
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 101 2004 NO. 1

STRONG CONTINUITY OF INVARIANT PROBABILITY CHARGES

BY

HARALD LUSCHGY (Trier) and SŁAWOMIR SOLECKI (Urbana, IL)

Abstract. Consider a semigroup action on a set. We derive conditions, in terms of
the induced action of the semigroup on {0, 1}-valued probability charges, which ensure
that all invariant probability charges are strongly continuous.

1. Introduction. Let A be an algebra of subsets of some set X and let
G be a semigroup acting from the left on X. Assume that A is G-invariant,
that is, g−1A = {x ∈ X : gx ∈ A} ∈ A for every g ∈ G, A ∈ A. By a
probability charge (p-charge) on A we mean a finitely additive probability
measure on A. In this setting a p-charge µ on A is said to be G-invariant
of gµ = µ for every g ∈ G, where gµ(A) = µ(g−1A). The p-charge µ is
called strongly continuous if for every ε > 0 there exists a finite partition
{A1, . . . , An} of X in A with sup1≤i≤n µ(Ai) ≤ ε.

In this paper, we are interested in conditions onA, G, and the action ofG
on X which ensure that invariance of a p-charge implies its strong continuity.
Note that a p-charge µ defined on a σ-algebra is strongly continuous if and
only if µ is strongly nonatomic, i.e. {µ(B) : B ∈ A, B ⊂ A} = [0, µ(A)]
for every A ∈ A (cf. [3, 5.1.6, 11.4.5]). A further interesting feature of
strongly continuous p-charges can be found in [10, Theorem 3]. For existence
of invariant p-charges the reader is referred to Wagon [16] and Paterson [12].

2. Main results. For p-charges λ and µ on A we write λ �w µ if λ
is weakly absolutely continuous with respect to µ, i.e. λ(A) = 0 whenever
A ∈ A and µ(A) = 0. The following theorem is fundamental to the other
results in the paper.

Theorem 1. Let µ be a G-invariant p-charge on A. If the orbit Gλ =
{gλ : g ∈ G} is infinite for every {0, 1}-valued p-charge λ on A with λ�w µ,
then µ is strongly continuous.
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We present two proofs of the above result: the first one based on rep-
resenting a p-charge as the barycenter of a regular probability measure on
the space of all {0, 1}-valued p-charges, and the second one of an elementary
nature.

The first proof requires two lemmas. Let K denote the set of all p-charges
on A equipped with the weak∗ topology and H the set of all {0, 1}-valued
p-charges on A. Since K is a (compact) Bauer simplex and H is the extreme
boundary of K, the map

K →M1(H), µ 7→ %µ,

with
µ(A) =

�

H

λ(A) d%µ(λ), A ∈ A,

is an affine homeomorphism, where M 1(H) denotes the set of all regular
probability measures on the Borel σ-algebra B(H) of H equipped with the
vague topology (cf. [2, II. 4.2]). The semigroup G acts from the left on H by
λ 7→ gλ. This action is (weak∗-)continuous and thus B(H) is G-invariant.
The induced left action of G on M 1(H) is given by

% 7→ g%, g%(B) = %(g−1B), B ∈ B(H),

where regularity of g% can be seen as follows. For every B ∈ B(H), we have

g%(B) = sup{%(F ) : F compact, F ⊂ g−1B}
≤ sup{%(F ) : F compact, gF ⊂ B}
≤ sup{%(g−1gF ) : F compact, gF ⊂ B}
≤ sup{g%(D) : D compact, D ⊂ B} ≤ g%(B),

which implies
g%(B) = inf{g%(O) : O open, O ⊃ B}.

Lemma 1. K → M1(H), µ 7→ %µ is G-equivariant , that is, %gµ = g%µ
for every g ∈ G,µ ∈ K.

