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INDECOMPOSABLE REPRESENTATIONS FOR EXTENDED
DYNKIN QUIVERS OF TYPE Eg

BY

DAWID KEDZIERSKI and HAGEN MELTZER (Szczecin)

Abstract. We discuss the problem of classification of indecomposable representa-
tions for extended Dynkin quivers of type Es, with a fixed orientation. We describe a
method for an explicit determination of all indecomposable preprojective and preinjec-
tive representations for those quivers over an arbitrary field and for all indecomposable
representations in case the field is algebraically closed. This method uses tilting theory
and results about indecomposable modules for a canonical algebra of type (5,3,2) ob-
tained by Kussin and Meltzer and by Komoda and Meltzer. Using these techniques we
calculate all series of preprojective indecomposable representations of rank 6. The same
method has been used by Kussin and Meltzer to determine indecomposable represen-
tations for extended Dynkin quivers of type D, and Eg. Moreover, our techniques can
be applied to calculate indecomposable representations of extended Dynkin quivers of
type E7. The indecomposable representations for extended Dynkin quivers of type A,, are
known.

1. Introduction. Let K be an arbitrary field and A = KQ/I be a
finite-dimensional K-algebra of quiver type. It is well known that a finite-
dimensional left A-module can be described by choosing a finite-dimensional
vector space for each vertex and a linear map for each arrow of the quiver
so that the relations of the ideal I are satisfied. We denote by A-mod the
category of finitely generated left A-modules.

In general, an explicit description of indecomposable representations by
vector spaces and matrices is very difficult. Often one only knows the dimen-
sion vectors of the indecomposable modules, but their explicit description is
not known. One of the first results was given by Gabriel [4] in 1972. He proved
that an algebra A = K@ has only finitely many indecomposable represen-
tations if and only if @) is a Dynkin quiver A,,, D, Eg, E7 or Eg. Moreover,
Gabriel described all indecomposable representations in these cases explic-
itly. From the 1973 results by Donovan and Freislich [3] and Nazarova [11] we
know that a path algebra A = K@ is of tame type if and only if ) is one of
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the extended Dynkin quivers 1&“, ﬁn, IE(;, ]E7 or ]Eg. Moreover, Nazarova [12]
described the indecomposable modules in the special case of the quiver }54
with subspace orientation.

In this paper we discuss a method of description of indecomposable left
modules over the path algebra of the extended Dynkin quiver Eg with the
following orientation:

Q: o

i

O— 00— 0=<—0=<—0=<—0=<—0=<—-20

The method described here was used by Kussin and Meltzer [10] to com-
pute all indecomposable preprojective representations in the case of Iﬁ)n and
all indecomposable preprojective representations of rank 3 in the case of
Eg, which are the most complicated in this situation. In our considerations
it is essential that for each path algebra A = K@ of an extended Dynkin
quiver @ of type Eg there is a tilting module T" over the canonical algebra
A of type (5,3,2) such that End,(T) = A°P. For definitions and results
concerning tilting theory we refer to [I]. From the Brenner—Butler Theo-
rem [2] we know that applying the functor Hom,(T,—) to an indecom-
posable A-module M satisfying the condition Ext! (T, M) = 0 we get an
indecomposable right A°P-module, hence a left indecomposable A-module.
This module is of the form Hom (7, M). A description of indecomposable
modules over a canonical algebra of type (5, 3,2) was given in [9] in the case
when the field K is of characteristic different from 2 and in [8] in arbitrary
characteristic. Applying the method above to the indecomposable prepro-
jective A-modules satisfying the condition Ext!(T, M) = 0 we obtain all
indecomposable preprojective left A-modules. We can also apply the functor
Hom/ (7, —) to the indecomposable regular A-modules and obtain in this
way all indecomposable regular left A-modules. Note that the structure of
tubes in the Auslander—Reiten quiver does not change under tilting. Matri-
ces for the indecomposable preinjective left A-modules can be obtained by
dualizing those for the indecomposable preprojective representations of the
opposite quiver. For this purpose a different tilting module for A has to be
chosen. Also by changing the tilting module we can calculate matrices for
the indecomposable modules for the quiver Eg having a different orientation
of the arrows.

2. Canonical algebras of type (5,3,2) and series of indecompos-
able modules of rank 6. Canonical algebras, which are among the most
important classes of algebras, were introduced by Ringel in 1984 [13]. Recall
that a domestic canonical algebra of quiver type A is isomorphic to the path
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algebra of the quiver

a1 Qp—1
11— —1p—1
al/ x
B1 B2 Bg—1 . Bq
J1 Jg—1 o0
\Y %
2 Yr—1
ky —— - A kr_1

modulo the relation «,---v1 = ap---a1 + By--- (1, where p,q,r are the
lengths of the upper (middle, lower, respectively) arm, and the triples (p, ¢, 7)
are only of the form (p,q,1) with p,q > 1, (p,2,2) with p > 2, (3,3,2),
(4,3,2) or (5,3,2).

It is clear that a finite-dimensional left A-module M consists of finite-
dimensional linear spaces M (i) for each vertex i and a linear map M (J) for
each arrow & = «ay, B, and v,,, satisfying the relation

M(yr)o---oM(m) = M(ap)o---oM(ar) + M(8) oo M(B).

We recall that a homomorphism f : M — N of A-modules is given by a
set of linear maps f, : M(a) — N(a) such that for each arrow o : @ — b
of the quiver A we have fyM(a) = N(a)f,. It follows from [0, Lemma
4.3] that the linear maps M («) for indecomposable preprojective modules
are monomorphisms. Hence a homomorphism between two indecomposable
preprojective modules M and N is uniquely determined by the map f(o0);
further on we will identify this homomorphism with a matrix of f(o0).

