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CHARACTERIZING CHAINABLE, TREE-LIKE,
AND CIRCLE-LIKE CONTINUA
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SŁAWOMIR TUREK (Kielce)

Abstract. We prove that a continuum X is tree-like (resp. circle-like, chainable) if
and only if for each open cover U4 = {U1, U2, U3, U4} of X there is a U4-map f : X → Y
onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if
and only if for each open cover U3 = {U1, U2, U3} of X there is a U3-map f : X → Y onto
a tree (or the interval [0, 1]).

1. Main results. In this paper we characterize chainable, tree-like and
circle-like continua in the spirit of the following characterization of covering
dimension due to Hemmingsen (see [6, 1.6.9]).

Theorem 1 (Hemmingsen). For a compact Hausdorff space X the fol-
lowing conditions are equivalent:

(1) dimX ≤ n, which means that any open cover U of X has an open
refinement V of order ≤ n+ 1;

(2) each open cover U of X with cardinality |U| ≤ n + 2 has an open
refinement V of order ≤ n+ 1;

(3) each open cover {Ui}n+2
i=1 of X has an open refinement {Vi}n+2

i=1 with⋂n+2
i=1 Vi = ∅.

We say that a cover V of X is a refinement of a cover U if each V ∈ V
lies in some U ∈ U . The order of a cover U is defined as the cardinal

ord(U) = sup{|F| : F ⊆ U with
⋂
F 6= ∅}.

A family U of subsets of a set X is called

• chain-like if for U there is an enumeration U = {U1, . . . , Un} such that
Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1 for all 1 ≤ i, j ≤ n;
• circle-like if there is an enumeration U = {U1, . . . , Un} such that
Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1 or {i, j} = {1, n};
• tree-like if U contains no circle-like subfamily V ⊆ U of cardinality
|V| ≥ 3.
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We recall that a continuum X is called chainable (resp. tree-like, circle-
like) if each open cover of X has a chain-like (resp. tree-like, circle-like) open
refinement. By a continuum we understand a connected compact Hausdorff
space.

The following characterization of chainable, tree-like and circle-like con-
tinua is the main result of this paper. For chainable and tree-like continua
this characterization was announced (but not proved) in [1].

Theorem 2. A continuum X is chainable (resp. tree-like, circle-like) if
and only if any open cover U of X of cardinality |U| ≤ 4 has a chain-like
(resp. tree-like, circle-like) open refinement.

In fact, this theorem will be derived from a more general theorem con-
cerning K-like continua.

Definition 1. Let K be a class of continua and n be a cardinal number.
A continuum X is called K-like (resp. n-K-like) if for any open cover U of X
(of cardinality |U| ≤ n) there is a U-map f : X → K onto some space K ∈ K.

We recall that a map f : X → Y between two topological spaces is called
a U-map, where U is an open cover of X, if there is an open cover V of
Y such that the cover f−1(V) = {f−1(V ) : V ∈ V} refines U . It is worth
mentioning that a closed map f : X → Y is a U-map if and only if the family
{f−1(y) : y ∈ Y } refines U .

It is clear that a continuum X is tree-like (resp. chainable, circle-like)
if and only if it is K-like for the class K of all trees (resp. for K = {[0, 1]},
K = {S1}). Here S1 = {z ∈ C : |z| = 1} stands for the circle.

It turns out that each 4-K-like continuum is K̂-like for some extension K̂
of K. This extension is defined with the help of locally injective maps.

A map f : X → Y between topological spaces is called locally injective
if each point x ∈ X has a neighborhood O(x) ⊆ X such that the restric-
tion f�O(x) is injective. For a class of continua K let K̂ be the class of all
continua X that admit a locally injective map f : X → Y onto some Y ∈ K.

Theorem 3. Let K be a class of 1-dimensional continua. If a contin-
uum X is 4-K-like, then X is K̂-like.

In Proposition 1 we shall prove that each locally injective map f : X → Y
from a continuum X onto a tree-like continuum Y is a homeomorphism.
Consequently, K̂ = K for any class K of tree-like continua. This fact combined
with Theorem 3 implies the following characterization:

Theorem 4. Let K be a class of tree-like continua. A continuum X is
K-like if and only if it is 4-K-like.

