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Abstract. We characterize homogeneous real hypersurfaces of types (Ao), (A1) and
(B) in a complex projective space or a complex hyperbolic space.

1. Introduction. We denote by Mn(c), n > 2, a complex n-dimensional
complete and simply connected Kahler manifold of constant holomorphic
sectional curvature ¢ (# 0). That is, M,(c) is holomorphically isometric
to either an n-dimensional complex projective space CP"(c) of constant
holomorphic sectional curvature ¢ or an n-dimensional complex hyperbolic
space CH™(c) of constant holomorphic sectional curvature ¢ according to
whether c is positive or negative. Mn(c) is a so-called nonflat complex space
form of constant holomorphic sectional curvature c. -

In this paper, we study real hypersurfaces M?"~! of M,(c). It is known
that every such hypersurface admits an almost contact metric structure
(¢,€,m,9) induced from the ambient space. So it is natural to study the
theory of real hypersurfaces from the viewpoint of contact geometry (for
example, see [I}, 2]). Motivated by a fundamental idea in contact geometry,

for a real hypersurface M2"~1 of Mn(c) we shall investigate the equation
(1.1) dn(X,Y) = £k -g(X,9Y) for all vectors X,Y € TM,

where k is a positive constant. Equation means that the exterior deriva-
tive d of the contact form n of M satisfies either dn(X,Y) = k- g(X, ¢Y) for
all X, Y € TM or dn(X,Y) = —k - g(X,¢Y) for all X,Y € TM. Note that
(1.1) can be rewritten as ¢pA + A¢p = F2k¢, where A is the shape operator
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of M in Mn(c) (Cf. the proof of Theorem 2.) This implies that every real
hypersurface satisfying must be a Hopf hypersurface.

We first classify the real hypersurfaces M?"~! in Mn(c) satisfying
(Theorems 1 and 2). From these classification theorems we can see that
every such hypersurface is locally a homogeneous real hypersurface of Mn(c),
namely it is an orbit of some subgroup of the isometry group I(Mp(c)) of the
ambient space. We next characterize the hypersurfaces M 2n=1 among all real
hypersurfaces in M, (c) by observing some geodesics on M?"~! (Theorem 3
and Proposition 2).

We here remark that there exist no real hypersurfaces M with dn = 0
on M in a nonflat complex space form (see Corollary 2.12 in [§]).

2. Fundamental notions in contact geometry. Let M be an odd-
dimensional Riemannian manifold furnished with an almost contact metric
structure (¢,&,n,g), which consists of a (1, 1)-tensor ¢, a vector field &, a
1-form 7 and a Riemannian metric g on M satisfying

P(X) =X +n(X)§, n€) =1, g(¢X,¢Y)=g(X,Y) - n(X)n(Y)
for all vectors X, Y € TM. It is known that these equations imply that
»¢ =0 and n(¢(X)) = 0. We say that such an odd-dimensional manifold is
an almost contact metric manifold. When the exterior derivative dn of the
contact form n on an almost contact metric manifold M which is given by
dn(X,Y) := (1/2){X(n(Y)) = Y (n(X)) = n([X,Y])} satisfies
(2.1) dn(X,Y)=g(X,¢Y) foral XY € TM,

the structure (¢,&,n,g) is said to be a contact metric structure on M. An
almost contact metric manifold having a contact metric structure is called
a contact manifold. Note that contact manifolds are analogues to Hermitian
manifolds in Kéhler geometry. An almost contact metric manifold M is said
to be a Sasakian manifold if the structure tensor ¢ of M satisfies

(2.2) (Vx@)Y = g(X,Y)§ —n(Y)X

with the Riemannian connection V on M associated with g for all X,Y €
TM . By an easy computation we find that the structure of a Sasakian mani-
fold is a contact metric structure. However, in general a contact metric struc-
ture need not be Sasakian. For a unit tangent vector v € TM orthogonal
to £ in a Sasakian manifold M we call K(u, ¢u) := g(R(u, pu)du,u) its ¢-
sectional curvature, where R is the curvature tensor of M. A Sasakian space
form is a Sasakian manifold whose ¢-sectional curvatures do not depend
on the choice of unit tangent vectors orthogonal to £. Sasakian manifolds
and Sasakian space forms are analogues to Kahler manifolds and complex
space forms in Kéahler geometry, respectively. For more details on contact
geometry see [5] for example.
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3. Fundamental theory of real hypersurfaces in ]\7”(0). Let M1
be a real hypersurface with a unit normal local vector field N in an n-
dimensional nonflat complex space form M, (c) with the standard Rieman-
nian metric g and the canonical Kéhler structure J. The Riemannian con-
nections V of M, (c) and V of M are related by the following formulas of
Gauss and Weingarten:

(3.1) VxY = VxY 4 g(AX,Y)N,
(3.2) VxN = —AX,

for arbitrary vector fields X and Y on M, where g is the Riemannian metric
of M induced from the ambient space M, (c) and A is the shape operator

of M in M, (¢). An eigenvector of the shape operator A is called a principal
curvature vector of M in Mn(c) and an eigenvalue of A is called a principal
curvature of M in ]\7”(0) We call V) = {v € TM | Av = \v} the principal
foliation associated to the principal curvature \.

It is well-known that M has an almost contact metric structure induced
from the Kéhler structure of the ambient space M, (c). That is, we have a
quadruple (¢, &,n, g) defined by

g((Z)X,Y):g(JX,Y), f:—JJ\/, U(X):g(§7X):g(JX>N)'

It follows from , and V.J = 0 that

(3.3) (Vx9)Y =n(Y)AX — g(AX,Y)g,
(3.4) Vxé = ¢AX.

We clarify here the meaning of the condition that a real hypersurface M
is a contact manifold with respect to the almost contact metric structure
induced from the ambient space M, (c). On an orientable connected real

hypersurface M in a nonflat complex space form Mn(c), we have an almost
contact metric structure (¢, &,n, g) associated with a unit normal vector N
of M in Mn(c) Clearly the quadruple (¢, —§, —n, g) is also an almost contact
metric structure on M which is associated with the unit normal —N. We
call a real hypersurface M contact if M satisfies either or

dn(X,Y) = —g(X, ¢Y)

for all vectors X, Y & TM. Similarly, a real hypersurface M is called Sasakian
if M satisfies either (2.2]) or

(Vx@)Y = —g(X, V) +n(Y)X
for all vectors X,Y € TM.
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Denoting the curvature tensor of M by R, we have the equation of Gauss
given by

35) g(R(X,Y)Z,W)
= (c¢/{9(Y. Z)g(X, W) — g(X, 2)g(Y, W) + g(¢Y, Z)g(¢ X, W)

—9(0X, Z)g(9Y, W) — 29(¢X,Y ) g(¢Z, W)}
+9(AY, Z)g(AX, W) — g(AX, Z)g(AY, W).

We usually call M a Hopf hypersurface if the characteristic vector £ of M
is a principal curvature vector at each point of M. The following properties
of principal curvatures of a Hopf hypersurface M in M, (c) are well-known.

LEMMA 1.

(1) The principal curvature 0 associated with & is locally constant.

(2) If a nonzero vector v € TM orthogonal to & satisfies Av = Av, then
(2A — 8)Agv = (0N + ¢/2)¢v. In particular, when ¢ > 0, we have
Aopv = ((0A 4+ ¢/2)/(2X — 0))pv.

REMARK 1. When ¢ < 0, in Lemma 2) it can happen that both the
equations 2\ — § = 0 and 6\ + ¢/2 = 0 hold. In fact, for example we may
take a horosphere in CH"(c). It is known that this real hypersurface has
two distinct constant principal curvatures, either A = /[c[/2, § = 1/|¢| or
A= —\/H/Q, 6= —\/ﬂ. Hence, when ¢ < 0, we must consider two cases
2\ — 90 =0and 2\ — 6 # 0.

Furthermore, every tube of sufficiently small constant radius around each
Kéhler submanifold of a nonflat complex space form M, (c) is a Hopf hyper-
surface. This means that the notion of Hopf hypersurface is natural in the
theory of real hypersurfaces in a nonflat complex space form.