The integer rk(M) = dim M (co) — dim M (0) is called the rank of the
module M. An indecomposable module is of positive rank (negative rank,
zero rank, respectively) if and only if it is preprojective (preinjective, regular,
respectively). For all indecomposable modules M over a domestic canonical
algebra we have |[rk(M)| < 6 and the case |[rk(M)| = 6 appears only for
the type (5,3,2). All indecomposable modules M with |rk(M)| < 5 were
described explicitly by matrices in [9]. Moreover, the case |[rk(M)| = 6 was
described for a field of characteristic different from 2 in the same paper, and
in [8] for an arbitrary field.

Now, we define some matrices necessary for the description of indecom-
posable modules over a canonical algebra of type (5,3,2). Let n and i be
natural numbers. Let I, be the n x n identity matrix. Define

I, 0 --- 0

o - : :
Xn+i,n = 1. . aYn+i,n =\ S Mn+z’,n(K)7
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both having i rows of zeros of length n. If H is some matrix, then we consider
the matrix

1

with entries 1 on two diagonals each of length m > 0, and call this matrix
the enlargement of H. Furthermore, let us denote

[1 0 © [1 0 O 1 0 1]
1 1 0 0 1 o0 0 1 o0
Zl— |0 1 1 Z(l) — |1 1 o0 Z(2) —|o o 1
10 1|’ o 1 1|’ 11 of’
0 1 o0 1 0 1 1 0 0
lo o0 1 lo o 1] lo 1 1]
[t 1 0] [0 1 1] [o 0 1]
1 0 0 1 0 1 1 0 1
Z(S) _ o 1 1 Z(4) — o 1 1 Z(S) —_ o o 1
1 0 1|’ o 1 of’ 0o 1 1
0 1 o0 0 0 1 1 0 0
lo o 1] l1 o o] lo 1 o]

The notation is taken from [9]. Now, there are five series of indecomposable

preprojective A-modules of rank 6. We denote them by ngk) for n € N and
k=1,2,3,4,5. Those series are given as follows:

M, : Kt Intiz ety Kt Intigntia Krtis Tntigntia Ktia
Xntig,n Xn46,n+iy
Kn Yn+2'n Kn+2 Yn+4’n+2 Kn+4 Yn+6’n+4 Kn+6
Yn+3,n Zn+6,n+3
K'IL+3

where the numbers i1, i2, 73, i4 can be read off from the following table:

number\ type Mfll) M ,(LQ) M ,(LS) M ,(L4> M, y(f)
21 2 1 1 1 1
12 3 3 2 2 2
i3 4 4 4 3 3
14 5 5 5 5 4
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and where Z, 16,3 is the nth enlargement of the corresponding matrix Z.
We can choose the matrix Z in two different ways. In the case when the
characteristic of the field is different from 2, Z can be chosen to be Z'. In
the other case we assume that the field has arbitrary characteristic; then Z
depends on the type and the remainder of n divided by 6, as shown in the
following table:

n (mod 6)\type | M" M2 M M M

VA 7(2) VA Z(4) 7(5)
VA {CO N AC) R (G AC))
70 72 ZA) 72 ZQ1)
72 71 72 Z&)  Z(5)
VA 7(2) VAORE/AC) N AC))
7@ O 72 ZB) 72

T W N~ O

Below we assume that K is of arbitrary characteristic and consider the
series M,sk), n € Nand k= 1,2,3,4,5. In the first case we can use the same
method, but then we get a description of indecomposable representations
of the extended Dynkin quiver of type Eg by matrices with entries 0, 1,
—1, 2. In our case we get matrices with entries 0, 1, —1 only, which is
preferable.

3. Tilting from a canonical algebra of type (5,3,2) to a path al-
gebra of extended Dynkin quiver of type IEg. Let A be a K-algebra.
We denote by - 400 multiplication in the opposite algebra A°P. Further, for a
right A-module M we denote by % multiplication in the left A°P-module M.
Moreover, for a quiver @, we denote by Q°P the opposite quiver. We re-
call that the map w — w°P for each path w in K@) induces an algebra
isomorphism (KQ)°° = K(Q°P). Therefore each right K(Q°P)-module M
is a left K@Q-module with K(@-scalar multiplication defined by the for-
mula

KQxM— M, (a,m)r— axm:=ma®.

Let A denote a canonical algebra of type (5, 3,2) over an arbitrary field K.
It is known that we can find a tilting module 7" in A-mod such that End (7"
=~ K(Q°P), where Q°P is the extended Dynkin quiver with the following ori-
entation:

Qr: 0
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The indecomposable direct summands T}, of T are given as follows:

id id X211 X3,2
To : K—>K Ti: K —> K —> K2 —> K3
\Xj,l \Xj,s
Yo1 id Y31 Yy,3
K —> K2 ———> K2 K —> g3 ——" 5 14
Z(Tg) Z(T1)
K K2
X211 X3,2 X4,3 id X21
Ty: K —> g2 —> g3 —> K4 Ts: K —>= K —> K?
QA QQ
Ya,2 Y6,4 Y21 Y32
K2 —> g4 —— > K6 K—> K2 —> g3
Z(Tg) Z(T3)
K3 K?
X211 X3,2 X4,3 X211 X3,2 id
Ty: K —> K2 —> g3 —> k4 Ts: K —> g2 —> g3 —> K3
\XGA \X‘I,S
Y3 2 Y5,3 Y21 Yy,2
K2 —> g3 — " 5 5 K K2 K4
Z(Ty) %
K? K2
X2,1 id id id id id
Te: K > K2 —> g2 —> K2 T7: K—> K —> K —> K
YJ \XZ,I
Y21 Y32 Y21
K K2 K3 K— K ——> g2
K K
id id id
Tg : K—— K ——3> K — K
V \Xz,l
id id Y2,1
K K K K?
id
Z(Tg)
K
where
0 0 1
B 1 07 1 0 1
_ — |1 o0 — |0 © 1
Z(To)—Z(Tﬁ—Z(Ts)—[ . ZM) =\ 9, Z(T) =) 9 1,
. 0o 1] 1 0 0
0 1 0
i 0 -
0o 1
1 0 1 1 1 0 1
Z(T3) = |t 1| Z(T4> = |1 0, Z(T5) = Lol Z(TG) = 1.
0 1 1 0 1
LO 1
LO 1

It is easy to see that each T is preprojective and indecomposable, hence
Ext! (T}, T;) = 0. Moreover, one easily calculates that Ext!(7,T) = 0. Be-
cause the number of indecomposable direct summands of T' equals the num-
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ber of simple A-modules, T is in fact a tilting module. Furthermore, it is
easy to see that End,(7") = K(Q°P).