One may ask if the number 4 in this theorem can be lowered to 3 as
in Hemmingsen’s characterization of 1-dimensional compacta. It turns out
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that this cannot be done: 3-K-likeness is equivalent to being an acyclic curve.
A continuum X is called a curve if dimX ≤ 1. It is acyclic if each map
f : X → S1 to the circle is null-homotopic.

Theorem 5. Let K 3 [0, 1] be a class of tree-like continua. A continuum
X is 3-K-like if and only if it is an acyclic curve.

It is known that each tree-like continuum is an acyclic curve, but there are
acyclic curves which are not tree-like [3]. On the other hand, each locally con-
nected acyclic curve is tree-like (moreover, it is a dendrite [10, Chapter X]).
Therefore, for any continuum X and a class K 3 [0, 1] of tree-like continua
we get the following chain of equivalences and implications (in which the
dotted implication holds under the additional assumption that X is locally
connected):

4-chainable //
OO

��

4-K-likeOO

��

// 4-tree-likeOO

��

// 3-K-likeOO

��
chainable // K-like // tree-like // acyclic curve

uu

Finally, let us present a factorization theorem that reduces the problem of
studying n-K-like continua to the metrizable case. It will play an important
role in the proof of the “circle-like” part of Theorem 2.

Theorem 6. Let n ∈ N∪{ω} and K be a family of metrizable continua.
A continuum X is n-K-like if and only if any map f : X → Y to a metrizable
compact space Y can be written as the composition f = g ◦π of a continuous
map π : X → Z onto a metrizable n-K-like continuum Z and a continuous
map g : Z → Y .

2. Proof of Theorem 5. Let K 3 [0, 1] be a class of tree-like continua.
We need to prove that a continuum X is 3-K-like if and only if it is an acyclic
curve.

To prove the “if” part, assume that X is an acyclic curve. By Theorem 2.1
of [1], X is 3-chainable. Since [0, 1] ∈ K, the continuum X is 3-K-like and we
are done.

Now assume conversely that a continuum X is 3-K-like. First, using Hem-
mingsen’s Theorem 1, we shall show dimX ≤ 1. Let V = {V1, V2, V3} be an
open cover of X. Since X is 3-K-like, we can find a V-map f : X → T onto
a tree-like continuum T . Using the 1-dimensionality of tree-like continua,
we find an open cover W of T order ≤ 2 such that the cover f−1(W) =
{f−1(W ) : W ∈ W} is a refinement of V. The continuum X is 1-dimensional
by the implication (2)⇒(1) of Hemmingsen’s theorem.

It remains to prove that X is acyclic. Let f : X → S1 be a continuous
map. Let U = {U1, U2, U3} be a cover of the unit circle S1 = {z ∈ C : |z| = 1}
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by three open arcs U1, U2, U3, each of length < π. Such a cover necessarily
has ord(U) = 2. By our assumption there is an f−1(U)-map g : X → T onto
a tree-like continuum T . From tree-likeness of T it follows that f−1(U) has a
tree-like refinement V, and we can assume that T is a tree. It is well-known
(see e.g. [3]) that there exists a continuous map h : T → S1 such that h ◦ g
is homotopic to f . But each map from a tree to the circle is null-homotopic.
Hence h ◦ g as well as f are null-homotopic too.

3. Proof of Theorem 3. We shall use some terminology from graph
theory. First we recall some definitions.

By a (combinatorial) graph we understand a pair G = (V,E) consisting
of a finite set V of vertices and a set E ⊆ {{a, b} : a, b ∈ V, a 6= b} of
unordered pairs of vertices, called edges. A graph G = (V,E) is connected
if any two distinct vertices u, v ∈ V can be linked by a path (v0, v1, . . . , vn)
with v0 = u, vn = v and {vi−1, vi} ∈ E for i ≤ n. The number n is called
the length of the path (and equal to the number of edges involved). Each
connected graph possesses a natural path-metric on the set of vertices: the
distance d(u, v) between two distinct vertices u, v ∈ V equals the smallest
length of a path linking them.