In CP™(c) (n > 2), a Hopf hypersurface all of whose principal curvatures
are constant is locally one of the following (cf. [§]):

(A1) a geodesic sphere of radius r, where 0 < r < 7/4/c;
(As) a tube of radius r around a totally geodesic CP/(c) (1 < £ < n—2),
where 0 < r < /4/c;
(B) a tube of radius r around a complex hyperquadric CQ"~!, where
0<r<m/(2y/c);
(C) a tube of radius r around a CP'(c) x CP™1/2(¢), where 0 < r <
7/(2y/¢) and n (> 5) is odd,;
(D) a tube of radius r around a complex Grassmannian CGy 5, where
0<r<m/(2y/c) and n =09;
(E) a tube of radius r around a Hermitian symmetric space
SO(10)/U(5), where 0 < r < 7/(24/c) and n = 15.
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These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D)
and (E). Hypersurfaces of type (A1) or (Ag) are called of type (A).

The number of distinct principal curvatures of the above real hypersur-
faces is 2,3,3,5,5,5, respectively. Their principal curvatures are given as
follows:

M| Y cot(¥er)  ME cot(¥lr) %cot(%r— £y gcot(gr— &)

A2 — —%tan({r} %cot(%r—i— £y gcot(gr—i—%)
A3 — — — gcot(gr)
A4 — — — —% tan(%r)

d |Vecot(ver)  \fecot(yer) Veceot(y/er) Vecot(y/er)

Notice that in CP"(¢) a tube of radius r (0 < r < w/4/c) around a totally
geodesic CP%(c) (0 < ¢ < n —1) is a tube of radius 7//c — r around a
totally geodesic CP"~¢~1(c).

In CH™(c) (n > 2), a Hopf hypersurface all of whose principal curvatures
are constant is locally one of the following (cf. [§]):

(Ap) a horosphere in CH"(c);
(A1) a geodesic sphere of radius r (0 < r < 00);
(A11) a tube of radius r around a totally geodesic CH" 1(c), where
0<r<oo;
(As) atube of radius  around a totally geodesic CH(c) (1 < £ < n—2),
where 0 < r < o0;
(B) a tube of radius r around a totally real totally geodesic RH"(¢/4),
where 0 < r < 00.

These real hypersurfaces are said to be of types (Ag), (A1), (A1), (Ag) and
(B). Here, type (A1) means either (A ) or (Aq,;). Hypersurfaces of types
(Ap), (A1) or (Ag) are said to be of type (A). A real hypersurface of type
(B) with radius r = (1/+/]¢|) log(2+ +/3) has two distinct constant principal
curvatures A\j = § = /3[c[/2 and Ao = /|c|/(2v/3) (cf. []). Except for
this real hypersurface, the number of distinct principal curvatures of Hopf
hypersurfaces with constant principal curvatures is 2, 2,2, 3, 3, respectively.
The principal curvatures of these real hypersurfaces in CH™(c) are given as
follows:
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(Ao) (A1,0) (A1,1) (A2) (B)

A1 Vel @coth(

2

2|c|r) @tamh( JC‘T)

=

Ao| — — — 2|c| tanh(

2 7)
5 [/Iel \/Ie] coth(y/]e ) \/]e] coth(y/]e ) \/]e] coth(y/]e ) \/]e] tanh(~/]e[ )

tanh(¥5—r

In [8], the above two tables of principal curvatures are given in the case of
c==£4.

It is well-known that our ambient manifold Mn(c) admits no totally
umbilic real hypersurfaces. In this context, we recall that a real hypersurface
M of a nonflat complex space form M, (c), n > 2, is called totally n-umbilic
if its shape operator A is of the form A = ol + fn ® £ for some smooth
functions « and 8 on M. This is equivalent to saying that Au = au for
each vector v on M which is orthogonal to the characteristic vector £ of M,
where « is a smooth function on M. It is known that every totally n-umbilic
hypersurface is a Hopf hypersurface with two distinct constant principal
curvatures o and « + [.