It is clear that for each left A-module M the vector space Homx (7', M)
is a right module over the endomorphism algebra of T, so it is a left KQ-
module. Hence we can consider a functor Homy (7', —) : A-mod — K@Q-mod,
where

Q: 3

a1 a2 Qy as ag a7 ag
O—0—>0=<=—0=<—0=<—0=<—0=<—0

The theorem of Brenner and Butler [2] implies that for any left indecompos-
able A-module M such that Ext!(T, M) = 0, the module Hom(T, M) is
indecomposable. We are going to describe those modules.

Now, if M is a A-module satisfying Ext! (T, M) = 0 then the left KQ-
module Hom 4 (7', M) is given as follows:

e To each vertex a of @), there is associated the K-vector space
Homy (T, M), = eq * Homy (T, M),

where e, denotes the stationary path in K@ corresponding to the
vertex a.
e To each arrow « : a — b of (), there is associated the K-linear map

fo : Homp(T, M), — Homy (T, M),
defined by the formula
faleq xm) = ax e, *xm.

Now we show how the representation Hom, (7, M) can be computed
in practise. Using the definition of K @Q-scalar multiplication in the module
Homx (T, M) we obtain

e Hom/ (T, M), = eq * Hom, (T, M) = Homu (T, M)e,,

o fo(egxm =me,) = axebxm = me,a°P, where a: @ — b is an arrow
in Q.

Next, we know from [I] that there exist K-linear isomorphisms
Hom (T, M)eq, = Homy(Ty, M) and e, KQe, = Homy (T, Tp).

The first isomorphism gives vector spaces of the representation Hom (7', M).
Using the second isomorphism we see that to each arrow a : a — b of the
quiver () there corresponds a module homomorphism from T} to T,. Hence,
if we choose a generator h, : T, — T, of the vector space Hom,(71y,T,),
the map f, : Homy(T,, M) — Homy(Tp, M) is defined by the formula f, =
Homx(h, M), because for each g : T, — M we have the identity f,(g) =
gh = Hom,(h, M)(g).
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Thus we obtain

PROPERTY 3.1. Let M be an indecomposable A-module satisfying
Exty (T, M) = 0. Then the left KQ-module Hom (T, M) is formed by

e vector spaces Hom (T, M), = Homy(Ty, M) for each vertex a of @,
e maps fo, = Homy(ha, M), where hy are generators of Homy(Ty, Ty,),
for each arrow o : a — b of the quiver Q).

From Property [3.1] it follows that, in order to find a desired representa-
tion, we need to choose a generator of each linear space Hom (T}, Ty) for
each arrow « : a — b in the quiver ). The diagram below shows a choice of
generators of the vector spaces Hom (7}, Ty,), which we will use later:

T
T3

T4 T, Ts.6 Te,7 T7 8
Tos—T=s—To—Ty—T5 —To —Tr — 13

1,0 To 1
where
) [T 0 0o 0 0 O
T n=[0 -1 1 0 Ty, = [0 0 1 0 0 0
1,0 o o o 1’ 2,1 o o o 1 o of
lo o o 0 o0 1
r o o o o o0
[O0 1 0 0o o0 o0 01 0 0 0 0
T273: 00 0 1 0 0f, T274: 00 1 0 0 0|,
0 0 0 -1 1 0 0 0 1 0 -1
lo o o 0o 1 o0
[1 -1 0 0 0O
1 0 0
T45 == 0 L 0 0 0 T56 — 0 —1 1 0
) o o 1 o o/’ ) ’
0 o0 1
lo o o o0 -1
Thr — [1 0o o To g — (1 o
67= 1, o 1], 78 =1, 1]-

Recall that a homomorphism f is identified with the matrix f(oc). The
proof of the fact above is straightforward and is left to the reader.

4. Explicit computation of matrices. Let {M,(f) | n € N} be one of
the series of indecomposable preprojective modules over the canonical alge-
bra A of type (5,3,2) introduced in Section [2| It is easy to verify that in the
preprojective component of the Auslander—Reiten quiver the modules M,(f)
are positioned to the right of the direct summands T} of the tilting mod-
ule T'. Then applying the Auslander—Reiten formula and the fact that there

do not exist non-zero homomorphisms from right to left [I3], we obtain the
relation Ext} (7, M,(L5)) = 0. Because each module M. is indecomposable
and Ext} (T, MT(LE))) = 0, we know that all K@-modules Hom (T, ng5)) are
indecomposable.
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Now, we will compute the modules Hom 4 (7', M,,). From Property we
have to find bases of the linear spaces Hom (7}, M1S5)), and matrices of the
homomorphisms Hom 4 (hy, M).

First, let us consider the case of n =0 or n = 3 mod 6. Let Z, 16,43 €
M, +6,n+3(K) be the nth enlargement of the matrix Z©) introduced in Sec-
tion [2| and let H = (h;;) € My43+(K) be arbitrary. Then for the matrix

hsi + hai
hii + h3i + hs;

hazi + he:
ha2; + h3i + hzi

hii + hs;
Znt6nt3H = hai + hg;
hai + hioi
hsi + hi1i
hei + h12i

we have the following identities:

hii 4+ h3i + hsi = (hai + hai) + (hi; + hsi) + Z{(h12k+5,i + hiok411,i)
k=0

+ (h12k+14, + hi2k+204) + (R12k+10, + Pi2k+16.4)
— (P12k+a,i + hiok+10,) — (hi2kts + Pi2ks+14,)