Two vertices u, v ∈ V of a graph are adjacent if {u, v} ∈ E is an edge.
The degree deg(v) of a vertex v ∈ V is the number of vertices u ∈ V adjacent
to v in the graph. The number deg(G) = maxv∈V deg(v) is called the degree
of the graph. By an r-coloring of the graph we understand any map χ : V →
r = {0, . . . , r − 1}. In this case the value χ(v) is called the color of v ∈ V .

Lemma 1. Let G = (V,E) be a connected graph with deg(G) ≤ 3 such
that d(u, v) ≥ 6 for any two vertices u, v ∈ V of degree 3. Then there is
a 4-coloring χ : V → 4 such that no two distinct vertices u, v ∈ V with
d(u, v) ≤ 2 have the same color.

Proof. Let V3 = {v ∈ V : deg(v) = 3} and let B̄(v) = {v}∪{u ∈ V : {u, v}
∈ E} be the unit ball centered at v ∈ V . It follows from deg(G) ≤ 3 that
|B̄(v)| ≤ 4 for each v ∈ V . Moreover, for any distinct v, u ∈ V3 the balls B̄(v)
and B̄(u) are disjoint (because d(v, u) ≥ 6 > 2). Hence we can define a 4-
coloring χ on

⋃
v∈V3

B̄(v) so that χ is injective on each B̄(u) and χ(v) = χ(w)
for each v, w ∈ V3. Next, it remains to color the remaining vertices, all of
order ≤ 2, by four colors so that χ(x) 6= χ(y) if d(x, y) ≤ 2. It is easy to
check that this can always be done.

Each graph G = (V,E) can also be thought of as a topological object: just
embed the set of vertices V as a linearly independent subset into a suitable
Euclidean space and consider the union |G| =

⋃
{u,v}∈E [u, v] of intervals

corresponding to the edges of G. Assuming that each interval [u, v] ⊆ |G| is
isometric to the unit interval [0, 1], we can extend the path-metric of G to
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a path-metric d on the geometric realization |G| of G. For x ∈ |G| we shall
denote by B(x) = {y ∈ |G| : d(x, y) < 1} and B̄(x) = {y ∈ |G| : d(x, y) ≤ 1}
respectively the open and closed unit balls centered at x. More generally,
Br(x) = {y ∈ |G| : d(x, y) < r} will denote the open ball of radius r with
center at x in |G|.

By a topological graph we shall understand a topological space Γ homeo-
morphic to the geometric realization |G| of some combinatorial graph G. In
this case G is called the triangulation of Γ . The degree of Γ = |G| will be
defined as the degree of the combinatorial graph G (it does not depend on
the choice of a triangulation).

It turns out that any graph can be transformed by a small deformation
into a graph of degree ≤ 3.

Lemma 2. For any open cover U of a topological graph Γ there is a
U-map f : Γ → G onto a topological graph G of degree ≤ 3.

This lemma (possibly folklore) can be easily proved by induction. Figure 1
illustrates how to decrease the degree of a selected vertex of a graph.
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Fig. 1

Now we have all the tools for the proof of Theorem 3. So, take a class K
of 1-dimensional continua and assume that X is a 4-K-like continuum. We
should prove that X is K̂-like.

First, we show that X is 1-dimensional. This will follow from Hem-
mingsen’s Theorem 1 as soon as we check that each open cover U of X
of cardinality |U| ≤ 3 has an open refinement V of order ≤ 2. Since |U| ≤ 4
and X is 4-K-like, there is a U-map f : X → K onto a K ∈ K. It follows
that for some open cover V of K the cover f−1(V) refines U . Since K is
1-dimensional, V has an open refinement W of order ≤ 2. Then the cover
f−1(W) is an open refinement of U having order ≤ 2.