A totally n-umbilic hypersurface M?"~1 n > 2, with shape operator
A =al+ (n®E in a nonflat complex space form Mn(c) is locally one of the
following;:

(P) a geodesic sphere of radius 7 (0 < r < 7/4/c) in CP"(c), where
o = (/&/2) cot(y/ar/2) and § = —(y/e/2) tan(y/r/2);
(H;) a horosphere in CH"(c), where o = 3 = /|c|/2;
(Hj) a geodesic sphere of radius r (0 < r < oo) in CH™(c), where
a = (y/]c|/2) coth(y/[c] r/2) and B = (\/]c|/2) tanh(~/]c|r/2);
(Hjii) a tube of radius r (0 < 7 < o0) around a totally geodesic complex
hyperplane CH"!(c) in (CH”(C) where

a = (v/|c]/2) tanh(v/]¢| 7/2), = (v/]cl/2) coth(v/|¢| 7/2).

Totally n-umbilic hypersurfaces are interesting examples of Riemannian
manifolds. The length spectrum of such a hypersurface was studied in detail
(see [3]). Moreover, it is well-known that every geodesic sphere G(r) of radius

r (0 <r < 7/y/c) with tan?(\/cr/2) > 2 in CP"(c) is a Berger sphere ([9]).

We recall here characterizations of real hypersurfaces of type (A) and
type (B) in a nonflat complex space form. It is known that a real hyper-
surface M of a nonflat complex space form is of type (A) if and only if
$A = Ap on M (see [§]). The following characterization of real hypersur-
faces of type (B) was established in [6].
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LEMMA 2. Let M?"~1 (n > 2) be a connected real hypersurface of a
nonflat complex space form Mn(c). Then the following two conditions are
equivalent:

(1) M is a real hypersurface of type (B).

(2) The holomorphic distribution T'M = {X € TM | X L &} of M de-

composes into the direct sum of restricted principal foliations V)?i =
{X € T°M | AX = \;X}. Moreover, every restricted principal fo-
liation V/\ is integrable and each of its leaves is a totally geodesic

submamfold of M.

In contrast with the conclusion of Lemma [2] for every Hopf hypersurface
M in a nonflat complex space form, the holomorphic distribution T9M is
not integrable (see Proposition 2 in [6]).

In this paper, real hypersurfaces of types (A), (B), (C), (D) and (E) in
Mn(c) are said to be standard real hypersurfaces. It is well-known that every
standard real hypersurface M is a homogeneous real hypersurface of Mn(c)

4. Statements of results

THEOREM 1. Let M?"~1(n > 2) be a connected real hypersurface of
CP™(c). If . ) holds on M, then M is locally one of the following homo-
geneous real hypersurfaces:

(1) a geocje\?c sphere G(r) of radius v = (2/y/c)tan™! (/c/(2k)), 0 <
r<mw/\e,
(2) a tube of radius r = (2/y/c) tan™! ((Ve+ 4k? — \/¢)/(2k)), 0 < r <

7/(2y/c), around a complex hyperquadric CQ™*

THEOREM 2. Let M*"~! (n > 2) be a connected real hypersurface of
CH"(c). If . ) holds on M, then M is locally one of the following homo-
geneous real hypersurfaces:

(1) a horosphere in CH"(c) (c = —4k?),
(2) either a geodesic sphere G(r) of radius r = (1/+/|c| ){log(2k++/|c| ) —

log(2k—+/|c| )} or a tube of radius r = (1/(2+/]c|)){log(2k++/]c| ) —
log(2k — +/|c|)} around a totally real totally geodesic RH™(c/4)
(—4k? < ¢ <0),

(3) a tube of radius r = (1/+/|c| ){log(y/]c|+2k)—log(~/]c|—2k)} around
a totally geodesic CH" *(c) (c < —4/<:2).

Proof of Theorem 1. It follows from ((1.1)) and (§ . ) that
=9(@AX.Y) — g(¢AY, X)) F 2kg(X, ¢Y) =g((pA+ Ad £ 2k¢)X,Y)
for each X,Y € TM. This implies that a real hypersurface M of CP"(c)
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satisfies ((1.1)) if and only if

(4.1) DA+ Ap = F2ko.

So we shall determine real hypersurfaces M satisfying (4.1). We then have
pA¢ = 0, which shows that £ is principal. We denote by § its princi-
pal curvature. We study principal curvatures )\ associated with principal
curvature vectors orthogonal to £&. We remark here that (4.1) shows that
ApX = (F2k — N\)¢pX for each vector X perpendicular to &. This, together
with Lemma [1f2) and (4.1)), means that the principal curvature X satisfies
one of the following quadratic equations:

(4.2) AN24+8kN+c—4k6 =0 or 4X% —8kA+ c+ 4ks = 0.