— (h2k+11,6 + hoksi74) s

hsi + hei = (hai + ha;) + Z{(h12k+6,i + hi2k+12,i)
k=0

+ (h12k+10,i + hi2k+16,) — (Pi2k44,i + Pi2k+10,)
— (h2k+12, + hio2ky184) }s

(4.1)

hai + hgi + hri = (hsi + hai) + (hoi + hoi) + Z{(h12k+7,i + hi2k413,i)
k=0

+ (hi2k+15,0 + hiak+21,i) + (h12k+10, + Pi2k416,1)
— (h12k+9, + hi2k+154) — (P12k+a,i + Ri2k+10,i)
— (h12k+13, + h12k419,1)
where we put, for simplicity, h;; =0 for eachi >n+3 and j =1,...,t.
We use the above three identities to compute bases of the linear spaces
Hom(T;, M), i =0,1,...,8.
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4.1. Computation of HomA(TO,ngs)). A homomorphism g : Ty —
M7(L5) is given by matrices D = (d;j) € My431(K), E = (e55) € Mpta,1(K),
F = (fij) € Mpp21(K), G = (gij) € Mpya2(K), H = (hij) € Myy31(K)
and S = (Sij) € Mn+672(K) such that ' = X, 44,43D, SX21 = Xpi6nall,
G}/271 = Xn+47n+2F, S = Yn+6,n+4G) SZ(Tg) = Zn+6,n+3H' From the first
four conditions we get

(4.2)  S11 =812 = S21 = S22 = 8§32 = 542 = Sp44,1 = Sn45,1 = Snt6,1 = 0,
where the equality SZ(13) = Zy16,n+3H yields

[ 0 ) [ hsi+ha
0 hi1 + h31 + hs1
531 hs1 + he1
Sa1 h21 + hz1 + hn1
(4.3) s51+ 852 | = hi1 + hs1
S61 + Se2 ha1 + ho1
S71 + 872 ha1 + hio1
s81 + S82 hs1 + hi1,1

Applying (4.1)) to the right-hand side of (4.3)) we get
o0

531 = Z{(312k+9,1 + S12649,2) + (S12k+13,1 + S12k+13,2)

k=0
— (S12k47,1 + S12k47,2) — (S12K+15,1 + S1286115,2) }
o0
S41 = Z{(S12k+10,1 + S12k410,2) + (S12k+6,1 + S12k+6,2)
k=0
(4.4) + (S12k+13,1 + S126+13,2) — (81264121 + S12K+12,2)
— (s12647,1 + S12k47,2) — (81264161 + S12k4+16.2) }
oo
851 = —852 — Z{(512k+8,1 + S12k+48,2) + (S12k+13,1 + S12k+13,2)
k=0

+ (S12k+17,1 + S12k4+17,2) — (S12k47,1 + S12k47,2)
— (8126411,1 + S126+11,2) — (S12k414,1 + S12k+142) },
where we put s;; =0 fort >n+6and j =1,2,3,4.
We see that the vector space Hom 4 (7p, Més)) is given by the matrices

S = (sij) € Mp46,2(K), where the nine entries from (4.2)) equal zero, and
the entries s31, s41, S51 are linear combinations of other s;;’s. Therefore

dim g Hom 4 (7o, M7(15)) = 2n and a basis is given by the (n + 6) X 2-matrices

461 G715+ - -5 Qn+3,15 G52, 4625 - - - » Gnt6,2 Where g;; is the matrix with the (4, j)
entry 1, the (3,1), (4,1), (5,1) entries calculated using the above identities,
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and all the other entries zero. The following table shows these coefficients
for the initial 7, j’s:

matrix | ge1  g71  gs1 Qo1 Qo1 qi1,1 G121 G131 Q14,1 ¢is51  qi6,1 G171

S31 0o -1 0 1 0 0 0 1 0 -1 0 0
Sa1 1 -1 0 0 1 0 -1 1 0 0 -1 0
S51 0 1 -1 0 0 1 0 -1 1 0 0 —1
matrix | gs2  ge2 qr2 Gs2 Q92  qio,2 Q11,2 Q12,2 G132 Q142 Q152 16,2
831 0 0o -1 0 1 0 0 0 1 0 -1 0
S41 0 1 -1 0 0 1 0 -1 1 0 0 -1
S51 -1 0 1 -1 0 0 1 0 -1 1 0 0

4.2. Computation of HomA(Tl,Mff)). A homomorphism ¢g : T} —
M) is given by matrices B = (b;;) € My41,1(K), C = (¢i5) € Myy2,1(K),
D = (dij) € Mny32(K), E = (e5) € Mnya3(K), F' = (fij) € Mny2,1(K),
G = (9ij) € Mpta3(K), H = (hij) € Mpy32(K) and S = (s5) € Mpy6,4(K)
such that ' = X,10n11B8, DXo1 = Xyy30120, Xpjani3D = EXjpo,
SXu3 = Xngenal, GY31 = XppaniolF, SYaz = YiienaG, SZ(T) =
Zn+6,n+3H-

From the first four conditions we get s,,421 = 5p43,1 = Sn44a,1 = Spt4,2 =
Sn45,1 = Snt5,2 = Snt53 = Snt6,1 = Snt+6,2 = Snt6,3 = 0. Moreover, the next
two conditions imply s12 = $13 = S14 = S22 = S93 = S94 = S34 = Sqq = 0. Ap-
plying to the last matrix equality we obtain a linear dependence of the
entries so1, 31, S41, S33, S43, Ss3. Hence dimg Hom 4 (77, M7(L5)) = 4n. Let wy;
be the (n+6) x 4-matrix with the (4, j) entry 1, the (2,1), (3,1), (4,1), (3,3),
(4,3), (5,3) entries linearly dependent on other entries, and all other entries
zero. Thus the matrices w11, ws1, ..., Wny1,1, W32, W2, - . ., Wn43,2, W63, WT3,

. 5
ooy Wnta,3, W4, Wed, - - ., Wnt64 form a basis of Hom (77, M,s )).

