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Abstract. Let (X,d) be a metric space where all closed balls are compact, with a
fixed σ-finite Borel measure µ. Assume further that X is endowed with a linear order �.
Given a Markov (regular) operator P : L1(µ) → L1(µ) we discuss the asymptotic be-
haviour of the iterates Pn. The paper deals with operators P which are Feller and such
that the µ-absolutely continuous parts of the transition probabilities {P (x, ·)}x∈X are
continuous with respect to x. Under some concentration assumptions on the asymptotic
transition probabilities Pm(y, ·), which also satisfy inf(suppPf1) � inf(suppPf2) when-
ever inf(supp f1) � inf(supp f2), we prove that the iterates Pn converge in the weak∗

operator topology.

Introduction. Let (X,d) be a metric space with the property that
each closed ball K(x0, r) = {x ∈ X : d(x0, x) ≤ r} is compact. Given a
σ-finite measure µ on the Borel σ-algebra B of subsets in (X,d) we denote
by (L1(µ), ‖·‖) the Banach lattice of µ-integrable functions on X. Functions
from L1(µ) which are equal µ-almost everywhere are identified. Instead of
B we will rather think of its µ-completion B̃. If not stated otherwise, also
all inequalities are in the µ-a.e. sense. We denote by D the convex set {f ∈
L1(µ) : f ≥ 0,

�
X
f dµ = 1} of all densities in L1(µ). A linear operator

P : L1(µ)→ L1(µ) which preserves D (i.e. P (D) ⊆ D) is called Markov (or
stochastic). In this paper we will deal only with regular Markov operators,
given by a family of transition probabilities {P (y, dx)}y∈X satisfying

• (X,B) 3 y 7→ P (y,A) is measurable for each fixed A ∈ B,
• 0 ≤ P (y,A) ≤ 1, P (y, ∅) = 0 and P (y,X) = 1,
• P (y,

⋃∞
n=1 An)=

∑∞
n=1 P (y,An) whenever An∈B are pairwise disjoint,

• P (y,A) = 0 for µ-almost all y if µ(A) = 0.

Then
�
A
Pf(x)dµ(x) =

�
X
f(y)P (y,A) dµ(y) for all A ∈ B and f ∈ L1(µ).

By setting Pν(A) =
�
X
P (y,A) dν(y) we extend P to the Banach lat-

tice (M(X), ‖ · ‖) of all bounded signed measures ν on (X,B). A posi-
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tive linear contraction Q : L1(µ) → L1(µ) is called a kernel operator if
there exists a Borel measurable function q : X × X → R+ such that
Qf(x) =

�
X
q(x, y)f(y) dµ(y) and

�
q(x, y) dµ(x) ≤ 1 for every y ∈ X. In

particular, a kernel Markov operator P satisfies P (y, ·) 4 µ and obviously�
q(x, y) dµ(x) = 1 for every y ∈ X. Moreover, it follows from

Pν(A) = �
X

�
X

q(x, y)1A(x) dµ(x) dν(y)

that Pν ∈ L1(µ) for any ν ∈ M(X). We say that a Markov operator P is
Feller if yn → y0 implies that

� f(x)P (yn, dx)→ � f(x)P (y0, dx)

for each continuous and bounded function f . By C0(X) we denote the Ba-
nach sublattice of functions vanishing at infinity (i.e. for each positive ε
there exists a compact set K ⊆ X such that |f(x)| ≤ ε for x 6∈ K) equipped
with the sup-norm ‖ · ‖sup. In this paper we will additionally assume that
P ∗C0(X) ⊆ C0(X). Clearly this property is inherited by powers P ∗k. By
L∞0 (µ) we denote the Banach sublattice of L∞(µ), endowed with the sup–
norm ‖ · ‖sup, consisting of all functions h vanishing at infinity. It is clear
that if P ∗(C0(X)) ⊆ C0(X) then P ∗(L∞0 (µ)) ⊆ L∞0 (µ). Clearly, for any E
contained in a ball K(x0, r) and ε > 0 there exists t such that P (y,E) < ε
whenever d(y, x0) > t.