Since k and d are constant, this implies that A is also constant on the con-
nected real hypersurface M. Thus we can see that our real hypersurface is a
Hopf hypersurface with at most three distinct constant principal curvatures.
In view of the list of principal curvatures in Section 3 we find that M is of
type either (Aj), (A2) or (B). But real hypersurfaces of type (Ag2) do not
satisfy . Thus we only have to check in detail for real hypersurfaces
of type (A;) or (B).

When M is of type (Aj), since all nonzero vectors orthogonal to £ are
principal curvature vectors associated with the principal curvature (1/c/2) x
cot(y/cr/2), yields cot(y/cr/2) = F2k/\/c (0 < r < 7/+/c). Thus the
sign must be positive and r = (2//c) tan"!(y/c/(2k)).

When M is of type (B), turns into A1 + Ao = F2k with principal
curvatures A\; = (v/¢/2) cot(y/cr/2 — n/4) and Ao = (y/¢/2) cot(y/cr/2 +
m/4). Since 0 < r < 7/(24/c), we have A\; < —/c/2 and 0 < Ay < /c/2.
Therefore, the sign must be negative. As A\ + Ao = —2k is equivalent to the

equality
tan(y/er/2) +1  tan(Ver/2) -1 4k

tan(y/er/2) —1  tan(ver/2)+1 ¢
we obtain tan(y/cr/2) = (Ve + 4k? — \/c)/(2k) because 0 < r < 7/(2\/c).

We hence get the conclusion. =

Proof of Theorem 2. By the proof of Theorem 1 we only have to deter-
mine Hopf hypersurfaces M with A = ¢ satisfying . Since ¢ < 0, we
must consider the case that 2\ —J = 0 at some point x of M (see Lemmal|l)).
Towards a contradiction suppose that the function 2A — § vanishes identi-
cally on no neighborhood of z. Then there exists a sequence {x,} in M
with lim,, o n, = x and (2\ — 0)(zy,) # 0 for each n. The discussion in the
proof of Theorem 1 means that for each n the function 2\ — ¢ is a nonzero
constant on some sufficiently small neighborhood of z,,. This, together with
the continuity of 2A —§ on M, shows that 2A —§ # 0 at x, which is a contra-
diction. Hence the principal curvature A is also constant locally if 2A—6 =0
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at some point x of M. Thus our real hypersurface is a Hopf hypersurface
with at most four distinct constant principal curvatures. By considering the
list of principal curvatures in Section 3 we see that M is of type either (Ag),
(A1), (Ag) or (B). But real hypersurfaces of type (A2) do not satisfy ([4.1)).
So we only have to investigate for real hypersurfaces of type (Ag), (A1)
or (B).

When M is of type (Ap), turns into +/|c| = F2k. Hence the sign
must be positive and ¢ = —4k®. When M is of type (A1), can be
written as coth(y/|c|r/2) = F2k/+/]c|. Then the sign must be positive and
—4k? < ¢ < 0. Solving this, we obtain r = (1/4/]c|){log(2k + /|¢|) —
log(2k—+/|c| ) }. When M is of type (A11), turns into tanh(y/|c[r/2) =
$2k/\ﬂ Hence the sign must be positive and ¢ < —4k?. Solving this, we

obtain r = (1/4/|c|){log( \/>+ 2k) —log(y/]c| — 2k)}.

When M is of type (B), turns into A\ + )\2 = F2k with principal

curvatures \; = \F/Z coth \/ c|r/2) and Ay = (1/]c|/2)-tanh \ﬂr/2).

Hence the sign must be positive. Rewriting the relation A; + Ay = 2k, we

have
exp(y/|e|r) +1 +exp(\/|c|r)—1 4k
exp(r/]e]r) =1 exp(\/Ie[r)+1 /||’
we therefore obtain —4k% < ¢ < 0 and r = (1/(2+/|c])){log(2k + /I¢|) —
log(2k — \/|c|)}. =

As an immediate consequence of statements (1) and (2) in Theorem 2 we
obtain the following characterization of a horosphere and the homogeneous
real hypersurface of type (B) with two distinct constant principal curvatures
in CH™(c).