4.3. Computation of HomA(TQ,M,SE’)). A homomorphism g : To —
M) is given by matrices B = (b;;) € Mp11,1(K), C = (¢ij) € Mpq2.2(K),
D = (dij) € Mpy33(K), E = (eij) € Mptaa(K), F = (fij) € Mpy22(K),
G = (9ij) € Mny44(K), H = (hij) € Mny33(K) and S = (si5) € Mp16,6(K)
such that CX271 = Xn+27n+1B, DX3,2 = Xn+3,n+207 EX473 = Xn+4’n+3D,
SXe4 = Xnyonral, GYio = YoiunioF, SYs4 = Yoo naG, SZ(1p) =
Zn+6,n+3H-

It is easy to see that then s13 = s14 = s15 = S16 = S23 = Soq = S95 =
826 = S35 = S36 = S45 = 546 = Sn+2,1 = Sn+3,1 = Sn+3,2 = Sp+4,1 = Sp442 =
Sn+4,3 = Sn+5,1 = Sn+52 = Sn+53 = Snt+54 = Sn+6,1 = Sn+6,2 = Sn+6,3 —
Sn+6,4 = Snt6,5 = 0. Furthermore, the entries so1, s31, 541, 522, $32, 542, 534,
544, 854 are linearly dependent on other s;;’s. Thus dimg Hom, (T, M) =
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6n+1 and a basis is given by the (n+6) x 6-matrices v11, vs1, .. ., Unt1,1, V12,
V52, -+ -5 Un+t2,2, U33, V43, .-, Unt33, V64, -, Untdd, V55,5 Unt6,5, Us6y-- -,
Unt6,6 Where v;; is the matrix with the (7, 7) entry 1 and all other entries 0
except for the (2,1), (3,1), (4,1), (2,2), (3,2), (4,2), (3,4), (4,4), (5,4)

entries, which are dependent on other ones.

4.4. Computation of HomA(Tg,MS’)). A homomorphism g : T3 —
MY s given by matrices C' = (¢;j) € Mp42,1(K), D = (dij) € Mp43,1(K),
E = (ej5) € Mpyao(K), F = (fij) € Mpi21(K), G = (gij) € Mnia2(K),
H = (h”) € Mn+372(K) and S = (Sij) S Mn+673(K) such that D =
Xnt3n+20, EXo1 = Xypani3D, SX32 = Xy npald, GYo1 =Y p4nyaF,
SY30 = Yoi6n+4G, SZ(11) = Zntent3H.

The first six equations yield s19 = s13 = S99 = S93 = S33 = S43 =
Sn+3,1 = Snt+4,1 = Sn+51 = Snt52 = Spi6,1 = Spt6,2 = 0. Moreover, from
the equation SZ(T1) = Zyt6n+3H we find that so1, s31, Sa1, S32, S42, Ss52

are linearly dependent on other s;;’s. Hence dimg Hom 4 (7! 3,M7g5)) = 3n.
A basis can be constructed as follows. Let u;; be the (n+ 6) x 3-matrix with
the (i,7) entry 1 and other entries zero, except for the (2,1), (3,1), (4,1),
(3,2), (4,2), (5,2) entries that depend on other ones. Then the matrices
ULLy ULy - -y Unt2,15 U625 UT2s - -+, Untd2, U53, UGS, - - -, Unt6,3 form a basis
of Hom (T3, M7(l5)).

4.5. Computation of HomA(T4,M7S5)). A homomorphism g : Ty —
M) is given by matrices B = (b;;) € Myy11(K), C = (cij) € Mpp22(K),
D = (dij) € Mny33(K), E = (ej) € Mpyaa(K), F' = (fij) € Mnyo22(K),
G = (gij) S Mn+473(K), H = (h”) S Mn+372<K) and S = (Sij) S Mn+675(K)
such that C X2 1 = Xpi20418, DX32 = Xyy30120, EXy3 = Xyqan3D,
SXs54 = Xnyenral, GY3o = YyiynioF, SY53 = Yii6n44G, SZ(T4) =
Zn+6,n+3H-

It is easy to verify that we have s13 = s14 = S15 = 823 = S94 = S95 = S34 =
835 = S44 = S45 = Sp+421 = Sn+3,1 = Sn432 = Sn4dl = Sn4d2 = Sntd 3 =
Sn+5,1 = Snt52 = Sn+53 = Snt+54 = Sn+6,1 = Snt6,2 = Sn+6,3 = Snt+64 = 0.
Moreover s21, 531, 541, S22, $32, S42 are linearly dependent on other s;;’s.
Hence dimy Hom 4 (7}, M7(l5)) = 5n and a basis is given by the (n + 6) x 5-
matrices 11, T51,- .-, Tnt1,1, 125 52, -5 Lnt+2,2, L33, T43; - - - Tn+3,3, T54,
T4,y Tntdd, T55, T65, - - -, Tnt6,5, where x;; is the matrix with the (i, j)
entry 1 and all other entries zero, except the (2,1), (3,1), (4,1), (2,2), (3,2),
(4,2) entries which are dependent on other ones.

4.6. Computation of HomA(T5,M7§5)). A homomorphism g : Ty —
MY s given by matrices B = (bi;) € My41,1(K), C = (¢ij) € Mpq2,2(K),
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D = (dij) € Mpy33(K), E = (eij) € Mnya3(K), F' = (fij) € Mpto,1(K),
G = (gij) c Mn+472(K), H = (hw) S Mn+372(K) and S = (Sij) S Mn+674(K)
such that CX21 = Xpion11B, DX32 = Xpy30020, XpgansD = E,
SXu3 = Xntentall, GYor1 = YoyunioF, SYio = Yii6ntaG, SZ(T5) =
Zn+6,n+3H-

Again it is easy to see that s13 = 514 = 523 = S24 = 834 = S44 = Spy21 =
Sp4+3,1 = Sn432 = Spnt+4,1 = Sn+42 = Snt4,3 = Sn45,1 = Sn45,2 = Spn453 =
Sn46,1 = Snt6,2 = Snt6,3 = 0 and the entries s91, s31, 541, S22, S32, 542 are
linearly dependent on other s;;’s. Hence dimx Hom (75, M,(f)) = 4n and the
matrices Yi1, Ysi,- .-y Yn+1,15 Y125 Y52, - -5 Yn+22, Y33, Y43, -5 Yn+3,3, Ysd,
Y64, - - > Ynt6,4 form a basis, where y;; is the (n + 6) x 4-matrix with the
(4,7) entry 1, the (3,1), (4,1), (5,1) entries depending on other ones, and all
other entries zero.

