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ORLICZ SPACES, α-DECREASING FUNCTIONS,
AND THE ∆2 CONDITION

BY

GARY M. LIEBERMAN (Ames, IA)

Abstract. We prove some quantitatively sharp estimates concerning the ∆2 and ∇2
conditions for functions which generalize known ones. The sharp forms arise in the connec-
tion between Orlicz space theory and the theory of elliptic partial differential equations.

In [4], the present author studied a class of uniformly elliptic equations
which includes the p-Laplacian equation as a special case. The usual function
tp is replaced by an arbitrary increasing function G(t) satisfying the growth
condition

δ + 1 ≤ tG′(t)
G(t)

≤ Γ + 1(0.1)

for positive constants δ ≤ Γ . Since [4] also looked at variational problems,
such as minimizing the value of

�

Ω

G(|Du|) dx

over all functions u in a suitable function space, it is obvious that this paper
actually looked at problems in Orlicz spaces of the form W 1,G(Ω), with G
satisfying a ∆2 condition and a ∇2 condition. However, the connection to
Orlicz spaces was de-emphasized in that paper because many of the tools of
Orlicz space theory were not useful for the techniques involved there.

Our goal here is to make this connection more explicit. We are interested
in two specific connection points. First, Young’s inequality for a Young func-
tion Y states that, for any two positive numbers s and t, we have

st ≤ Y (s) + Ỹ (t),
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where Ỹ is the complementary function to Y , defined by

Ỹ (t) = max
s≥0

(st− Y (s)).

In [4], a substitute Young’s inequality was used: If g is an increasing function,
and s and t are positive numbers, then

sg(t) ≤ sg(s) + tg(t).

We shall show that, in a sense, these two versions of Young’s inequality
are equivalent in Section 1. Next, it is clear that condition (0.1) for a Young
function G implies that G satisfies a ∆2 and a∇2 condition, and [3, Theorem
4.3] states that any Young functionG which satisfies a ∆2 and a∇2 condition
also satisfies (0.1) (provided we take G′ to mean the derivative from the
right for G). However, the relation between the constants δ and Γ and the
constants in the ∆2 and ∇2 condition is not very satisfactory in [3]. In
Section 2, we explain this relation more carefully and then we show that, for
a given Young function Y , we can find another Young function G, equivalent
to Y , satisfying (0.1) with optimal constants δ and Γ .

1. The complementary Young function. We begin by recalling some
basic definitions. A Young function is a convex, strictly increasing function
Y : [0,∞) → [0,∞). We also say that two positive functions Y and Z are
equivalent if there are constants k1 and k2 such that Y (s) ≤ Z(k1s) and
Z(s) ≤ Y (k2s) for all s ≥ 0.

To continue, we note that Ỹ is also a Young function. The definition
of the complementary function immediately implies Young’s inequality, and
hence, for a Young function Y , we have Ỹ ≤ Y ◦ y−1 (with y defined by
y(s) = Y (s)/s). Furthermore, for t = y−1(s), we have 2st− Y (t) = Y (t), so
Ỹ (2s) ≥ Y ◦ y−1(s), and hence Ỹ is equivalent to Y ◦ y−1.

2. The ∆2 and ∇2 conditions. We say that Y satisfies a ∆2 condition,
or that Y ∈ ∆2, if there is a constant K ≥ 2 such that

Y (2t) ≤ KY (t)(2.1)

for all t ≥ 0. Similarly Y satisfies a ∇2 condition, or Y ∈ ∇2, if there is a
constant L > 1 such that

2LY (s) ≤ Y (Ls)(2.2)

for all s ≥ 0. According to [7, Theorem 2.3.3], Y ∈ ∆2 if and only if Ỹ ∈ ∇2.
To discuss the connection to (0.1), we first introduce the following ter-

minology: A function G is said to be α-increasing for some α ∈ R if the
function Gα, defined by Gα(s) = s−αG(s), is increasing; similarly, G is
α-decreasing if Gα is decreasing. Note that condition (0.1) is equivalent, for
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a C1 function G, to the joint statements that G is (δ + 1)-increasing and
(Γ + 1)-decreasing. Next, [3, Theorem 4.1] states that a Young function
Y ∈ ∆2 if and only if there is a constant α > 1 such that Y is α-decreasing.
The issue that we address here is the relation between α and K in (2.1).
From the proof of [3, Theorem 4.1], we see that, if Y satisfies (2.1), then it is
α-increasing with α = K but, if Y is α-increasing, then it satisfies (2.1) with
K = 2α. By using ideas from [4, Lemma 1.6] (see also [5, pp. 301–302]), we
shall show that, if Y satisfies (2.1), then there is an equivalent function G
which is α-increasing with K = 2α. (Our philosophy is to note that almost
increasing functions are equivalent to increasing functions. We refer the in-
terested reader to Section 2.1 of [1], especially equations (2.4) and (2.4′) of
that work for more explanation. In addition, [6] looks at some similar issues,
and some of our ideas are also present in the discussion of the Matuszewska
index in [2, Section 2.2].)