To prove that X is K̂-like, fix any open cover U of X. By the compactness
ofX, we can assume that U is finite. Being 1-dimensional,X admits a U-map
f : X → Γ onto a topological graph Γ . By Lemma 2, we can assume that
deg(Γ ) ≤ 3. Adding vertices on edges of Γ , we can find a triangulation
(VΓ , EΓ ) of Γ so fine that

• the path-distance between any vertices of degree 3 in Γ is ≥ 6;
• the cover {f−1(B2(v)) : v ∈ VΓ } of X is a refinement of U .
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Lemma 1 yields a 4-coloring χ : VΓ → 4 of VΓ such that any two distinct
vertices u, v ∈ VΓ with d(u, v) ≤ 2 have distinct colors. For each color i ∈ 4
consider the open 1-neighborhood Ui =

⋃
v∈χ−1(i)B(v) of the monochrome

set χ−1(i) ⊆ VΓ in Γ . Since open 1-balls centered at vertices v ∈ VΓ cover
the graph Γ , the 4-element family {Ui : i ∈ 4} is an open cover of Γ . Then
for the 4-element cover U4 = {f−1(Ui) : i ∈ 4} of the 4-K-like continuum X
we can find a U4-map g : X → Y to a Y ∈ K. Let W be a finite open cover
of Y such that the cover g−1(W) refines U4. Since Y is 1-dimensional, we
can assume that ord(W) ≤ 2. For every W ∈ W there is a ξ(W ) ∈ 4 such
that g−1(W ) ⊆ f−1(Uξ(W )).

Since Y is a continuum, in particular, a normal Hausdorff space, we may
find a partition of unity subordinated toW. This is a family {λW : W ∈ W}
of continuous functions λW : Y → [0, 1] such that

(a) λW (y) = 0 for y ∈ Y \W ;
(b)

∑
W∈W λW (y) = 1 for all y ∈ Y .

For every W ∈ W consider the “vertical” family of rectangles

RW = {W ×B(v) : v ∈ VΓ , χ(v) = ξ(W )}

in Y × Γ and let R =
⋃
W∈W RW . For every R ∈ R choose WR ∈ W and

vR ∈ VΓ such that R = WR ×B(vR). Also let RR = {S ∈ R : R ∩ S 6= ∅}.

Claim 1. For any R∈R and y ∈WR the set RR,y = {S ∈ RR : y ∈WS}
contains at most two distinct rectangles.

Proof. Assume that besides R the set RR,y contains two other distinct
rectangles S1 = WS1 ×B(vS1) and S2 = WS2 ×B(vS2). Taking into account
that y ∈WR ∩WS1 ∩WS2 and ord(W) ≤ 2, we conclude that either WS1 =
WS2 or WR = WS1 or WR = WS2 . If WS1 = WS2 , then

χ(vS1) = ξ(WS1) = ξ(WS2) = χ(vS2).

Since B(vR)∩B(vS1) 6= ∅ 6= B(vR)∩B(vS2) the property of the 4-coloring χ
implies that vS1 = vS2 and hence S1 = S2. Analogously we can prove that
WR = WS1 implies R = S1 and WR = WS2 implies R = S2, which contra-
dicts the choice of S1, S2 ∈ RR,y \ {R}.

Claim 1 implies that for every rectangle R = WR × B(vR) the function
λR : WR → B̄(vR) ⊆ Γ defined by

λR(y) =
{
λWR

(y)vR + λWS
(y)vS if RR,y = {R,S} for some S 6= R,

vR if RR,y = {R}

is well-defined and continuous. Let πR : R → WR × B̄(vR) ⊆ R be defined
by πR(y, t) = (y, λR(y)).
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The graphs of λR and λS for two intersecting rectangles R,S ∈ R are
drawn in Figure 2.
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It follows that for any R,S ∈ R we get πR�R∩S = πS�R∩S, which im-
plies that π =

⋃
R∈R πR :

⋃
R →

⋃
R is a well-defined continuous function.

It is easy to check that for every R = W ×B(v) ∈ R we get

π−1(W ×B(v)) ⊆W ×B2(v).

Consider the diagonal product g4f : X → Y ×Γ . It is easy to check that
(g4f)(X) ⊆

⋃
R, which implies that the composition h = π◦(g4 f) : X →⋃

R is well-defined. We claim that h is a U-map onto the continuum L =
h(X), which belongs to the class K̂.