We recall that a kernel Markov operator on L1(µ) is strong Feller in the
strict sense if the mapping

(SFS) (X,d) 3 y 7→ q( ·, y) ∈ (D, ‖ · ‖)
is continuous. It follows from (SFS) that P ∗h is bounded and continuous
whenever h ∈ L∞(µ), where P ∗ denotes the adjoint operator. This follows
easily from P ∗h(y) =

�
X
q(x, y)h(x) dµ(x). The asymptotic properties of

iterates of (SFS) operators and their role in modelling a cell cycle have been
studied by the author in [B1], [B2] (following a series of papers [GL], [KM],
[KT], [LM1]–[LM3], [LMT], [ŁR], [M], [T]). The current paper is a two-
fold extension of [B1]. We replace assumption (SFS) by a weaker condition
(PSFS) (see below), and proceeding to applications we discuss ordered phase
spaces instead of R. Moreover, our new proofs seem to be simplified.

We say that a variation norm bounded sequence of measures νn is vaguely
convergent to ν if limn→∞

�
X
h dνn =

�
X
h dν for all h ∈ C0(X). Since

M(X) may be identified with the adjoint space C0(X)∗, this is just the
weak∗ convergence. Let us recall that the set of all subprobability positive
measures on X is compact for the vague topology.

Definition 1.1. We say that a Markov operator P : L1(µ) → L1(µ) is
partially kernel if there exists a nonnegative measurable kernel q(x, y) such
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that 0 ≤ Q ≤ P (in particular Pac(y, ·) ≥ q(·, y)dµ) and moreover

(1) inf
y∈K

η(y) = η(K) > 0

for each compact K ⊆ X, where η(y) = ‖q(·, y)‖1.

Definition 1.2. A partially kernel Feller operator P is called partially
strong Feller in the strict sense (PSFS) if P ∗(C0(X)) ⊆ C0(X) and the
substochastic kernel operator Q has the property that

(PSFS) (X, d) 3 y 7→ q(·, y) ∈ (L1
+(µ), ‖ · ‖1)

is continuous.

Clearly a (PSFS) operator P does not necessarily map L∞(µ) into con-
tinuous functions as in the case of (SFS). This is because the singular part
Psin(y, ·) of the transition probabilities may be nontrivial and contribute
towards discontinuity. The iterates of a (PSFS) Markov operator P also
satisfy (PSFS). For this we notice (see [F1] for details) that the kernel op-
erators form a two-sided ideal in the Banach lattice of bounded operators
on L1(µ). If P = Q+R (R = P −Q) then Pm =

∑m
j=1 P

m−jQRj−1 +Rm.
Denote by qm(x, y) the kernel corresponding to the substochastic operator
Qm =

∑m
j=1 P

m−jQRj−1. In order to verify that X 3 y 7→ qm(·, y) ∈ L1
+(µ)

is continuous we first note that the Rj are Feller. Therefore if yn → y then
R∗jδyn converges to R∗jδy in the vague topology. The rest follows from the
observation that the kernel substochastic operator Q maps weak∗ (vaguely)
convergent sequences to norm convergent ones.

Markov kernels considered in this paper enjoy a kind of asymptotic con-
centration and have stochastically controlled jumps ((SCJ) for abbrevia-
tion). Long jumps come “mostly” from singular or discontinuous parts. In
order to formally introduce this concept, for fixed y0 ∈ X and m ≥ 1 we
define

tm(ε, r0) = inf{t > 0 : Pm(y,K(y0, r0)) < ε for all y ∈ X with d(y, y0) > t},
ηm(ε, r0) = inf

{ �
X

qm(x, y) dµ(x) : d(y, y0) ≤ tm(ε, r0)
}
.

Definition 1.3. We say that a (PSFS) Markov operator P has prop-
erty (SCJ) if

(SCJ) lim
k→∞

ηk(ε, r0) = 1 for all ε > 0 and r0 > 0.

Remark 1. We notice that if there exists 0 < a < 1 such that η(y) ≥ a
for every y ∈ X then for each natural m the following estimate holds:

ηm(ε, r0) ≥ 1− (1− a)m



124 W. BARTOSZEK

for any ε, r0, y0. In particular condition (SCJ) holds. Clearly all (SFS)
Markov operators enjoy (SCJ).