4.7. Computation of HomA(Tﬁ,M,(f’)). A homomorphism g : Tg —
M is given by matrices B = (bi;) € Mpy11(K), C = (cij) € Mpia2(K),
D = (dij) € Mpt3.2(K), E = (eij) € Mnyaa(K), F' = (fij) € Mpto,1(K),
G = (9ij) € Mnya2(K), H = (hij) € Mny31(K) and S = (s5) € Mn163(K)
such that CXs1 = Xy 190,118, D = X413 3,420, E = X 14,43D, SX30 =
Xnt6niaE, GYo1 = YyianioF, SYs0 =Y, 16n14G, SZ(Ts) = Zyyent3H.

The first six equations imply the conditions s1o = $13 = S99 = So3 =
833 = S43 = Sn+42,1 = Sn43,1 = Sn+3,2 = Snt4,1 = Sn+4,2 = Sn45,1 = Sn452 =
Sn+6,1 = Sn+6,2 = 0. The last matrix identity implies that the entries sa1, 531,
s41 are linearly dependent on other s;;’s. Therefore dim g Hom 4 (75, M,(ZB)) =
3n. Moreover, a basis is given by the (n+ 6) x 3-matrices 211, 251, . . ., Znt1.1,
232, 742, - - - s Zn42,2, 2535 263, - - - » Znt6,3, Where 2;; is the matrix with 1 at place
(4,7), with the (2,1), (3,1) and (4,1) entries depending on other ones, and
all other entries zero.

4.8. Computation of Hom, (7%, M, ) A homomorphism g : T7 —
M) is given by matrices B = (b;;) € Mn+l 1(K), C = (cij) € Mpt2.1(K),
D = (dij) € Mny31(K), E = (eij) € Muya1(K), F' = (fij) € Mns2,1(K),

G = (gij) € Mn+471(K), H = (hlj) S Mn+3’1(K) and S = (8@') S Mn+672(K
such that C' = Xn+2’n+1B, D = Xn+3,n+20> E = Xn+4,n+3D, SXQJ
Xnt6niaE, G =YoianioF, SYo1 = Yoi6n14G, Znyent3H = SZ(T7).
Then we obtain S12 = 822 = 832 = S42 = Sp42,1 = Sn+371 = Sn+4,1 =
Sn+51 = Spt6,1 = 0. Furthermore the entries so1, s31, s41 are linearly de-
pendent on other s;;’s. Therefore dimg Hom (77, MT(LE’)) = 2n and a basis is
given by the (m + 6) x 2-matrices 711, 751, .., Tnti,1, 752, 7625 - - -5 Tnt6,2,
where 7;; is the matrix with the (7, j) entry 1 and all other entries 0, except
the (2,1), (3,1), (4,1) entries which are linearly dependent on other ones.

N



108 D. KEDZIERSKI AND H. MELTZER

4.9. Computation of HOH]A(Tg,ngs)). A homomorphism ¢ : Ty —
M7(L5) is given by matrices A = (a;j) € My 1(K), B = (bij) € Mp41.1(K),
C = (¢ij) € Mp121(K), D = (dij) € Mpy31(K), E = (&55) € Mpya1(K),
F = (fij) € Mut21(K), G = (gi5) € Mpqa1(K), H = (hy) € Mpy31(K)
and S = (Sij) S Mn+672(K) such that B = Xn—&—l,nA) C = Xyyo2n+1B,
D = X,430120, £ = Xppan3D, SXo1 = Xyyental, F = Y004,
G = YoqrantoF, SYo1 = Yoi6n01aG, SZ(1R) = Zpyen3H.

From these conditions we get s1o = S99 = S39 = S40 = Ss2 = Sg2 =
Sp+1,1 = Sn421 = Sn+43,1 = Sn+4,1 = Sn+5,1 = Sn+6,1 = 0, and we have the
identities si 1 = sgy6,2 for k = 1,...,n. Therefore dimx Hom 4 (75, MS’)) =n
and a basis is given by s1,...,s, where s; is the matrix with the (7, 1) and
(7 +6,2) entries 1 and all other entries zero.

4.10. Computation of matrices for Hom/(hq,, M,(f)), 1=0,1,...,8.
We computed bases of the vector spaces Hom 4 (77, M7(l5)) fori=0,1,...,8.

Now we describe the matrices of the representation Hom (7, MS))) for
the extended Dynkin quiver ). We need to find the matrices of the lin-

ear maps HomA(hi,Mff)) in the bases obtained above. The linear maps
Hom (h;, MT(L5)) can be treated as multiplication from the right. In particu-
lar, the K-homomorphism

Hom 4 (hq,, M) : Hom (T, M) — Hom, (T}, M)

is given by the formula

0 0 0 0 0 0
0 0 0 0 0 0
S31 0 0 —S831 S31 0
S41 0 0 —S41 S41 0
S51 S52 0 —851 S51 S52
0 -1 1 0
o 0o o 1]]:
IR
Sn+3,1  Sn+3,2 0 —8Sni3,1 Snt3,1 Snt3,2
O Sn+44,2 0 0 O Sn+4,2
0 Sn+5,2 0 0 0 Sn+5,2
L 0 Sn+6,2 | _0 0 0 Sn+6,2 |
This linear map in the bases g1, g71, - - -, Gn+3,1, ¢52, 4625 - - - » Gn+6,2 and w1y,
W51, -« -y wn—i—l,lv w32, W34, - ., wn+3,27 we3, W73, .., wn+4,37 Ws4, Wel, - - -,
Wn+6,4 has the form
0
o, o r,
A(5) _ 1
5 L) ’
Ip—2
0 - 0
Int2
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where

0o -1 1 0 o -1 0 1 -1 0 O 1 0

is the k£ x 3-matrix with three periodic rows of period 12 and the empty
matrix-blocks are zero matrices of appropriate size.