COROLLARY 1. Let M?"~!(n > 2) be a connected real hypersurface of
CH"(c). Then:

(1) M is locally a horosphere in CH"(c) if and only if (1.1) holds on M
with k = +/|c|/2.
(2) M is locally either a geodesic sphere G(r) of radius r = (2/+/|c|) x

log(2 + v/3) or a tube of radius r = (1/+/]c| )log(2 + V/3) around a
totally real totally geodesic RH™(c/4) if and only if (1.1) holds on M

with k = +/|c|/3.

When k = 1, Theorems 1 and 2 give the following classification theorems
of real hypersurfaces which are contact in a nonflat complex space form.

COROLLARY 2. Let M?"~1 (n > 2) be a connected real hypersurface of
CP™(c). If it is contact, then it is locally one of the following homogeneous
real hypersurfaces:
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(1) a geodesic sphere G(r) of radius r = (2/+/c)tan=1(y/c/2), 0 < r <
7V,

(2) a tube of radius r = (2/y/c)tan"((v/e + 4 — \/c)/2) around a com-
plex hyperquadric CQ" 1, 0 < r < w/(2v/c).

COROLLARY 3. Let M?"~1 (n > 2) be a connected real hypersurface of
CH™(c). If it is contact, then it is locally one of the following homogeneous
real hypersurfaces:

(1) a horosphere in CH™(c) (¢ = —4),

(2) either a geodesic sphere G(r) of radius r = (1/+/c] ){log(2++/]¢| ) —
log(2 — +/Ie])} or a tube of radius v = (1/(21/]c| )){log(2 ++/]¢| ) —
log(2 — +/|c|)} around a totally real totally geodesic RH™(c/4)
(-4 <e<0),

(3) a tube of radius r = (1/\/H){10g(\/ﬂ+ 2) —log(+/]c] — 2)} around

a totally geodesic CH" " (c) (c < —4).

Motivated by Corollaries [2fand [3] we establish the following classification
theorem of real hypersurfaces which are Sasakian in a nonflat complex space

form (cf. [4]).

PROPOSITION 1. Let M*"~! (n > 2) be a connected Sasakian real hy-
persurface of a nonflat complex space form My/(c). Then M is locally/one of
the following homogeneous real hypersurfaces of the ambient space M, (c):

(i) a geodesic sphere G(r) of radius r with tan(y/cr/2) = \/c/2, i.e.

r=(2/y/¢) tan_l(ﬁ/Q) (0<r<m/y/c)in CP"(c);
(ii) a horosphere in CH"(c) (c = —4);

(iii) a geodesic sphere G(r) of radius r with tanh(\/|c|r/2) = +/|c|/2

(0 <7 <o0),ie r=(1/y/lc]){log(2 + /Ic]) —log(2 — /|| )} in
CH"(c) (-4 < ¢ <0);

(iv) a tube of radius r around a totally geodesic CH™(c) with
tanh(\/|c|7/2) = 2/+/|c] (0 <r < 00),
i.e. m = (1/+/]c| ){log(\/|c|+2)—log(+/|c|—2)} in CH™(c) (¢ < —4).

In these cases, M has constant ¢-sectional curvature c+1. Conversely, each
of the hypersurfaces (1)—(iv) is Sasakian.

Proof. Assume that our real hypersurface M is a Sasakian manifold.
Then it follows from and . that
(4.3) 9(X, Y)£ —n(Y)X =n(Y)AX —g(AX,Y)¢
for all X, Y € TM. Setting X =Y = ¢ in (4.3)), we see that £ is principal.
Hence we can choose a principal curvature vector u orthogonal to £. Then,

setting Y = £ in (4.3), we find that Au = —u, so that the tangent bundle
TM of M decomposes as TM = {{}r & V_1, where V_; = {X € TM |
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AX = —X}. Thus a Sasakian real hypersurface M is a totally n-umbilic
hypersurface with coefficients &« = —1 and 5 = ¢/4 in Mn(c) Here, we
change the unit normal vector N into —A for each member in the list
of totally n-umbilic hypersurfaces in Section 3. Then we know that M is
locally one of (i)—(iv). Next, for each unit vector u perpendicular to £, we
compute the ¢-sectional curvature K (u, ¢u) of M. It follows from and
the equality A = —I + (¢/4)n ® & that K(u,¢u) = c+ 1.