For the convenience of the reader, we repeat some parts of [B1], mainly
concerning notation and definitions. Most of them are standard and are
borrowed from [F1].

The motivation for this paper comes from studying a class of Markov
operators on L1([0,∞)), the Banach lattice of Lebesgue integrable functions
on [0,∞), with kernels (see [LMT] for origins)

(3) q(x, y) =

{
− ∂

∂x
H(Q(λ(x))−Q(y)) if 0 ≤ y ≤ λ(x),

0 otherwise,

where the functions H,Q, λ : [0,∞)→ [0,∞) are assumed to be absolutely
continuous. Moreover, they satisfy:

(H) H(0) = 1, limx→∞H(x) = 0, H is nonincreasing,
(Qλ) Q(0) = λ(0) = 0, limx→∞Q(x) = limx→∞ λ(x) = ∞, and Q, λ are

nondecreasing.

The class of Markov operators with kernels (3) and H, Q, λ satisfying
conditions (H), (Qλ) is denoted by LMT (after Lasota, Mackey and Tyr-
cha whose contribution to mathematical modelling of cell cycles is crucial).
Clearly LMT operators satisfy (SFS) and preserve C0(X), and for each m
and ε > 0 we have ηm(ε, r0) = 1. It has been proved in [B1] that LMT
operators have convergent iterates in the weak∗ operator topology. We get
the same for more general (PSFS) Markov operators on an abstract ordered
phase. The following easy example shows that our generalization is mean-
ingful.

Example 1. Let P0 be an (SFS) Markov operator preserving C0([0,∞))
with a kernel q(x, y), let ϕ : [0,∞) → [0,∞) be a continuous mapping sat-
isfying limy→∞ ϕ(y)=∞ and let η : [0,∞)→ (0, 1) be continuous. Define

P (y, ·) = (1− η(y))δϕ(y) + η(y)q(·, y)dλ.

Obviously P does not belong to (SFS) but satisfies (PSFS).

Remark 2. Applying the above remark we easily get an important class
of (PSFS) operators. Consider any LMT operator P0. Every convex mixture
of P0 with a deterministic perturbation produces a (PSFS) operator which
is not (SFS). Another important class of (PSFS) operators are convolution
operators Pµ (i.e. operators of the form Pµf(x) =

�
R f(x− y) dµ(y)), where

the probability measure µ has a nontrivial absolutely continuous part.

Generalizing [B1] we study weak convergence of iterates P nf of a (PSFS)
operator P . We will prove that under some mild extra conditions they
converge to Sf , where S is a substochastic projection onto L1

∗(µ) (i.e.
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S2 = S ≥ 0 and
�
X
Sf dµ ≤ 1 for every f ∈ D). Moreover, if F ∈ B denotes

the minimal (modulo sets of measure zero) set which carries supports of
all P -invariant densities, then SF = S�L1(F,µ) is a Markov projection onto
P -invariant functions, and ‖P nf − SF f‖ → 0 for all f ∈ L1(F, µ). We note
that L1(F, µ) is P -invariant and that F is well defined, because L1(µ) is
separable. If Fj = supp f∗j , where f∗j is an ergodic invariant density, then
Pj = P �L1(Fj ,µ) is clearly asymptotically stable on its domain. We note that
for f ∈ D we have

�
Fj
Sf dµ = limn→∞

�
Fj
Pnf dµ = Λj(f), where the last

sequence converges as it is bounded and nondecreasing (Fj is invariant).
This implies Sf = Λj(f)f∗j on Fj . If there are no invariant densities at all,
then obviously S ≡ 0, and limn→∞

� ∞
0 Pnfh dµ = 0 for every h ∈ C0[0,∞).

In particular, P is sweeping with respect to the family of compact sets.
The rest of our notation follows [F1]. We shall also use some of its results,

which we now briefly recall. Given a Markov operator P on L1(µ), the space
X may be divided into two disjoint parts C and D. The conservative part C
is characterized by C = {x ∈ X : f ≥ 0⇒∑∞

n=0 P
nf(x) is either 0 or ∞}.

