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Abstract. Using a notion of distance between indecomposable modules we deduce
new characterizations of laura algebras and quasi-directed Auslander-Reiten components.
Afterwards, we investigate the infinite radical of Artin algebras and show that there exist
infinitely many non-directing modules between two indecomposable modules X and Y if
rad∞

A (X, Y ) 6= 0. We draw as inference that a convex component is quasi-directed if and
only if it is almost directed.

1. Introduction. The aim of the representation theory of Artin alge-
bras is to study an algebra A by means of the category modA of finitely
generated right A-modules, which often turns out to be easier to handle. A
key example arises in [12] where Happel, Reiten and Smalø show that an
algebra A is quasitilted, that is, A is the endomorphism ring of a tilting ob-
ject in a locally finite hereditary abelian category, if and only if A has global
dimension at most two and any indecomposable A-module lies either in LA

or in RA. Recall that LA is the full subcategory of modA consisting of all
indecomposable A-modules whose predecessors have projective dimension
at most one and RA is defined dually.

Following this example, the module category, and particularly LA

and RA, gained in importance, and new classes of algebras, defined by the
homological properties of their indecomposable modules, appeared: the shod
algebras [7], the weakly shod algebras [9] and the laura algebras [1, 20]; each
of them generalizing the previous ones. We refer the reader to [2] for a com-
plete review on these classes of algebras.

Laura algebras have been introduced independently by Assem and
Coelho [1] and Reiten and Skowroński [20] as a generalization of the repre-
sentation-finite algebras and the weakly shod algebras. Their nice properties
have made them rather interesting and hugely investigated; see, for instance,
[1, 20, 29, 2, 3, 11]. In particular, it is shown in [29] that an algebra A is
laura if and only if it is quasitilted or its Auslander–Reiten quiver contains
a faithful quasi-directed component, which is, in this case, convex. In [30],
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the second author presented equivalent conditions for an Auslander–Reiten
component to be quasi-directed and convex.

In this paper, we introduce a notion of distance between indecompos-
able modules which allows us to unify the approaches used in [1] and [30].
We deduce from this new characterizations of laura algebras (see Sec. 3)
and convex quasi-directed components (see Sec. 4.1). Afterwards, we show
that any morphism in the infinite radical implies the existence of infinitely
many modules lying on a cycle and infer, as a consequence, that any con-
vex component is quasi-directed if and only if it is almost directed (see
Sec. 4.2).

2. Preliminaries

2.1. Usual notations. Throughout this paper, all algebras are connected
basic Artin algebras. For an algebra A, we denote by modA its category of
finitely generated right modules and by indA a full subcategory of modA
generated by one representative from each isomorphism class of indecom-
posable modules. We denote by rad(modA) the radical of modA, that is,
the ideal generated by all non-isomorphisms between indecomposable mod-
ules. The infinite radical rad∞(modA) of modA is the intersection of all
powers radi(modA), with i ≥ 1, of rad(modA). For an A-module M , we
denote by pdA M its projective dimension and by idA M its injective dimen-
sion.

We denote by Γ (modA) the Auslander–Reiten quiver and by τA = DTr
the usual Auslander–Reiten translation. By a component of Γ (modA) we
mean a connected component of Γ (modA). A component Γ of Γ (modA)
is semiregular if it does not contain a projective module and an injective
module, and non-semiregular otherwise. Finally, Γ is faithful if ann(Γ ),
that is, the intersection of the annihilators of all modules X in Γ , van-
ishes.

For further details on representation theory of Artin algebras, see [4, 22].

2.2. Walks, paths and hooks. Given X, Y in indA, a walk of length t
between X and Y is a sequence:

w : X = X0
f1

X1
f2

· · ·
ft

Xt = Y (t ≥ 0),

where, for each i, Xi ∈ indA and fi is a non-zero morphism either from
Xi−1 to Xi or from Xi to Xi−1. In this case, we denote by l(w) the length of
w. We also denote by Mw the set of modules in w, that is, {X0, X1, . . . , Xt}.
If each fi is irreducible, w is a walk of irreducible morphisms. We denote
by W (X, Y ) the set of walks of irreducible morphisms between X and Y .
A path from X to Y is a walk between X and Y such that each fi is a
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morphism from Xi−1 to Xi:

δ : X = X0
f1
−→ X1

f2
−→ · · ·

ft
−→ Xt = Y (t ≥ 0).