Conversely, assume that a real hypersurface M is locally one of (i)—(iv).
Then the shape operator A of M is of the form A = —I + (¢/4)n @ &
by changing N into —N for each member in the list of totally n-umbilic
hypersurfaces in Section 3. This, combined with , yields , so that
M is a Sasakian manifold. =

Theorems 1 and 2 show that real hypersurfaces satisfying (1.1) in a
nonflat complex space form are of type (A) or (B). We shall characterize
real hypersurfaces of type (A) satisfying (|1.1)).

THEOREM 3. Let M?"~1 (n > 2) be a connected real hypersurface of a
nonflat complex space form. Then for each positive constant k, the following
conditions (1) and (2) are equivalent:

(1) M is locally one of the following:
(1,) a geodesic sphere G(r) of radius r = (2/+/c)tan=1(/c/(2k)),
(0 <r<m/yc) in CP"(c),
(1,) a horosphere in CH™(c) (c = —4k?),
(1c) a geodesic sphere G(r) of radius r = (1/+/|c| ){log(2k++/]c| ) —
log(2k — +/]e|)} in CH™(c) (—4k% < ¢ < 0),
(1) a tube of radius r = (1/+/c] ){log(~y/]c| + 2k) —log(~/|c| — 2k)}

around a totally geodesic CH™ '(c) in CH™(c) (c < —4k?).

(2) At each x € M there exist orthonormal vectors vy, ..., von_o € Ty M
which are orthogonal to the characteristic vector &, and satisfy:

(24) All geodesics v; = vi(s) (1 <i < 2n—2) on M with v;(0) = x
and ¥;(0) = v; are mapped to a circle of the same curvature k
in My(c).

(2p) All geodesics vij = 7vij(s) (1 < i < j < 2n—2) on M with
7i(0) = = and %;;(0) = (v; +v;)/V/2 are mapped to a circle of
the same curvature k in Mn(c)

Before proving Theorem 3 we review the definition of circles in Rie-
mannian geometry. A real smooth curve 7 = 7(s) parameterized by its
arclength s in a Riemannian manifold M with Riemannian connection V
is called a circle of curvature k if it satisfies the ordinary differential equa-
tions Vsy = kY,, V3Y; = —k7¥ with a field Y, of unit vectors along -.
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Here k (> 0) is constant and Y; is called the unit principal normal vector
of v. A circle of null curvature is nothing but a geodesic. A circle can be
equivalently defined to be a curve v = v(s) on M with Riemannian metric g
satisfying the ordinary differential equation

(4.4) V4(Vad) + 9(V4, Vi4)y = 0.
Proof of Theorem 3. We assume (1). Then the above discussion implies

that M satisfies both (4.1) and ¢A = A¢. So, we can choose the normal
vector N of M in the ambient space M, (c) in such a way that

(4.5) AX =kX + pn(X)¢ for each X € TM with some constant (3.

We take an arbitrary geodesic v = 7(s) on M with (¥(0),&,()) = 0 and
consider the function p,(s) := (¥(s),&y(s)) along v, called the structure tor-

sion of v (cf. [3]). Then p, is constant along 7. Indeed, from (3.4]) and (4.5
we have

This, combined with ((0),&,(0)) = 0, implies that 4(s) is perpendicular to
&) for each s, so that ~ satisfies Aj(s) = k5(s) for any s. Hence, from
(3.1) and (3.2)) we find that the geodesic v is mapped to a circle of positive

curvature k in the ambient space M, (c), proving (2).
Conversely, assume (2) holds. Then, from (4.4) and (2,),

(4.6) V5, Viyi = *k27i-
On the other hand, from (3.1)) and (3.2) we have
(4.7) Vi Vi = 9((V3, A3 30N = g(Adi, i) A

Comparing the tangential components of and , we see that
9(A%i, %) A% = k>4,
so that at s = 0 we get
g(Av;,v;) Av; = K*v; forl1<i<2n—2,
which yields
(4.8) Av; = kv; or Av;= —kv; forl<1¢<2n—2.