Proof. Let C denote the algebra of subsets of H which are both compact
and open. It is well known that ϕ : A → C, ϕ(A) = {λ ∈ H : λ(A) = 1}, is an
isomorphism of algebras. (Note that ϕ(A) coincides with the weak∗ closure
of {εx : x ∈ A}.) We have µ(ϕ−1C) = %µ(C) and ϕ−1(g−1C) = g−1(ϕ−1C),
which gives

g%µ(C) = %µ(g−1C) = µ(g−1(ϕ−1C)) = gµ(ϕ−1C) = %gµ(C)

for every C ∈ C, g ∈ G. Since C is a basis of the weak∗ topology on H and
g%µ and %gµ are regular, this yields g%µ = %gµ.

For % ∈ M1(H), let supp(%) denote the topological support of %. Part
(c) of the following lemma is well known.
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Lemma 2. Let µ ∈ K.

(a) supp(%µ) = {λ ∈ H : λ�w µ}.
(b) {λ ∈ H : %µ({λ}) > 0} = {λ ∈ H : cλλ ≤ µ for some cλ > 0}.
(c) µ is strongly continuous if and only if %µ is continuous.

Proof. Let C and ϕ be defined as in the proof of Lemma 1.
(a) Let λ ∈ H. Then λ ∈ supp(%µ) if and only if %µ(C) > 0 for every

C ∈ C with λ ∈ C. Since %µ(ϕ(A)) = µ(A), A ∈ A, the latter condition
means µ(A) > 0 for every A ∈ A with λ(A) = 1 and this is equivalent to
λ�w µ.

(b) For λ ∈ H, let Aλ = {A ∈ A : λ(A) = 1}. Then
⋂
A∈Aλ ϕ(A) = {λ}

and regularity of %µ gives

%µ({λ}) = inf
A∈Aλ

%µ(ϕ(A)) = inf
A∈Aλ

µ(A).

If %({λ}) > 0, choose cλ = infA∈Aλ µ(A). Then cλλ ≤ µ. If cλλ ≤ µ for some
cλ > 0, then µ(A) ≥ cλ for every A ∈ Aλ and hence %µ({λ}) > 0.

(c) follows e.g. from (b) and the fact that µ is strongly continuous if and
only if the right hand side of (b) is empty (cf. e.g. [11, Example (2)]).

First proof of Theorem 1. By Lemma 1, %µ is G-invariant. Therefore

%µ({gλ}) = %µ(g−1{gλ}) ≥ %µ({λ})
for every λ ∈ H, g ∈ G. The assumption yields %µ({λ}) = 0 for every
λ ∈ H with λ �w µ. Hence, according to Lemma 2(a), %µ is continuous.
The assertion follows from Lemma 2(c).

Second proof of Theorem 1. Fix a p-charge µ on an algebra A of subsets
of X. For a p-charge λ on A, we write λ� µ if for any ε > 0 there is δ > 0
such that for A ∈ A, µ(A) < δ implies λ(A) < ε. This notion is, of course,
stronger than λ�w µ. Note that for a {0, 1}-valued p-charge λ, λ� µ holds
precisely when b(λ) > 0, where

b(λ) = inf{µ(A) : A ∈ A and λ(A) = 1}.
We will start with two claims which do not involve semigroup actions.

Claim 1. If µ is not strongly continuous, then there exists a {0, 1}-valued
p-charge λ� µ.

Proof of Claim 1. We say that A ∈ A is ε-covered if A can be covered
by finitely many sets from A of µ-measure < ε. By assumption for some
ε > 0, which we fix, X is not ε-covered so the infimum in the following
definition makes sense. Let b = inf{µ(A) : A ∈ A is not ε-covered}. Note
that b ≥ ε > 0. Let A0 ∈ A be such that it cannot be ε-covered and
µ(A0) < 2b. Define

I = {A ∈ A : A ∩A0 is ε-covered}.
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Now X 6∈ I, and I is closed under taking subsets which are in A and under
finite unions. If A ∈ A, then, since µ(A0) < 2b, we have either µ(A∩A0) < b
or µ((X \ A) ∩ A0) < b. Thus, either A ∩ A0 or (X \ A) ∩ A0 is ε-covered,
that is, either A ∈ I or X \ A ∈ I. This shows that λ defined by λ(A) = 0
if A ∈ I and λ(A) = 1 if A ∈ A \ I is a {0, 1}-valued p-charge. Since no set
in A \ I is ε-covered, b(λ) ≥ b > 0.