By calculating the other linear maps in the same way we obtain a series

of indecomposable representations of Hom 4 (7, M,({r))) for the quiver @ in the
case n = 0 or n = 3 mod 6, namely

(4.5) K30
) ic‘f’ ) )
Ay B D E Fg° G Hy®
K2n45>K4n45>K6n+1 5 K5n 5 K4n 5 K?m 5 K2n 5 K"
where
In72
In—l 7
I n—2
B5: n+11 1 s 05: T, s G5: s
n— n— In
—Int1 +2
Int2 Int1
Ip_2
In—1
Int1 In_2
0
_1n72 In—l
D5 - I, s E5 =lo ... 0 ,
0 Int1
In+2
—In —Ing2
0 -~ 0
0O --- 0
In—2 100 0 --- 0
00 0
000 0 In_g4
(5) _ o iz () _|: ¢
F5 - 00 ) H5 “looo o 0
; 000 O 0
" 000 O 0
00 .0
In
In42

In the case of n = 1 or n = 5 mod 6, we obtain the representations of
the form

(4.6) K3
iCS
2 A2 4 5 prbntl <20 Bs -4 i SCT Hs
K — K4 — Kont K" K" 3n K=" K"
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with
1 0 1
-1 PP, o -1 PP
4@ | L
5 L) ’
In—2
0 L..0
In42
where
(2) 1 0 -1 0o -1 0 -1 0 1 0 1 0
P2
L, =0 1 0o -1 1 0 0 -1 0 1 -1 0 0
101 0 0 -1 -1 -1 -1 0 0 11

is the k x 3-matrix with three periodic rows of period 12 and

In_2 1000 0 O --- 0

00 0 0 0100 0 O 0

00 0 0 0000 1 0 --- 0

(2) (2)
F; hs , HY = L s

00 0 0000 0 O 0

I, 0000 0 O 0

0 0 0000 O O 0

In42 I

and Bs, C5, D5, E5, G5 have the same form as in the case of n =0 orn =3
mod 6.

In the last case n = 2 or n = 4 mod 6, we get the representations of the
form

(4.7) K3n
Cs
AW B D B F? G Ji )
K2n ‘5>K4n‘5>K6n+1 5 K5n 5 K4n 5 K3n 5 K2n 5 Kn
with
100 0 O 0
010 0 O 0 0
1 1
: P7(1/—)2 0 Py(,,ﬁl
g0 | s AW _ )
5 000 0 0 - 0 5 1, . ’
000 0 O 0 In_s
000 0 0 --- 0 0 .0
In In42
where
0o 1 1 -1 0 00 -1 -1 1 0 0 0
p) _
L — |-1 o 1 0o -1 0o 1 0 -1 0 1 0 -1

—1 1 0 0 0 -1 1 -1 0 0 0 1 -1
is the k£ x 3-matrix with three periodic rows of period 12 and Bj, C5, Ds,
Es, Gs, Fé2) have the same form as in the other cases.

5. Other examples of indecomposable preprojective K(Q-mod-
ules. In this section we will present the other indecomposable rank 6 repre-
sentations over the path algebra of the extended Dynkin quiver Eg. We say
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that an indecomposable preprojective module N over the path algebra K@)
has rank n if there exists a A-module M of rank n such that Ext} (T, M) = 0
and N = Homx (T, M). In Section 4 we computed one series of indecompos-
able representations of rank 6. Now, we will present the other indecomposable

representations of rank 6. Note that the matrices P,gl), Plgz), PI<(:5) have the
same form as in the last section.

a) Type I: Homy(T, MT(LU)

e Casen=0o0orn=2 orn=4 mod 6:

(5.1) 342
1 C1 1
g ) By \L Dy Ey F Gy Hi )
K2n+1 = K4n+3 = K6n+5 - K5n+4 - K4n+3 - K3n+2 - K2n+1 <~ K™
where
0 In—1
" P, o rY i
S 1 J— n+42
A1 - . ) Bl - n )
In—1
0 o0 Inio
Iny2
In—l
In
In+2 In—l
0 —In—1 In
Dl — s s El =0 0 s
o " Iny2
In+2
“Tnit —Ini2
0 0
In_1 100 0 0 --- 0
00 o 0 010 0 0 0
00 o0 0 o
) 1 Sl Is
F, = : —Ip_o R H§):000 00 --- of,
00 © 000 0 O 0
Int1 000 0 O 0
0 0 000 0 O 0
Ing2 In
I’Vl,
Infl
C1=1— , Gi1=
“ I’Vl
—Iny2 12
In42
e Casen=1orn=3 orn=>5mod 6:
(5.2) 342
(2) C1 y®

K2n+1 i> K4n+3 ﬂ. K6n+5 & K5n+4 <Ei K4n+3 2 K3n+2 & K2n+1 <i K"
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where

1000 0 O 0
0100 0 0 0
1 0 1 0000 1 O 0

-1 PP, o -1 PP S .