Because P ∗1C ≥ 1C , the Markov operator PCf = P (1Cf) is well defined.
D is called the dissipative part. Obviously P ∗1D ≤ 1D and

∑∞
n=0 P

nf(x) <
∞ for all f ∈ L1(µ) and x ∈ D. In particular, limn→∞ Pnf(x) = 0 for x ∈ D.
Even more can be proved: there exists a sequence Dm of measurable subsets
of D such that limn→∞ P ∗n1Dm(x) = 0 and

⋃∞
m=1Dm = D. If C = X

then we say that the operator P is conservative. We denote by Σi(P ) the σ-
algebra of all invariant sets A, i.e. such that P ∗1A = 1A. If Σi(P ) = {∅,X}
then P is called ergodic. The deterministic σ-algebra Σd(P ) is defined as
{B ∈ B : P ∗n1B = 1Bn for every natural n}. We say that B0, B1, . . . , Bd−1

(from Σd(P )) form a cycle if P ∗d1B0 = 1B0 and P ∗1Bj = 1Bj+1 for all
0 ≤ j ≤ d− 2. Clearly Σi(P ) ⊆ Σd(P ), but in general these two σ-algebras
may differ. If Σi(P ) = Σd(P ) then we say that the Markov operator P does
not allow cycles.

2. Main result. The structure of the present paper resembles [B1].
In this section we describe the asymptotic properties of iterates of (PSFS)
Markov operators acting on abstract L1(µ) spaces. We start with

Definition 2.1. Let B be a µ-measurable subset of X. The essential
closure of B is the smallest closed subset D of X such that µ(B ∩Dc) = 0.
It is denoted by B

ess
.

Clearly, B
ess

is well defined. It is enough to take any density f with
support B (it exists as µ is σ-finite) and set B

ess
= supp(fdµ).

Lemma 2.2. Let P be a (PSFS) Markov operator on L1(X,B, µ). If
B0, B1 ⊆ C are two invariant measurable sets (i.e. P (x,Bj) ≥ 1Bj (x) for
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µ-almost all x, where j = 0, 1) which are disjoint µ-almost everywhere (i.e.
µ(B0 4B1) = 0) then B

ess
0 ∩B

ess
1 = ∅.

Proof. Let Q(x,A) =
�
A
q(z, x) dµ(z). It follows from the (PSFS) as-

sumption that the sets

{x : Q(x,B0) = 0} and {x : Q(x,B1) = 0}
are closed. Since µ(Bj \ {x : Q(x,B1−j) = 0}) = 0 for j = 0, 1, it follows
that B

ess
j ⊆ {x : Q(x,B1−j) = 0}. Suppose that x0 ∈ B

ess
1 ∩ B

ess
2 . Then by

weak continuity of x 7→ P (x, ·) we get P (x0, B
ess
j ) = 1 for j = 0, 1. On the

other hand, we can choose sequences B0 3 yn → x0 and B1 3 zn → x0 such
that P (yn, B1) = 0, P (yn, B0) = 1, P (zn, B0) = 0, and P (zn, B1) = 1 for
each n. By the norm continuity of x 7→ Q(x, ·) and the property (1) which
guarantees that

η(K(x0, 1)) > δ

for some strictly positive δ, we obtain

0 < δ ≤ Q(x0, B
ess
0 ) = lim

n→∞
Q(zn, B0) ≤ P (zn, B0) ≡ 0,

a contradiction.

Lemma 2.3. Let P be a (PSFS) Markov operator on L1(X,B, µ) such
that PC does not allow cycles. Then

(4) lim
n→∞

�
K∩(C\F )

Pnf dµ = 0

for every compact set K ⊆ X and arbitrary f ∈ L1(X,B, µ).