Claim 2. For any b > 0 there are at most finitely many {0, 1}-valued
p-charges λ with b(λ) > b.

Proof of Claim 2. Given b > 0, let nb be the smallest natural number
with nbb > 1. Then, obviously, there is a small enough δ > 0 such that
1 < nbb− (nb(nb + 1)/2)δ. Therefore, using the formula

µ
(⋃

i≤n
Ai

)
≥
∑

i≤n
µ(Ai)−

∑

i<j≤n
µ(Ai ∩ Aj),

we can find a δ > 0 such that for any sequence An ∈ A, n ∈ N, with
µ(An) > b there are i < j with µ(Ai ∩Aj) ≥ δ.

Let λn, n ∈ N, be pairwise distinct {0, 1}-valued p-charges with b(λn)>b.
We can assume that for for some b′ ≥ b and all n, b′ < b(λn) < b′ + δ. Now,
for each i and n with i < n, we can find Ai,n ∈ A with λi(Ai,n) = 0 and
λn(Ai,n) = 1. If we let An =

⋂
i<nAi,n, then An ∈ A with λn(An) = 1

and λi(An) = 0 for all i < n. Since b(λn) < b′ + δ, we can assume that
µ(An) < b′ + δ by intersecting An with an A ∈ A such that λn(A) = 1 and
µ(A) < b′ + δ. Note that µ(An) ≥ b(λn) > b′ for all n, which, by the choice
of δ, gives two natural numbers i < j such that µ(Ai ∩ Aj) > δ. Then

µ(Ai \ (Ai ∩ Aj)) < (b′ + δ)− δ < b(λi).

Thus, λi(Ai\(Ai∩Aj))=0, whence λi(Ai∩Aj)=1, contradicting λi(Aj)=0.

To prove Theorem 1 from the above claims, we proceed as follows. If a
semigroup G acts on X with A being G-invariant and µ being G-invariant
and not strongly continuous, then by Claim 1 there exists a {0, 1}-valued
p-charge λ� µ. Obviously, we then have λ�w µ. Moreover, b(λ) > 0 and,
by G-invariance of µ, b(gλ) ≥ b(λ) for each g ∈ G. Thus, Gλ is finite by
Claim 2.

Under a suitable condition on (the action of) the semigroup G, infinity
of the orbits Gλ, λ ∈ H, is also a necessary condition for strong continuity
of all G-invariant p-charges on A. (See, however, Remark 1(a) below.) The
equivalence of statements (i) and (ii) of the following theorem is due to
Adler [1]. We give a different proof of it based on the measure %µ. The
following condition will be used:

(C) gGλ = Gλ for every λ ∈ H, g ∈ G.
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Theorem 2. The following statements are equivalent.

(i) Every G-invariant p-charge on A is strongly continuous.
(ii) There is no G-invariant p-charge on A of the form n−1∑n

i=1 λi
with n ∈ N, λ1, . . . , λn ∈ H.

If condition (C) is satisfied or if G is left amenable (as discrete semigroup),
then (i) is also equivalent to

(iii) Gλ is infinite for every λ ∈ H.