Given R = W ×B(v) ∈ R, observe that

h−1(R) = (g4 f)−1(π−1(W ×B(v))) ⊆ (g4 f)−1(W ×B2(v))

= g−1(W ) ∩ f−1(B2(v)) ⊆ f−1(B2(v)) ⊆ U
for some U ∈ U . Hence h is a U-map.

The projection prY : L→ Y is locally injective because L ⊆
⋃
R and for

every R ∈ R the restriction prY �R ∩ L : R ∩ L → Y is injective. As Y ∈ K,
we conclude that L ∈ K̂, by the definition of the class K̂.

4. Locally injective maps onto tree-like continua and circle. The
following theorem is known for metrizable continua [7].

Proposition 1. Each locally injective map f : X → Y from a contin-
uum X onto a tree-like continuum Y is a homeomorphism.

Proof. By the local injectivity of f , there is an open cover U ′ such that
f�U is injective for every U ∈ U ′. Let U be an open cover of X whose star
St(U) refines U ′. Here St(U,U) =

⋃
{U ′ ∈ U : U ∩ U ′ 6= ∅} and St(U) =

{St(U,U) : U ∈ U}.
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For every x ∈ X choose a set Ux ∈ U that contains x. Observe that for
distinct points x, x′ ∈ X with f(x) = f(x′) the sets Ux, Ux′ are disjoint. In
the opposite case x, x′ ∈ Ux ∪ Ux′ ⊆ St(Ux,U) ⊆ U for some U ∈ U ′, which
is not possible as f�U is injective.

Hence for every y ∈ Y the family Uy = {Ux : x ∈ f−1(y)} is disjoint.
Since f is closed and surjective, the set Vy = Y \ f(X \

⋃
Uy) is an open

neighborhood of y in Y such that f−1(Vy) ⊆
⋃
Uy.

Since the continuum Y is tree-like, the cover V = {Vy : y ∈ Y } has a
finite tree-like refinementW. For every W ∈ W find yW ∈ Y with W ⊆ VyW

and consider the disjoint family UW = {U ∩ f−1(W ) : U ∈ UyW }. It follows
that f−1(W ) =

⋃
UW and so UW =

⋃
W∈W UW is an open cover of X.

Now we are able to show that the map f is injective. Assuming the
converse, pick a point y ∈ Y and two distinct points a, b ∈ f−1(y). Since X
is connected, there is a chain G1, . . . , Gn ∈ UW such that a ∈ G1 and b ∈ Gn.
We can assume that the length n of this chain is the smallest possible. In
this case all sets G1, . . . , Gn are pairwise distinct.

Let us show that n ≥ 3. In the opposite case a ∈ G1 = U1 ∩ f−1(W1)
∈ UW , b ∈ G2 = U2 ∩ f−1(W2) ∈ UW and G1 ∩G2 6= ∅. So, a, b ∈ U1 ∪ U2 ⊆
St(U1,U) ⊆ U for some U ∈ U ′ and then f�U is not injective. Therefore
n ≥ 3.

For every i ≤ n consider the point yi = yWi and find Wi ∈ W and
Ui ∈ Uyi such that Gi = Ui ∩ f−1(Wi) ∈ UWi . Then (W1, . . . ,Wn) is a
sequence of elements of the tree-like cover W such that y ∈ W1 ∩Wn and
Wi ∩Wi+1 6= ∅ for all i < n. Since the tree-like cover W does not contain
circle-like subfamilies of length ≥ 3 there are two numbers 1 ≤ i < j ≤ n
such thatWi∩Wj 6= ∅, |j−i| > 1 and {i, j} 6= {1, n}. We can assume that the
difference k = j − i is the smallest possible. In this case k = 2. Otherwise,
Wi,Wi+1, . . . ,Wj is a circle-like subfamily of length ≥ 3 in W, which is
forbidden. Therefore, j = i+ 2 and the family {Wi,Wi+1,Wi+2} contains at
most two distinct sets (in the opposite case this family is circle-like, which
is forbidden). If Wi = Wi+1, then Ui = Ui+1 as the family UWi is disjoint.
The assumption Wi+1 = Wi+2 leads to a similar contradiction. It remains
to consider the case Wi = Wi+2 6= Wi+1. Since Ui, Ui+2 ∈ Uyi are distinct,
there are distinct xi, xi+2 ∈ f−1(yi) such that xi ∈ Ui and xi+2 ∈ Ui+2. Since
xi, xi+2 ∈ Ui ∪Ui+2 ⊆ St(Ui+1,U) ⊆ U for some U ∈ U ′, the restriction f�U
is not injective. This contradiction completes the proof.