Our first step is a general lemma, which allows a comparison to other
results.

Lemma 2.1. Let k > 1, K > 1, and M ≥ 1 be constants. Suppose that
Y be a positive function such that

(2.3a) Y (ks) ≤ KY (s) for all s ≥ 0,

(2.3b) Y (s) ≤MY (σ) for all σ ≥ s ≥ 0.

Set α = logkK. Then there is an increasing , α-decreasing function H such
that

H(s)
M

≤ Y (s) ≤MH(ks)(2.4)

for all s ≥ 0.

Proof. Set
H(s) = sup

0≤t≤s
tα inf

0≤τ≤t
τ−αY (τ).

Then clearly H is increasing, and

H(s) ≤ sup
0≤t≤s

tαt−αY (t) ≤MY (s).

Next, we have

inf
t/k≤τ≤t

τ−αY (τ) = inf
t/k2≤τ≤t/k

(kτ)−αY (kτ) ≤ inf
t/k2≤τ≤t/k

τ−αY (τ),

and, by induction,

inf
t/k≤τ≤t

τ−αY (τ) ≤ inf
t/km+1≤τ≤t/km

τ−αY (τ)

for any positive integer m. Hence

inf
0≤τ≤t

τ−αY (τ) = inf
t/k≤τ≤t

τ−αY (τ) ≥ 1
M

t−αY (t/k),
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so
MH(s) ≥ sup

0≤t≤s
Y (t/k) ≥ Y (s/k),

which implies that MH(ks) ≥ Y (s).
Finally, if s ≤ σ, then

σ−α sup
0≤t≤s

tα inf
0≤τ≤t

τ−αY (τ) = σ−αH(s) ≤ s−αH(s)

and

σ−α sup
s≤t≤σ

tα inf
0≤τ≤t

τ−αY (τ) = σ−α sup
s2/σ≤t≤s

(tσ/s)α inf
0≤τ≤tσ/s

τ−αY (τ)

= s−α sup
s2/σ≤t≤s

tα inf
0≤τ≤tσ/s

τ−αY (τ)

≤ s−α sup
0≤t≤s

tα inf
0≤τ≤tσ/s

τ−αY (τ)

≤ s−α sup
0≤t≤s

tα inf
0≤τ≤t

τ−αY (τ) = s−αH(s).

Hence H is α-decreasing.

Note that, since H is α-decreasing, we also have Y (s) ≤MKH(s). More-
over, if Y satisfies conditions (2.3) with positive constants k, K, and M with
k > 1, then clearly we must have M ≥ 1, and we also have

Y (km) ≤ KmY (1) ≤MKmY (km)

for any positive integer m. Hence we must have MKm ≥ 1 for any positive
integer m, and therefore K ≥ 1.

Let us also note the special case K = 1 so α = 0. In this case, H is
increasing and 0-decreasing, and therefore constant. Alternatively, we can
use (2.3) to see that

Y (σ)
M

≤ Y (s) ≤MY (σ)

for all s and σ, so we can also use H ≡ Y (σ) for any choice of σ.
Let us compare this result to the one on pp. 301–302 of [5]. There, a

function F is given satisfying the conditions

F (t) ≥ c1F (4t), c2F (t)t ≥ F (s)s

for all s ≥ t > 0, and an increasing, α-decreasing function g is constructed
with α = 1− log4 c1 such that

c2c1g(t) ≤ 4tF (t), c1tF (t) ≤ 4g(t).

In the present notation, we set Y (t) = tF (t). Then Y satisfies (2.3) with
k = 4, K = 4/c1, and M = 1/c2, so

Y/K ≤ g ≤MKY.
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From Lemma 2.1, we have an increasing, α-decreasing function H such that

Y/MK ≤ H ≤MY,

which improves the result in [5] if M ≤ K.
In fact, the function g from [5] is also C1. Our next result shows how

this additional constraint affects the present arguments.

Corollary 2.2. With Y , K, k, M , and α as in Lemma 2.1, there is a
C1(0,∞), increasing , α-decreasing function G such that

G(s)
M
≤ Y (s) ≤ 2MG(2ks)(2.5)

for all s > 0.

Proof. With H as in Lemma 2.1, set

G(s) =
1
s

s�

0

H(t) dt.