Proof. The proof is essentially the same as that of Lemma 1 in [B1].
Here we only simplify some arguments. Repeating the first part of the above
mentioned proof, for all atoms B ∈ Σd(PC) we get

(5) lim
n→∞

sup
f∈D
‖PnBf − Pn+1

B f‖ = 0

(i.e. the zero alternative in the so-called “0-2 law”, see [F2] for details).
Then we notice that if ν = limj→∞ Pnjf for some nj ↗ ∞, where

f ∈ Dµ and the convergence is in the vague topology, then ν is absolutely
continuous (if nonzero). In fact, by (5) we get Pν = ν. Since P is partially
kernel we have (Pνsin)ac 6= 0 whenever the singular part νsin of ν is nonzero
(otherwise ν is already absolutely continuous and there is nothing to prove).
It follows from

� νac dµ = � (Pν)ac = � [P (νac + νsin)] dµ

= � Pνac dµ+ � (Pνsin)ac dµ = � νac dµ+ � (Pνsin)ac dµ
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that νsin = 0. We conclude that each P -invariant probability measure is
absolutely continuous.

Since the deterministic σ-field is atomic, the conservative part C is a
countable (or finite) union of atoms. As in [B1], in order to prove

lim
n→∞

�
K∩(C\F )

Pnf dµ = 0,

it is enough to show that

lim
n→∞

�
K∩B

Pnf dµ = 0

for every atom B ⊆ C \ F . It follows from Lemma 1 that B
ess ∩ F ess

= ∅.
Suppose that

lim
n→∞

�
K∩B

Pnf dµ > 0 for some f ∈ D.

Since B is invariant we may assume that f is (µ-a.e.) concentrated on B
ess

.
Choosing a subsequence, let Pnjf → ν in the vague topology, where ν is a
nonzero positive measure. By (5) we have ‖Pν−ν‖ = 0 and by Lemma 1 we
infer that ν is totally concentrated on B

ess
, which is disjoint from F

ess
. In

particular, dν/dµ = fν ∈ L1(µ) is invariant and concentrated outside F
ess

,
a contradiction.

The next lemma is an easy consequence of a corollary from [BB]. Actually
its proof is the same as that of Lemma 2 in [BB], as the latter is not affected
by passing to (PSFS).

Lemma 2.4. Let P be a partially kernel Markov operator on L1(µ). If
PF does not allow cycles then for every f ∈ L1(F, µ),

lim
n→∞

‖PnF (f)− E(f |Σi(PF ))‖1 = 0.

The last lemma of this section is a modification of Lemma 3 in [B1].

Lemma 2.5. Let P be a (PSFS) Markov operator satisfying the (SCJ)
condition. Then for every compact set K ⊆ X and f ∈ D we have

lim
n→∞

�
K∩D

Pnf dµ = 0.

Proof. Given a compact set K ⊆ X suppose that limj→∞
�
K∩D P

njf dµ
> 4ε for some sequence nj ↗∞. Since P is defined by transition probabil-
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ities, we have

P ∗k1Dm∩K(y) = �
X

1Dm∩K(x)P k(y, dx)

↗ �
X

1D∩K(x)P k(y, dx) = P ∗k1D∩K(y)

as m↗∞, for all y ∈ X and any k ≥ 1.
Now fix k ≥ 1 large enough so that ηk(ε, r0) > 1 − ε, where r0 is such

that K ⊆ K(y0, r0). As above,

lim
m→∞

Q∗k1Dm∩K(z) = lim
m→∞

� qk(x, z)1Dm∩K(x) dµ(x) = Q∗k1D∩K(z)

for each z ∈ X, and moreover the sequence is nondecreasing. Since both
Q∗k1Dm∩K and the limit function Q∗k1D∩K belong to C0(X), by a Dini ar-
gument the convergence is uniform on X. We find m♦ such that for all
m ≥ m♦ we have

sup
z∈X
|Q∗k1Dm∩K(z)−Q∗k1D∩K(z)| < ε.

If z 6∈ K(y0, tk(ε, r0)) then by the definition of tm(ε, r0) we have

|P ∗k1D∩K(z)− P ∗k1Dm∩K(z)| ≤ P ∗k1D∩K(z) + P ∗k1Dm∩K(z) ≤ 2ε.