Proposition 2. If f : X → S1 is a locally injective map from a contin-
uum X onto the circle S1, then X is an arc or a circle.

Proof. The compact space X has a finite cover by compact subsets that
embed into the circle. Consequently, X is metrizable and 1-dimensional. We
claim that X is locally connected. Assuming the converse and applying The-
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orem 1 of [9, §49.VI] (or [10, 5.22(b) and 5.12]), we could find a convergence
continuum K ⊆ X. This a non-trivial continuum, and it is the limit of a
sequence (Kn)n∈ω of continua that lie in X \K.

By the local injectivity of f , the continuum K meets some open set
U ⊆ X such that f�U : U → S1 is a topological embedding. The intersection
U ∩ K, being a non-empty open subset of the continuum K, is not zero-
dimensional. Consequently, its image f(U ∩K) ⊆ S1 is not zero-dimensional
either and hence contains a non-empty open subset V of S1. Choose any
point x ∈ U ∩ K with f(x) ∈ V . The convergence Kn → K implies the
existence of a sequence of points xn ∈ Kn, n ∈ ω, that converge to x. By the
continuity of f , the sequence (f(xn))n∈ω converges to f(x) ∈ V . So, there
is n such that f(xn) ∈ V ⊆ f(U ∩K) and xn ∈ U . The injectivity of f�U
guarantees that xn ∈ U ∩K, which is not possible as xn ∈ Kn ⊂ X \K.

Therefore, the continuum X is locally connected. By the local injectivity,
each point x ∈ X has an open connected neighborhood V homeomorphic to
a (connected) subset of S1. Now we see that the space X is a compact
1-dimensional manifold (possibly with boundary). So, X is homeomorphic
either to the arc or to the circle.

5. Proof of Theorem 6. In the proof we shall use the technique of
inverse spectra described in [5, §2.5] or [4, Ch. 1]. Given a continuum X
embed it into a Tikhonov cube [0, 1]κ of weight κ ≥ ℵ0.

Let A be the set of all countable subsets of κ, partially ordered by the
inclusion relation: α ≤ β iff α ⊆ β. For a countable subset α ⊆ κ let Xα =
prα(X) be the projection of X onto the face [0, 1]α of the cube [0, 1]κ and
pα : X → Xα be the projection map. For any countable subsets α ⊆ β of κ
let pβα : Xβ → Xα be the restriction of the natural projection [0, 1]β → [0, 1]α.
In such a way we have defined an inverse spectrum S = {Xα, p

β
α, A} over

the index set A, which is ω-complete in the sense that any countable subset
B ⊆ A has the smallest upper bound supB =

⋃
B and for any increasing

sequence (αi)i∈ω in A with supremum α =
⋃
i∈ω αi the space Xα is the

limit of the inverse sequence {Xαi , p
αi+1
αi , ω}. The spectrum S consists of

metrizable compacta Xα, α ∈ A, and its inverse limit lim←−S can be identified
with the space X. By Corollary 1.3.2 of [4], the spectrum S is factorizing in
the sense that any continuous map f : X → Y to a second countable space
Y can be written as the composition f = fα ◦ pα for some index α ∈ A and
some continuous map fα : Xα → Y .

Now we are able to prove the “if” and “only if” parts of Theorem 6. To
prove the “if” part, assume that each map f : X → Y factorizes through
a metrizable n-K-like continuum, where n ∈ N ∪ {ω}. To show that X is
n-K-like, fix any open cover U of X with k = |U| ≤ n. By compactness of X
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we can assume that k is finite and U = {U1, . . . , Uk}. By Theorem 1.7.8
of [6], there is a closed cover {F1, . . . , Fk} of X such that Fi ⊆ Ui for all
i ≤ k. Since Fi and X \ Ui are disjoint closed subsets of the compact space
X = lim←−S, there is an index α ∈ A such that for every i ≤ k the images
pα(X \ Ui) and pα(Fi) are disjoint and hence Wi = Xα \ pα(X \ Uα) is an
open neighborhood of pα(Fi). Then {W1, . . . ,Wk} is an open cover of Xα

such that p−1
α (Wi) ⊆ Ui for all i ≤ k.