This implies that £ is a principal curvature vector, because (AL, v;) =
(&, Av;) = 0 for 1 < ¢ < 2n — 2. Therefore M is a Hopf hypersurface with at
most three distinct constant principal curvatures, k, —k and 0 = g(A¢&, §) at
each its points. On the other hand, applying the same discussion as above
to condition (2;), we get the following corresponding to ([4.8):

A((vi +05)/V2) = k(vi +vj)/V2 o
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for 1 <1 < j < 2n — 2. Thus, from and we can see that either
Av; = kv; (1 <1< 2n—2) or Av; = —kv; (1 < i < 2n — 2). This implies
that M is totally n-umbilic with coefficient o = %k in the ambient space
M, (c), which yields (1). m

REMARK 2. Condition (2;) in Theorem 3 cannot be omitted. In fact,
consider a real hypersurface M which is a tube of radius 7/(2+/c) around a
totally geodesic CP!(c) (1 < £ < n —2) in the ambient space CP"(c),n > 3.
Note that this hypersurface is of type (Az) in CP"(c). The tangent bundle
TM decomposes as TM = {{}r BV 5/ D V_, /2 with AS = 0 (see the table
of principal curvatures in Section 3). At an arbitrary fixed point = € M, we
take orthonormal vectors vy, ..., v2,—3 orthogonal to &, in such a way that
{v1,...,v2n—20—2} and {vo,—2¢—1, ..., v2n—2} are orthonormal bases of V2
and V_ /9, respectively. Then all geodesics v; = 7;(s) (1 <4 < 2n —2) on
M with 4;(0) = v; are mapped to the circle of the same curvature /c/2
lying on the totally real totally geodesic RP?(c/4) in CP"(c) (for details,
see [1]).

The following is a characterization of real hypersurfaces of type (B) sat-

isfying ().

PROPOSITION 2. Let M?"~! (n > 2) be a connected real hypersurface of
a nonflat complex space form M, (c). Then for each positive constant k, M is

locally either a tube of radius r = (2/+/c)tan=((Vc + 4k2—\/c)/(2k)), 0 <
r < w/(2y/c), around a complex hyperquadric CQ"~1 in CP"(c) or a tube

of radius r = (1/(2+/]¢| )){log(2k +/|c| ) —log(2k —+/|c| )} around a totally
real totally geodesic RH™(c/4) (—4k* < ¢ < 0) in CH™(c) if and only if M
satisfies the following two conditions.

(i) The holomorphic distribution T°M = {X € TM | X L &} decom-
poses into the direct sum of restricted principal foliations V/\Oi ={X ¢
T°M | AX = \;X}. Moreover, every restricted principal foliation
V/\Oi is integrable and each of its leaves is a totally geodesic submani-
fold of M.

(ii) There exists an integral curve of & on M which is mapped to a circle

of positive curvature |c|/(2k) in the ambient space M,/(c).

Proof. By Lemma [2| we only need to show that a homogeneous real
hypersurface M of type (B) satisfies (4.1 if and only if it satisfies (ii).
When ¢ > 0, M has three distinct constant principal curvatures

ve (Ve oo ve (Ve

s
A= TCOt <2T - 4>7 Ag = 7C0t (2T+ 4>7 §= \ECOM\ET)'
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On the other hand, we have

Ve (v m\ Ve (Vi =
)\1+>\2—200t 2r 1 2tan 27“ 1

= ﬁcot<ﬁr— 7r>

2
= —/ctan(y/cr).

Hence M satisfies if and only if A = (c¢/(2k))E, ie. § = ¢/(2k).
Note that in this case every integral curve of &, considered as a curve in the
ambient space CP"™(c), is a circle of positive curvature ¢/(2k) (see (3.1)),
and ) This, together with the constancy of the principal curvature d,
implies that a homogeneous real hypersurface M of type (B) satisfies
if and only if it satisfies (ii).

When ¢ < 0, we have

M+ A= VF{Mh(@ 7«> —|—tanh<\/2?| 7«)} = /|| coth(y/]c| 7).

By the same discussion as in the case of ¢ > 0, we also obtain the desired
conclusion. =
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