Proof. (i)⇒(ii) is obvious and (iii)⇒(ii) follows from Theorem 1.
(ii)⇒(i). Assume that there exists a G-invariant p-charge µ on A which

is not strongly continuous. Since %µ is G-invariant by Lemma 1, we have

%µ(gH0) = %µ(g−1(gH0)) ≥ %µ(H0)

for every finite subset H0 of H and g ∈ G. Let a = max{%µ({λ}) : λ ∈ H}
and

H0 = {λ ∈ H : %µ({λ}) = a}.
By Lemma 2(c), a > 0 and thus H0 is a nonempty finite subset of H. Let
g ∈ G. Since

a ≥ %µ({gλ}) ≥ %µ({λ}) = a

for every λ ∈ H0, one obtains gH0 ⊂ H0. In view of %µ(gH0) ≥ %µ(H0),
this implies %µ(gH0) = %µ(H0), which gives gH0 = H0. It follows that the
p-charge |H0|−1∑

λ∈H0
λ on A is G-invariant.

(i)⇒(iii). Suppose thatGλ is finite for some λ ∈ H. Under condition (C),
the p-charge |Gλ|−1∑

ν∈Gλ ν on A is G-invariant and not strongly contin-
uous. Now let G be a left amenable semigroup. The convex hull co(Gλ) of
the finite orbit Gλ is a weak∗-compact subset of K. Furthermore, co(Gλ)
is G-invariant, i.e. g co(Gλ) ⊂ co(Gλ) for every g ∈ G and the left action
of G on K is weak∗-continuous. Since G is left amenable, Day’s fixed point
theorem (cf. [12, 1.14]) yields a G-invariant charge in co(Gλ).

Remark 1. (a) It is not possible to replace (iii) in Theorem 2 with the
weaker condition saying that all orbits of the action of G on X are infinite.
To see this, consider G = Z, the integers with addition, acting on X = Z
by translations, A consisting of all finite and all cofinite subsets of Z, and µ
defined on A to be 0 on finite sets and 1 on cofinite sets. Then orbits of the
Z-action on X are infinite and yet (i) fails as shown by µ.

(b) Condition (C) or amenability cannot be dispensed with in the proof
of (i)⇒(ii) in Theorem 2. This is shown by the semigroup G consisting of the
two constant maps from {0, 1} to {0, 1} taken with composition and acting
on X = {0, 1} with A = P({0, 1}) in the natural way. For this action (i)
holds (as there are no G-invariant p-charges) and (iii) fails.
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(c) If G is a right simple semigroup, i.e. gG = G for every g ∈ G, and in
particular, if G is a group, then condition (C) is satisfied.

3. Applications. In case A = P(X), the following lemma [4, Theo-
rem 3.3] provides an important tool to verify that orbits Gλ are infinite. For
g ∈ G, let Xg denote the set of g-fixed points in X, i.e. Xg={x∈X : gx=x}.
(This lemma is proved in [4] for a countable set X but the argument there
works for an arbitrary X.)

Lemma 3. Let λ be a {0, 1}-valued p-charge on P(X) and g ∈ G. Then
gλ = λ if and only if λ(Xg) = 1.

A first application is as follows. Let X be a right cancellative semigroup
(i.e. x1y = x2y implies x1 = x2) and A = P(X). Then left multiplication by
g ∈ X has no fixed point if and only if g is not idempotent. Let g ∈ X be of
infinite order andG = {gn : n ∈ N}. ThenG acts onX by left multiplication.
By Lemma 3, gnλ = gn−mgmλ 6= gmλ for every λ ∈ H, n > m ≥ 1.
Therefore, Gλ is infinite for every λ ∈ H. It follows from Theorem 1 that
every G-left invariant p-charge on P(X) is strongly continuous (see Granirer
[8, p. 387] for a related result). This extends a corresponding result for groups
by Francke et al. [7].

The following two corollaries provide extensions of a result of Chou [6];
see also Stroetman [15]. In case G is a group, a G-invariant p-charge µ on
P(X) is called aperiodic if µ(Xg) = 0 for every g ∈ G, g 6= e.

Corollary 1. Let G be an infinite group and A = P(X). Then every
G-invariant aperiodic p-charge on P(X) is strongly continuous.