Then G is clearly C1(0,∞).
Since H is increasing, we have

G(s) ≤ 1
s

s�

0

H(s) dt = H(s) ≤MY (s),

and

G(2s) ≥ 1
2s

2s�

s

H(t) dt ≥ 1
2s

2s�

s

H(s) dt =
1
2
H(s),

which proves (2.5).
Next, G′(s) = (H(s)−G(s))/s ≥ 0, so G is increasing.
Finally, let σ ≥ s > 0. Then

σ−αG(σ) = σ−1−α
σ�

0

H(t) dt = σ−1−α
s�

0

H

(
σ

s
t

)
σ

s
dt

≤ σ−1−α
s�

0

(
σ

s

)α
H(t)

σ

s
dt = s−αG(s),

so G is α-decreasing.

Since G is α-decreasing and C1, we have

0 ≤ tG′(t)
G(t)

≤ α

for all t > 0.
In addition, we can use the ideas in this proof to prove the following

alternative version of [4, Lemma 1.1(b)]: If g is an increasing, Γ -decreasing
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function, and if

G(s) =
s�

0

g(t) dt,

then

G(s) ≥ 1
1 + Γ

sg(s)

for all s. (In [4], g was also assumed C1.) We just write

G(s) ≥
s�

0

g(s)
sΓ

tΓ
dt =

1
1 + Γ

sg(s).

From our lemma, we can also deduce a quantitative connection between
the ∆2 and ∇2 condition and condition (0.1).

Theorem 2.3. Suppose Y is a positive increasing function on (0,∞)
and that there are constants K ≥ 2 and L > 2 such that (2.1) and (2.2)
hold. Set α = log2K, β = log2 L+ 1, and θ = β/(β − 1), and suppose that
θ ≤ α. Then there is a C1, convex function G satisfying (0.1) with δ = α−1
and Γ = θ − 1. Further ,

21−βG(s) ≤ Y (s) ≤ 2β−1−θαG(2s)(2.6)

for all s ≥ 0.

Proof. First, define Z by Z(s) = s−θY (s). Then

Z(2s) = (2s)−θY (2s) ≤ 2α−θZ(s).

Next, let s ≤ σ, choose m to be the positive integer such that

2(1−β)mσ < s ≤ 2(1−β)(m−1)σ,

and set t = 2(1−β)mσ/s, so 21−β ≤ t < 1. Then

Z(σ) = 2m(1−β)θ(st)−θY (2m(β−1)st) ≥ 2m(1−β)θ2mβ(st)−θY (st)

= (st)−θY (st) ≥ 21−βs−θY (s) = 21−βZ(s).

It then follows from Lemma 1.1 (with Z in place of Y , α − θ in place of
α, k = 2, 2α−θ in place of K, and M = 2β−1) that there is an increasing,
(α− θ)-decreasing function H such that 21−βH(s) ≤ Z(s) ≤ 2β−1H(2s) for
all s.

Now define H1 by H1(s) = sθH(s). It follows that H1 is α-decreasing
and θ-increasing with

21−βH1(s) ≤ Y (s) ≤ 2β−1−θH1(2s).

Finally, we define G by

G(s) =
s�

0

H1(t)
t

dt.
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Since θ ≥ 1, it follows that H1 is 1-increasing, which means that the inte-
grand here is nonnegative, continuous and increasing on (0,∞). Hence G is
convex. In addition, since H1 is 1-increasing, we have G ≤ H1. Since H1 is
α-decreasing, we also have

G(s) ≥
s�

0

H1(s)
t

tα

sα
ds =

H1(s)
α

.

Hence (2.6) holds.
The proof is completed by noting that the argument in Corollary 2.2

shows that G is α-decreasing and θ-increasing.

Note that Y is not assumed to be a Young function. Moreover, if θ = α,
then we can show by other means that G(s) = Csα satisfies the conclusion
of this theorem for a suitable positive constant C. Finally, we remark that
the condition θ ≤ α is not just an artifact of our method. Of course such
a condition is necessary for (0.1) to hold, but, more significantly, if β is
rational, then conditions (2.1) and (2.2) imply that α ≥ θ. To prove this
statement, we suppose that β = p/q for some positive integers p and q, and
we note that p > q. Then

Y (2q(β−1)s) = Y (2p−qs) ≤ Kp−qY (s) = 2α(p−q)Y (s)

from (2.1) while

Y (s) ≤ (2L)−qY (Lqs) = 2−βqY (2q(β−1)s)

from (2.2). The combination of these two inequalities implies that

2α(p−q)−βq ≤ 1,

so α(p − q) ≥ βq or αq(β − 1) ≥ qβ, so α(β − 1) ≥ β. This last inequality
immediately gives α ≥ θ.
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