In this case, we write δ : X  Y and we say that X is a predeces-

sor of Y and Y is a successor of X. We denote by Mδ
X,Y the set of

modules in δ. More generally, we denote by MX,Y the set of modules M
in indA lying on a path from X to Y . If each fi is irreducible, δ is a
path of irreducible morphisms and, in this case, δ is sectional if it con-
tains no hook , that is, a triple (Xi−1, Xi, Xi+1) such that τAXi+1 = Xi−1.
We also denote by Hδ

X,Y the set of all hooks in δ and by HX,Y the set
of all hooks lying on a path from X to Y . A refinement of δ is a path

X = X ′

0

f ′

1−→ X ′

1

f ′

2−→ · · ·
f ′

t−→ X ′

s = Y , with s ≥ t, together with an order
preserving function σ : {1, . . . , t − 1} → {1, . . . , s − 1} such that Xi = X ′

σ(i)

when 1 ≤ i ≤ t − 1. Finally, a path δ is a cycle if X = Y and at least one
fi is not an isomorphism. An A-module X is directing if it does not lie on
any cycle, and a component Γ of Γ (modA) is directed if it contains only
directing modules.

2.3. Laura algebras. We recall from [1] that an Artin algebra A is called
laura whenever indA \ (LA ∪RA) is a finite set, where, as mentioned in the
introduction, LA and RA are defined as follows:

LA = {X ∈ indA | pdA Y ≤ 1 for each predecessor Y of X},

RA = {X ∈ indA | idA Y ≤ 1 for each successor Y of X}.

We recall the following key result:

Theorem 2.3.1 ([1]). The following statements are equivalent for an

Artin algebra A:

(a) A is laura.

(b) There are only finitely many modules lying on a path from an injec-

tive module to a projective module.

(c) There are only finitely many modules lying on a path from a module

not in LA to a module not in RA.

2.4. Quasi-directed components. We recall that a component Γ of
Γ (modA) is quasi-directed [1, 2, 30] if it is generalized standard [26], that
is, rad∞(X, Y ) = 0 for all X, Y in Γ , and almost directed , that is, it
contains only finitely many non-directing modules. Moreover, Γ is con-

vex if any path from X to Y , with X, Y in Γ , contains only modules
from Γ .

The following characterizations will play an important role in Sec. 4.
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Theorem 2.4.1 ([30]). Let A be an Artin algebra and assume that Γ
is a semiregular component of Γ (modA) without projective modules. The

following conditions are equivalent :

(a) Γ is quasi-directed.

(b) Γ is directed.

(c) For each X in Γ , there exists an integer nX such that any cycle from

X to X contains at most nX modules.

(d) For each X in Γ , there exists an integer mX such that any cycle

from X to X contains at most mX hooks.

(e) Given X, Y in Γ , there exists an integer nX,Y such that any path

from X to Y contains at most nX,Y modules.

(f) Given X, Y in Γ , there exists an integer mX,Y such that any path

from X to Y contains at most mX,Y hooks.

Further , if Γ contains injective modules, these conditions are equivalent to:

(g) For each X in Γ , there exists an integer iX such that any path from

an injective in Γ to X contains at most iX modules.

(h) For each X in Γ , there exists an integer jX such that any path from

an injective in Γ to X contains at most jX hooks.

Furthermore, Γ is convex , B = A/ann(Γ ) is a tilted algebra and Γ is a

connecting component of Γ (modB).

Theorem 2.4.2 ([30]). Let A be an Artin algebra and assume that Γ
is a non-semiregular component of Γ (modA). The following conditions are

equivalent :

(a) Γ is quasi-directed and convex.

(b) Given X, Y in Γ , there exists an integer nX,Y such that any path

from X to Y contains at most nX,Y modules.

(c) Given X, Y in Γ , there exists an integer mX,Y such that any path

from X to Y contains at most mX,Y hooks.

(d) There exists an integer n0 such that any path from an injective in Γ
to a projective in Γ contains at most n0 modules.

(e) There exists an integer m0 such that any path from an injective in

Γ to a projective in Γ contains at most m0 hooks.