Proof. Let µ be a G-invariant aperiodic p-charge on P(X) and let λ ∈ H
with λ �w µ. Then λ(Xg) = 0 for every g ∈ G, g 6= e, and therefore, by
Lemma 3, the isotropy group of λ in G satisfies Gλ = {e}. Since G is infinite,
this implies that the orbit Gλ is infinite. It follows from Theorem 1 that µ
is strongly continuous.

Corollary 2. Let G be a group and A = P(X). Let F denote the
subgroup of G generated by

⋃
x∈X Gx, where Gx denotes the isotropy group

of x in G. Consider the following statements:

(i) Every G-invariant p-charge on P(X) is strongly continuous.
(ii) G/F is infinite.

Then (ii) implies (i) and if F/Gx is finite for some x ∈ X, (i) and (ii) are
equivalent.

Proof. (ii)⇒(i). Let g ∈ G, g 6∈ F . Then Xg = ∅ and by Lemma 3,
g 6∈ ⋃λ∈H Gλ. We obtain Gλ ⊂ F for every λ ∈ H. By (ii), this implies that
G/Gλ is infinite for every λ ∈ H. The assertion follows from Theorem 1.
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(i)⇒(ii). By Theorem 2, Gεx is infinite for every x ∈ X, where εx is the
{0, 1}-valued p-charge concentrated on x. Hence G/Gx is infinite for every
x ∈ X. Since |G/Gx| = |G/F | · |F/Gx| and F/Gx is finite for some x ∈ X,
this implies that G/F is infinite.

Remark 2. (a) Let G be a group and let µ be a G-invariant p-charge
on A. In case A = P(X), µ is aperiodic if and only if %µ is aperiodic, i.e.,
%µ(Hg) = 0 for every g ∈ G, g 6= e, where Hg = {λ ∈ H : gλ = λ}. In fact,
by Lemma 3,

µ(Xg) = %µ({λ ∈ H : λ(Xg) = 1}) = %µ(Hg).

ForA 6= P(X) the following version of Corollary 1 holds. LetG be an infinite
group. Then every G-invariant p-charge µ on A with aperiodic measure %µ
is strongly continuous. To see this assume %µ({λ}) > 0 for some λ ∈ H.
Then Gλ is finite and hence Gλ 6= {e}. So λ ∈ Hg for some g 6= e, which
gives %µ(Hg) > 0.

(b) The example in Remark 1(a) shows that Corollaries 1 and 2 are not
valid, in general, for A 6= P(X). It is possible to relate the general case
A 6= P(X) to the case A = P(X). Let µ be a p-charge on A. Then µ is
strongly continuous if and only if every extension of µ to a p-charge on P(X)
is strongly continuous (cf. [13]). However, for our purposes this result has the
disadvantage that for invariant charges µ it is not enough to consider only
invariant extensions of µ as is again illustrated by the example in Remark
1(a): the group G = Z is Abelian, therefore, there are many extensions of
µ to a G-invariant p-charge on P(Z); by Corollary 1 (or Corollary 2), these
extensions are strongly continuous and yet µ is not.

The following corollary provides an extension of a result of Snell [14].
Recall that a group F equipped with a σ-algebra B is called Lusin measurable
if F × F → F , (g, h) 7→ gh−1, is (B ⊗ B,B)-measurable and the measurable
space (F,B) is isomorphic to a Polish space equipped with its Borel σ-
algebra.

Corollary 3. Let G be an infinite subsemigroup of a Lusin measurable
group (F,B) and let A = G ∩ B. Assume that there exists a non-trivial
σ-finite F -left quasi-invariant measure on B. Then every G-left invariant
p-charge on A is strongly continuous.

Proof. According to a result of Mackey, there is a topology on F such
that F becomes a locally compact group and B is the Borel σ-algebra (cf. [5]).
Now it follows from [9, Theorem 3] that there is no G-left invariant p-charge
in co(H). By Theorem 2, this gives the assertion.
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