least µ such that M ∈ Zg
(µ)
A \Zg

(µ+1)
A .

Note that if V is an open subset in ZgA, then the CB-rank of every
point in V can be calculated inside V . We define CB(V ) as the supremum
of CB-ranks of points in V .

A similar analysis is possible for any theory T of A-modules such that the
class of models of T is closed with respect to direct products. For instance,
ZgT is a closed subset of ZgA whose points are the indecomposable pure
injective modules that are direct summands of models of T . If ϕ and ψ are
pp-formulae, ϕ ≤T ψ means that ϕ(M) ⊆ ψ(M) for every M ∈ ZgT . Using
the corresponding equivalence relation ∼T on the lattice of all pp-formulae
L, we get the lattice LT which is a factor of L. For more on this see [5].

Let ψ < ϕ be pp-formulae. We say that (ϕ/ψ) is a minimal pair in T if
the interval [ψ,ϕ] in the lattice LT is simple.

If (ϕ/ψ) is a minimal pair in T , then, by [5, Cor. 9.3], there exists a
unique indecomposable pure injective module in ZgT opening this pair. The
question whether every isolated point in ZgT is isolated by a minimal pair is
still open. We say that a theory T has an isolation property (see [7, p. 382])
if for any theory T ′ such that ZgT ′ ⊆ ZgT , every isolated point in ZgT ′ is
isolated by a minimal pair.

The notion of m-dimension of a lattice L, mdim(L), can be found in
[5, Ch. 10]. For instance, the m-dimension of a finite lattice is zero and
mdim(ω + 1) = 1.

Let (ϕ/ψ) be a chain in the lattice of pp-formulae over A and let p ∈
(ϕ/ψ) be an indecomposable pp-type. We define the m-dimension of p,
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mdim(p), as the infimum of m-dimensions of intervals (ϕ′/ψ′) such that
ψ ≤ ψ′ < ϕ′ ≤ ϕ and p ∈ (ϕ′/ψ′).

◦
?�

ϕ
• ϕ′

p //

•ψ′
◦

� _

ψ

Proposition 7.1. Let A be an arbitrary ring. Let (ϕ/ψ) be a chain in
the lattice of all pp-formulae over A and let p ∈ (ϕ/ψ) be an indecomposable
pp-type. Then CB(N(p)) = mdim(p). Also mdim(ϕ/ψ) is the supremum of
m-dimensions of indecomposable pp-types p ∈ (ϕ/ψ).

Proof. The proof of [9, Thm. 3.1] can be applied in this situation to
show that the isolation property holds true for the open set (ϕ/ψ): for every
theory T of A-modules every isolated point in T ∩ (ϕ/ψ) is isolated by
a minimal pair. Now the result is easily proved by induction, similarly to
[5, Prop. 10.19].

It follows from [15, Prop. 2] that for every non-domestic string algebra
A, the CB-rank of ZgA is undefined. For a domestic string algebra Schröer
conjectured (see [14, p. 84]) that CB(ZgA) is finite and can be calculated
from the bridge quiver of A.

The precise definition of the bridge quiver of a domestic string algebra A
can be found in [16, S. 4]. We hope that from the following example it will
be clear how to calculate the bridge quiver for a particular string algebra.

Let A be the domestic string algebra R2 (see after Fact 6.3). The bands
over A are the following: C = α1α

−1
2 , C−1 = α2α

−1
1 , and D = γ1γ

−1
2 ,

D−1 = γ2γ
−1
1 .

From the description of the two-sided strings over A (see above) we read
off the following paths in the bridge quiver of A:_^]\XYZ[α2α

−1
1

α2δ // _^]\XYZ[γ1γ
−1
2

γ1β // _^]\XYZ[α1α
−1
2

Inverting this we obtain:

_^]\XYZ[α2α
−1
1

β−1γ−1
1 // _^]\XYZ[γ2γ

−1
1

δ−1α−1
2 // _^]\XYZ[α1α

−1
2

Gluing these together we get the bridge quiver of A:
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Fact 7.2 ([16, Lemma 4.2]). Let A be a domestic string algebra. Then
the bridge quiver of A is a finite oriented graph without oriented cycles.

Note that, directly from the definition, for a string algebra A the one-
directed indecomposable pure injective A-modules form an open subset in
ZgA. In the following theorem we calculate the CB-rank of this set.

Theorem 7.3. Let A be a domestic string algebra and let n be the max-
imal length of a path in the bridge quiver of A. Let U be the open set in ZgA
formed by the one-directed indecomposable pure injective A-modules. Then
CB(U) = n+ 1.

Proof. Given a string CD, UCD will denote the open set (C.D)/(+C.D)
in ZgA. We prove that CB(UCD) ≤ n+ 1. Since U is a union of such sets it
will then follow that CB(U) ≤ n+ 1.

Proposition 7.1 yields CB(UCD) = mdim(ϕ/ψ), where ϕ = (C.D) and
ψ = (+C.D). From Lemma 4.4 it follows that mdim(ϕ/ψ) is equal to the
m-dimension of the chain {(C.Di) | Di ≥ D, CDi is a string}. Then the
result is easily derived from [16, Thm. 4.3].

For the converse let C0, . . . , Cn be bands such that C0 . . . Ci . . . Cn is a
path of maximal length in the bridge quiver of A. Along this path we ob-
tain one-sided strings vi = Ck0

0 . . . Ck1
1 . . . C∞i , where k0, k1, . . . are arbitrary

natural numbers, and dots replace bridges between bands. By induction on
i = n, . . . , 0 we prove that (the direct product) module M(vi) has CB-rank
≥ n− i+ 1.

For i = n, the module M(v0) = M(Ck0
0 . . . C∞n ) is infinite-dimensional,

therefore its CB-rank is not less than 1.
For i < n note that M(vi) is in the Ziegler closure of the modules Mk =

M(wk), where wk = Ck0
0 . . . Cki . . . C

∞
i+1, k = 1, . . . . Indeed take any finite

string D ≤ vi. By Lemma 4.4 and [18, Thm. 4.9] a basis of open neighbor-
hoods of M(vi) can be chosen as {(.E)/((+.D) + (.F )) | D ≤ E ≤ vi < F}.
Clearly for every such pair there exists k such that E ≤ wk < F . Since
a leftmost standard basis element z0 opens this pair in Mk, we infer that
Mk ∈ (.E)/((+.D) + (.F )).

By the induction assumption, CB(Mk) ≥ n−(i+1)+1 = n−i for every k.
By the definition of CB-rank we deduce that CB(M(vi)) ≥ n− i+ 1.
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Finally for i = 0 we have CB(M(C∞0 )) ≥ n + 1, therefore CB(U) =
n+ 1.

Corollary 7.4. Let A be a domestic string algebra and let n be the
maximal length of a path in the bridge quiver of A. Then CB(ZgA) ≥ n+ 2.

Proof. From the proof of Theorem 7.3 we have CB(M) = n + 1 where
M = M(C∞0 ). Clearly it suffices to prove that the theory T of M contains
a non-isolated point.

Indeed, otherwise M is the only isolated point of T . Let C0 = α . . . β−1

and let ϕ be the pp-formula α |x ∧ β |x. Then ϕ(M) is a uniserial right
S-module, where S = End(M). As in [9, Thm. 3.1] it follows that M is
isolated in T by a minimal pair. By [5, Prop. 10.17] the interval (ϕ/x = 0)
in T has finite length. Therefore ϕ(M) has finite length as an S-module, a
contradiction.
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