If z ∈ K(y0, tk(ε, r0)) then

|P ∗k1D∩K(z)− P ∗k1Dm∩K(z)| ≤ |P ∗k1D∩K(z)−Q∗k1D∩K(z)|
+ |Q∗k1D∩K(z)−Q∗k1Dm∩K(z)|
+ |Q∗k1Dm∩K(z)− P ∗k1Dm∩K(z)|

≤ ε+ ε+ ε = 3ε whenever m ≥ m♦.
Therefore

‖P ∗k1D∩K − P ∗k1Dm∩K‖∞ ≤ 3ε

if m ≥ m♦. Now

�
Dm∩K

Pnjf dµ =
( �
Dm∩K

− �
D∩K

+ �
D∩K

)
Pnjf dµ

≥ 4ε−
∣∣∣ � Pnj−kf(P ∗k1Dm∩K − P ∗k1D∩K) dµ

∣∣∣

≥ 4ε− � Pnj−kf‖P ∗k1Dm∩K − P ∗k1D∩K‖sup dµ > ε

for all j = 1, 2, . . . . On the other hand, f · P ∗nj1Dm∩K → 0 as j → ∞ for
µ-almost all x. Finally by the Lebesgue dominated convergence theorem,

lim
j→∞

�
Dm∩K

Pnjf dµ = lim
j→∞

�
X

f · P ∗nj1Dm∩K dµ = 0,

and we arrive at a contradiction.
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Combining the above lemmas we easily obtain the main result of this
section. Its proof is omitted as it is straightforward and the same as in [B1].

Theorem 2.6. Let (X,d) be a metric space such that all closed balls
are compact. If a (PSFS) Markov operator P on L1(X,B, µ) has property
(SCJ) and Σi(PC) = Σd(PC), then for every compact set K ⊆ X and every
f ∈ L1(X,B, µ) we have

lim
n→∞

�
K

Pnf dµ = �
K

Sf dµ,

where S : L1(µ)→ L1
∗(µ) is a substochastic projection onto the sublattice of

P -invariant functions. Moreover , on L1(F,BF , µ|F ) the above convergence
is in the L1 norm.

Remark 2.7. Note that if P is (PSFS) then the singular parts of P nν
tend to 0 (in the variation norm). Thus in the above theorem f may be
replaced by any bounded signed measure ν on (X,B). Clearly in that case
the substochastic projection S maps M(X) to L1

∗(µ).

3. (PSFS) operators on ordered phase spaces. In this section we
apply the abstract theorem of the previous section to a special class of
(PSFS) operators. Even though they are more general than LMT we still
get their weak asymptotic stability. The phase space of LMT operators is
the nonnegative half-line [0,∞). Here the phase spaces (X,d) have both a
metric structure and are partially ordered by a relation � (if x � y and
x 6= y then we write x ≺ y). This extension seems justified because of
possible applications in cell models. Here we may think of multiparameter
models with parameters (well) ordered according to their influence on the
growth of the cell. Therefore we will assume that

(i) � is linear,
(ii) each closed subset F ⊆ X has a least element (denoted by

∧
(F )).

Of course R+ with ordinary order and topology satisfies the above con-
ditions. Another natural case is

Example 3.1. Let X = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0 and
∑n
j=2 x

2
j ≤

r(x1)}, where r is a continuous function defined on [0,∞) satisfying r(0) = 0
and r(x) > 0 for x > 0. The order � on X can be taken lexicographical.

Returning to general considerations, for each µ ∈ M(X) we set
∧

(µ) =∧
(suppµ), where as before suppµ stands for the topological support of the

measure µ (for a density f ∈ D we set
∧

(f) =
∧

(supp f dµ)).

Definition 3.2. We say that the transition probabilities of a Markov
operator P acting on L1(µ) have nondecreasing lower bounds (abbreviated
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to (NLB)) if

(6) x � y ⇒ ∧
(P (x, ·)) � ∧(P (y, ·)).

Example 3.3. LMT operators are (NLB). This follows easily from the
monotonicity of the functions Q,λ and H. In fact,

∧
(P (y, ·)) is the smallest

x ∈ R+ such that λ(x) ≤ y and H(Q(λ(x+h))−Q(y)) < H(Q(λ(x))−Q(y))
for any h > 0.