A(2) _| 1 1 1 H(Q) | : In_s
1 —In_1 ’ 1 0000 0 O ol’

T 1 0000 0 O 0
0 0 0000 0 O 0
Tnio 0000 0 0 0

I

and By, C1, D1, Eq, F1, G1 have the same form as in the above case.
b) Type II: Hom (T, M)

e Casen=1orn=3 orn=>5mod 6:

(5.3) K3n+2
) je: e
K2n+1 i> K4n+2 E% K6n+4 & K5n+3 <7E2 K4n+2 <7F2 K3n+1 er K2n ¢2 K"
where
In—2
In 7
Bo = In42 Co = Gy = n_2
2 — . s 2 = T y 2 = y
Toie Iny2
Ipt2 Int2
In—2
I, In—2
Int2
0 —Ip_2 I,
Dy = I, , Er= 0 - 0 )
0 In42
Iny2
—Iny1 —Iny2
0 0
In—2 o o 5 100 0 O 0
0o o 0 010 0 0 0
_ S L _ |
In= oo o ~In-2 ’ H2 “looo 0 0 --- 0
T 000 0 O 0
o nl 0 000 0 0 0
.
In42

e Casen=0o0rn=2 orn=4mod 6:
(5.4) 3n+2

Co
AP B / D E j2 HSY
K2n+1 ‘1> K4n+2 ‘2> K6n+4 é K5n+3 <i K4n+2 <i K3n+1 <Gi K2n .ez K"n
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where
1 0 00 0 O 0
0 00 O o 0
00 O0O0 1 o 0
(2)
Hy” =|::"::" . |
0O 0 0O O0 O o0 0
0O 0 0 O0 O o0 0
0O 0 0 O0 0 o 0
In

and AgQ), By, Cy, Ds, Es, F5, G5 have the same form as in the other cases.
c) Type I1I: Hom (T, M,Ss))

e Casen=0o0orn=2 orn=4 mod 6:

(5‘5) K3+l
C3
AV B D E F G M
K2n+1 ‘1> K4n+2 J> K6n+3 <i K5n+2 <i K4n+1 <i K3n <i K?n <27 Kn’
where
In—2 In_2
In—q 00 O cee 0
Int2 00 0 0
0 .. .
_ . — SoL 0 I
Ds = I, ’ b= 00 0 ’
0 In
Inio 0 . 0
—In41 0 0
0 - 0 Ipto
In—z
I'n.fl
_In—2 Infl
03 = - , E3 =lo ... o
_1n+2 In+2
In+2 71n+2

e Casen=1orn=3 orn=>5mod 6:
(5‘6) K3+l

A B J/CS D B P G s S)
K2n+1 41> K4n+2 42> K6n+3 <i K5n+2 <i K4n+1 <i K3n <i K2n <L K"

where Agl), AgQ), B, G, Hél), H2(2) have the same form as in the other
cases.

d) Type IV: Hom(T, M)
e Casen =0 orn =3 mod 6:

(5.7) Ko+l

Cs
ALY B D E F. H
jo2n+1 4 JoAn+1 24 [ 6n+2 ~* joon+1 Pl oAn S K30 <G72 20 < Km
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where
0
In_2 (4) (4)
Przy 1 P,y
_ Tn (4) _ !
B4 - 1 b ) A4 - —In_2 )
In_»2
0 e 0
Ing2 o o
Inq2
where
(4) 0 1 0 —1 0 0 0 —1 0 1 0O 0 O
P]C — |0 1 0 0 —1 —1 0 —1 0 0 1 1 0

1 0 1 0 0o -1 -1 0O -1 0 0 1

is the k x 3-matrix with three periodic rows of period 12 and

In—2
In—1 In—2
Inta 0 o0 0
0 . .
D Fy=| |50 e
4 I, ) 4 0o o )
0 In
Tpio 0 --- 0
—Init1 Tnq2
In_2 100 0 --- 0
—Ip_2 In_1 Lol : In—4
Ei=lo ... o , Hy=loo00 0 .- o
Ini1 000 0O --- 0
000 O 0
—Inyo In

and C3, G5 have the same form as in the other cases.

e Casen=1 orn=>5mod 6:

(58) K3ntl
% B 17" b, E, P Go H,
J;{Qn—l—l‘>l:{4n—|-1%.I(611—&—2<;‘K*5n+1<;‘K*4n<;J;(3n<;‘K'2n.e[{n7
with
0
P, o P,
(3) _ !
A4 - —In—2 3
171—2
0 0
0 0
Iny2
where
(3) 0o 1 0 -1 0 0 0 -1 0 0 0 0
Pk:0100—1—10—100110

1 0 1 0 0o -1 —1 0O -1 0 o0 1
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is the k x 3-matrix with three periodic rows of period 12 and C3, G2 have
the same form as in the other cases.

e Casen =2 orn=4mod 6:

(59) K3ntl
Af) By @ Dy Ey Fy Ga Hy
K2n+1 s K4n+1 i K6n+2 - K5n+1 - K4n - K3n <= K2n <~ Kn
where
1 0 1
@ -1 PP, o -1 p®
2
A — 1 1 1
4 —In—2
Ip_—2
0 S 0
Int2

and C3, G, Hs have the same form as in the other cases.

One can also calculate explicit matrices for the indecomposable prepro-
jective modules of smaller rank. In the case of an algebraically closed field
the indecomposable regular modules are calculated in the same way. For
this the shape of the indecomposable A-modules obtained in [9] can be used.
Note that we get all indecomposable preprojective and regular K @Q-modules.
This follows from the fact that the functor Hom 4 (7', —) preserves Auslander—
Reiten sequences. As stated in the introduction, matrices for the indecompos-
able preinjective K @)-modules can be obtained by choosing a tilting module
over A with endomorphism ring isomorphic to KQ°P and considering its
indecomposable preprojective modules. In particular we have proven

THEOREM 5.1. Let K be a field and () an extended Dynkin quiver of
type Eg with subspace orientation. The formulas f and f
give a description of all indecomposable preprojective representations of rank
6 for this quiver by vector spaces and matrices.

The indecomposability of the modules N,, = Hom,(T', M,,) above follows
from the Brenner—Butler theorem. Alternatively, one can calculate their en-
domorphism rings. It turns out that Endgg(N,) = K, which also proves the
indecomposability.

Thus we have obtained a practical method of describing the preprojective
indecomposable K @Q-modules by vector spaces and matrices. We emphasize
that our method can also be applied to concealed-canonical algebras in the
sense of [7] of domestic representation type, since these algebras are defined
as endomorphism algebras of tilting bundles over weighted projective lines in
the sense of [6]. Thus they can be obtained by tilting from domestic canonical
algebras.
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