By our assumption the projection pα : X → Xα can be written as the
composition pα = g ◦ π of a map π : X → Z onto a metrizable n-K-like
continuum Z and a map g : Z → Xα. For every i ≤ k consider the open
subset Vi = g−1(Wi) of Z. Since Z is n-K-like, for the open cover V =
{V1, . . . , Vk} of Z there is a V-map h : Z → K onto a space K ∈ K. Then
h◦π : X → K is a U-map of X onto K ∈ K witnessing that X is an n-K-like
continuum.

To prove the “only if” part we need the following lemma.

Lemma 3. Suppose that X is an n-K-like continuum and α ∈ A. Then
there is β ≥ α in A having the property that for any open cover V of Xα

with |V| ≤ n, there is a map f : Xβ → K onto a space K ∈ K such that
f ◦ pβ : X → K is a p−1

α (V)-map.

Proof. Let B be a countable base of the topology of the compact metriz-
able space Xα such that B is closed under unions. Denote by U the family
of all possible finite k-set covers {B1, . . . , Bk} ⊆ B of Xα with k ≤ n. It is
clear that the family U is countable.

Each cover U = {B1, . . . , Bk} ∈ U induces the open cover p−1
α (U) =

{p−1
α (Bi) : 1 ≤ i ≤ k} of X. Since the continuum X is n-K-like, there is a

p−1
α (U)-map fU : X → KU onto a space KU ∈ K. By the metrizability of KU

and the factorizing property of the spectrum S, for some αU ≥ α in A there
is a map fαU : XαU → KU such that fU = fαU ◦ pαU . Consider the countable
set β =

⋃
U∈U αU , which is the smallest lower bound of the set {αU : U ∈ U}

in A. We claim that β has the required property.
Let V be any open cover of Xα with k = |V| ≤ n. We can assume that

k is finite and V = {V1, . . . , Vk}. By Theorem 1.7.8 of [6], there is a closed
cover {F1, . . . , Fk} of Xα such that Fi ⊆ Vi for all i ≤ k. Since B is the
base of the topology of Xα and B is closed under finite unions, for every
i ≤ k there is a basic set Bi ∈ B such that Fi ⊆ Bi ⊆ Vi. Then the cover
U = {B1, . . . , Bk} belongs to the family U and refines the cover V. Consider
the map f = fαU ◦ p

β
αU : Xβ → K = KU and observe that f ◦ pβ = fαU ◦ pαU

is a p−1
α (U)-map and a p−1

α (V)-map.

Now let us return to the proof of the theorem. Assume that the continuum
X is n-K-like. Given a map f : X → Y to a second countable space, we need
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to find a map π : X → Z onto a metrizable n-K-like continuum Z and a
map g : Z → Y such that f = g ◦ π. Since the spectrum S is factorizing,
there are α0 ∈ A and f0 : Xα0 → Y such that f = f0 ◦ pα0 . Using Lemma 3,
by induction we construct an increasing sequence (αi)i∈ω in A such that for
every i ∈ ω and any open cover V of Xαi with |V| ≤ n, there is a map
f : Xαi+1 → K onto a space K ∈ K such that f ◦ pαi+1 is a p−1

αi
(V)-map.

Let α = supi∈ω αi =
⋃
i∈ω αi. We claim that the metrizable continuum

Xα is n-K-like. Given any open finite cover U = {U1, . . . , Uk} of Xα =
lim←−Xαi , where k ≤ n, we can find i ∈ ω such that the sets Wi = Xαi \
pααi

(Xα \ Ui), i ≤ k, form an open cover W = {W1, . . . ,Wn} of Xαi such
that the cover (pααi

)−1(W) refines U . By the choice of αi+1, there is a map
g : Xαi+1 → K onto a space K ∈ K such that g ◦pαi+1 : X → K is a p−1

αi
(W)-

map. It follows that g ◦ pααi+1
: Xα → K is a (pααi

)−1(W)-map and hence a
U-map, witnessing that the continuum Xα is n-K-like.