For general (X,�) the condition (NLB) imposed on transition probabil-
ities is not very useful in our proofs. Therefore we introduce

Definition 3.4. We say that a Markov operator P acting on L1(µ)
preserves the order of lower bounds of densities (abbreviated to (NLBD)) if
for any pair of densities f1, f2 ∈ D we have

(7)
∧

(f1) � ∧(f2) ⇒ ∧
(Pf1) � ∧(Pf2).

Theorem 3.5. Let P be a Markov operator on L1(X,B, µ), where
(X,d,�) is a metric ordered space and µ is a fixed σ-finite measure. Fur-
ther , assume that closed balls in X are compact and � satisfies conditions
(i) and (ii) above. If P is (PSFS) and conditions (NLBD) and (SCJ) hold
then for every compact set K ⊆ X and every f ∈ L1(X,B, µ) we have

lim
n→∞

�
K

Pnf dµ = �
K

Sf dµ,

where S : L1(µ)→ L1
∗(µ) is a substochastic projection onto the sublattice of

P -invariant functions. Moreover , on L1(F,BF , µ|F ) the above convergence
is in the L1 norm.

Proof. It is sufficient to show that Σi(PC) = Σd(PC). Without loss of
generality we may assume that P is conservative (C = X). Suppose that
there are atoms Bj (j = 0, 1, . . . , d − 1) such that P ∗n1Bj = 1Bj+n , where
j + n is understood mod d. It follows from the (PSFS) condition that

P ∗1Bj (x) = P (x,Bj) = Q(x,Bj) +R(x,Bj) > 0

for x from some open neighbourhood of B
ess
j+1. Hence the B

ess
j are pairwise

disjoint as P ∗1Bj (x) = 0 for µ-almost all x ∈ ⋃k 6=j+1 Bk. Define cj =∧
(B

ess
j ) =

∧
(fj), where fj ∈ D is a density with supp f = B

ess
j . It follows

that all cj must be distinct. We note that supp(Pfj) = supp fj−1. Indeed,

�
Bj−1

Pfj dµ = � fjP ∗1Bj−1 dµ = � fj1Bj dµ = 1

and for every A ⊆ Bj−1 of positive measure,
�
A
Pfj dµ =

�
fjP

∗1A dµ > 0
(see [KL]). Suppose that d > 1. Without loss of generality we may assume
that c0 ≺ min{cj : j = 1, . . . , d− 1}. It follows that

∧
(Pf0) � min{cj : j =

1, . . . , d−1}. Applying this argument several times we obtain
∧

(Pnf0) � c0
for all n, contrary to supp(P df0) = B

ess
0 .
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By showing that LMT operators do not allow cycles (Σi(P ) = Σd(P ))
it has been proved in [B1] that a general LMT operator P has convergent
iterates (in the weak∗ operator topology). The proof relied on algebraic
properties of LMT kernels (actually the (NLB) property was exploited).
In this section we obtain the weak asymptotic stability of (PSFS)+(NLB)
operators, generalizing the results of [B1] (and its predecessors [BL], [B2],
[GL], [KM], [LMT], [M], and [T]).

Lemma 3.6. Let (X,d, µ,�) be a metric space such that all closed balls
are compact and � satisfies (i) and (ii). If a regular Markov operator P :
L1(µ) → L1(µ) is Feller and has the (NLB) property then for each density
f ∈ D we have ∧

(Pf) � ∧(P (
∧

(f), ·)).
Proof. For each z <

∧
(Pf) there exists rz > 0 such that

0 = �
K(z,rz)

Pf dµ(x) = � P (x,K(z, rz))f(x) dµ.

It follows that P (x,K(z, rz)) = 0 for µ-almost all x ∈ supp f . The Feller
property implies that P (x,K(z, rz)) = 0 for all x ∈ supp f . In particular,

P (
∧

(f),K(z, rz)) = 0.

The order interval I = {z ∈ X : z ≺ ∧(f)} (if nonempty) may be cov-
ered by

⋃
z∈I K(z, rz) = UI . Clearly UI , as an open subset of a separable

metric space, is a countable union of base sets (say some balls K(z, rz)). In
particular, P (

∧
(f),UI) = 0. We conclude that

∧
(P (
∧

(f), ·)) � ∧(Pf).

In general, conditions (6) and (7) are not even comparable. However, if
X = R+ then we have

Lemma 3.7. Let P : L1(R+) → L1(R+), where R+ is equipped with the
ordinary metric | · | and order ≤, be a regular Markov operator. If P is Feller
and (NLB) holds then for each density f ∈ D we have

(7)
∧

(Pf) =
∧

(P (
∧

(f), ·)).
In particular (NLBD) holds.

Proof. We only have to show that
∧

(Pf) ≥ ∧(P (
∧

(f), ·)). Suppose a =∧
(Pf) <

∧
(P (
∧

(f), ·)) = b. For some r > 0 we have P (
∧

(f), [0, a+r]) = 0.
It follows from the (NLB) assumption that

∧
P (x, ·) ≥ a+r for all x ≥ ∧(f).

In particular, P (x, [0, a+ r/2]) = 0 for all x ∈ supp f . We obtain

�
[a−r/2,a+r/2]

Pf(x) dx = � f(x)P (x, [a− r/2, a+ r/2]) dx = 0,

contradicting a ∈ supp(Pf).
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Combining Theorem 3.5 with the above lemma we obtain

Theorem 3.8. Let P be an LMT Markov operator on L1(R+), where
R+ is equipped with the ordinary metric, order ≤, and Lebesgue measure λ.
Then for every compact set K ⊆ R+ and every f ∈ L1(R+) we have

lim
n→∞

�
K

Pnf dλ = �
K

Sf dλ,

where S : L1(R+)→ L1
∗(R+) is a substochastic projection onto the sublattice

of P -invariant functions. Moreover , on L1(F ) the above convergence is in
the L1 norm.

Final remarks. As mentioned before, conditions (NLB) and (NLBD) are
not comparable. To see this let X = [0, 1] be equipped with the ordinary
metric and order structure, and let λ denote the Lebesgue measure restricted
to X. We define kernel transition probabilities by

(8) q(x, y) =
{
y1[0,1](x) + (1− y)1[1,2](x) if 0 ≤ y ≤ 1,

1[0,1](x) if y ∈ [1, 2].

It is clear that the Markov operator P defined by the above kernel satis-
fies condition (SFS) and

∧
(Pfdλ) = 0 for each density f . In particular,

condition (NLBD) is satisfied. On the other hand,
∧

(P (0, ·)) = 1 >
∧

(P (x, ·)) = 0

for each 0 < x ≤ 2. Hence (NLB) does not hold.
In order to show that (NLB) does not imply (NLBD) consider X =

{(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ x} equipped with the ordinary 2-dimensional
Euclidean metric, lexicographical order � and the Lebesgue measure λ2

restricted to X. Let g be any density concentrated on the region

D = {(x, y) ∈ X : x ≥ 1, y ≥ 2− x, 0 ≤ y ≤ x}
with unbounded support (for instance take g(u, v) = const

1+(u2+v2)2 1D((u, v))).
For x > 1 we define the triangle ACDx, where A = (1, 1), C = (2, 0), and
Dx = (1 + 1/x, 0). Let

gx(·) =
2

1− 1/x
14ACDx(·)

denote a uniform density on this triangle. We define a Markov operator P
on L1(X,λ2) by the kernel

(9) q(·, (x, y)) =





g(·) if 0 ≤ x ≤ 1 and 0 ≤ y ≤ x,

1
x
g(·) +

(
1− 1

x

)
gx(·) if x > 1 and 0 ≤ y ≤ x.
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We notice that
∧

(P ((x, y), ·)) = (1, 1) for any (x, y) ∈ X, hence (NLB)
holds. On the other hand, if f1 is a uniformly distributed density on the
triangle {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} and f2 is any density with un-
bounded support then

∧
(f1) = (0, 0) � ∧

(f2). It follows from (9) that∧
(Pf1) = (1, 1) � (1, 0) =

∧
(Pf2), hence (NLBD) is not satisfied.
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