Now we see that the metrizable n-K-like continuum Xα and the maps
π = pα : X → Xα and g = f0 ◦ pαα0

: Xα → Y satisfy our requirements.

6. Proof of Theorem 2. The “chainable” and “tree-like” parts of The-
orem 2 follow immediately from the characterization in Theorem 4. So, it
remains to prove the “circle-like” part. Let K = {S1}. We need to prove
that each 4-K-like continuum X is K-like. Given an open cover U of X we
need to construct a U-map of X onto the circle. By Theorem 6, there is a
U-map f onto a metrizable 4-K-like continuum Y . It follows that for some
open cover V of Y the cover f−1(V) refines U . The proof will be complete as
soon as we prove that the continuum Y is circle-like. In this case there is a
V-map g : Y → S1 and the composition g ◦ f : X → S1 is a required U-map
witnessing that X is circle-like.

By Theorem 3, the metrizable continuum Y is K̂-like. By Proposition 2,
each continuum K ∈ K̂ is homeomorphic to S1 or [0, 1]. Consequently, the
continuum Y is circle-like or chainable. In the first case we are done. So, we
assume that Y is chainable.

By [10, Theorem 12.5], the continuum Y is irreducible between some
points p, q ∈ Y . This means that each subcontinuum of X that contains p, q
coincides with Y . We claim that Y is either indecomposable or the union
of two indecomposable subcontinua. For the proof we will use the argument
of [10, Exercise 12.50] (cf. also [8, Theorem 3.3]).

Suppose that Y is not indecomposable. This means that there are two
proper subcontinua A,B of Y such that Y = A ∪ B. By the choice of the
points p, q, they cannot simultaneously lie in A or in B. So, we can assume
that p ∈ A and q ∈ B.

We claim that the closure of Y \A is connected. Assuming that Y \A is
disconnected, we can find a proper clopen subset F ( Y \A that contains q
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and conclude that F ∪A is a proper subcontinuum of Y that contains both
p and q, which is not possible. Replacing B by the closure of Y \A, we can
assume that Y \A is dense in B. Then Y \B is dense in A.

We claim that the continua A and B are indecomposable. Assuming that
A is decomposable, pick two proper subcontinua C,D such that C ∪D = A.
We can assume that p ∈ D. Then B ∩ D = ∅ (as Y is irreducible between
p and q). By Theorem 11.8 of [10], the set Y \ (B ∪D) is connected. Let Z
consist of the four open sets Y \A = Y \(C∪D), Y \(D∪{q}), Y \(B∪{p})
and Y \ (B ∪ C). Since p /∈ C, we see that Z is a cover of Y and there
exists a Z-map h : Y → S1 because Y is 4-{S1}-like. Therefore h−1(h(p)) ⊆
Y \ (B ∪ C) ⊆ D, h−1(h(q)) ⊆ X \ A ⊆ B and h(B) ∩ h(D) = ∅. Hence
h(Y \ (B ∪ D)) ⊆ S1 \ {h(p), h(q)} and S1 \ (h(B) ∪ h(D)) is the union
of two disjoint open intervals, each contained in one of the components of
S1 \ {h(p), h(q)}. This contradicts the connectedness of h(Y \ (B ∪D)).

Now we know that Y is either indecomposable or the union of two inde-
composable subcontinua. Applying Theorem 7 of [2], we conclude that the
metrizable chainable continuum Y is circle-like.

7. Open problems

Problem 1. For which families K of connected topological graphs every
4-K-like continuum is K-like? Is it true for the family K = {8}, where 8 is
the bouquet of two circles?

Also we do not know if Theorem 4 can be generalized to classes of higher-
dimensional continua.

Problem 2. Let k ∈ N and K be a class of k-dimensional (contractible)
continua. Is there a finite number n such that a continuum X is K-like if and
only if it is n-K-like?
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