Furthermore, B = A/ann(Γ ) is a laura algebra and Γ is the unique non-

semiregular and faithful component of Γ (modB).

3. The main result. This section is devoted to our main theorem which
gives new characterizations of laura algebras by unifying the results stated
in Subsections 2.3 and 2.4, that is, by completing 2.3.1 with the notions of
hooks and bounds. The theorem is the following:



LAURA ALGEBRAS AND QUASI-DIRECTED COMPONENTS 183

Theorem 3.0.3. The following statements are equivalent for an Artin

algebra A:

(a) A is laura.

(b) There are only finitely many modules lying on a path from an injec-

tive module to a projective module.

(b′) There are only finitely many modules lying on a path from a module

not in LA to a module not in RA.

(c) There are only finitely many hooks lying on a path from an injective

module to a projective module.

(c′) There are only finitely many hooks lying on a path from a module

not in LA to a module not in RA.

(d) There exists an integer n such that any path from an injective module

to a projective module contains at most n modules.

(d′) There exists an integer n′ such that any path from a module not in

LA to a module not in RA contains at most n′ modules.

(e) There exists an integer m such that any path from an injective mod-

ule to a projective module contains at most m hooks.

(e′) There exists an integer m′ such that any path from a module not in

LA to a module not in RA contains at most m′ hooks.

The rest of this section is occupied by the proof of this statement. We
refer to [13] for other characterizations of laura algebras using the Gabriel–
Roiter measure.

3.1. A metric for indA. Among other things, we need in the proof of this
theorem to gather the modules lying on a path into a finite neighborhood of
a certain module. This is done with the introduction of a distance in indA:
given two modules X and Y in indA, set

d(X, Y ) =

{
min{|Mw| − 1 | w ∈ W (X, Y )} if W (X, Y ) is not empty,

∞ otherwise.

Lemma 3.1.1. Let X, Y be modules in indA such that d(X, Y ) =
n < ∞. Then there exists a walk of irreducible morphisms

X = X0 −X1 − · · ·−Xn = Y

with Xi 6= Xj when i 6= j.

Proof. If d(X, Y ) = 0, then X = Y and there is nothing to show. Oth-
erwise, let

ε : X = Y0
f1

Y1
f2

· · ·
ft

Yt = Y

be a walk in W (X, Y ) such that |Mε| = n + 1 = d(X, Y ) + 1 with n ≥ 1.
Clearly n ≤ t. If n < t, there exist i, j, with 0 ≤ i < j ≤ t, such that Yi = Yj.
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This yields a walk of irreducible morphisms

ε′ : X = Y0
f1

Y1 · · ·
fi

Yi = Yj
fj+1

· · ·
ft

Yt

such that n ≤ l(ε′) = t − (j − i) < t. Inductively, one gets a walk X =
X0 −X1 − · · ·−Xn = Y in W (X, Y ) with Xi 6= Xj for i 6= j (because
d(X, Y ) = n).

Proposition 3.1.2.

(a) The map d : indA × indA → R ∪ {∞} is a metric.

(b) Let d̂ : indA × indA → R ∪ {∞} be given by

d̂(X, Y ) =

{
min{l(w) | w ∈ W (X, Y )} if W (X, Y ) is not empty ,

∞ otherwise.

Then the maps d, d̂ are equal.

Proof. (a) The proof is easy and we omit it.

(b) Let X, Y ∈ indA. Since it is obvious that d(X, Y ) = d̂(X, Y ) = ∞
if and only if W (X, Y ) is empty, assume that W (X, Y ) is not empty. First,

if d̂(X, Y ) = n < ∞, then there exists a walk of minimal length w : X =
X0 −X1 − · · ·−Xn = Y in W (X, Y ). The minimality implies that Xi 6= Xj

when i 6= j. Therefore d(X, Y ) ≤ n = d̂(X, Y ). Conversely, if d(X, Y ) =
n < ∞, then it follows from 3.1.1 that there exists a walk of irreducible
morphisms of length n in W (X, Y ), and hence d̂(X, Y ) ≤ n = d(X, Y ).

Definition 3.1.3. Let G ⊆ indA and n ≥ 0. The ball of center G and

radius n is the set

B(G, n) = {X ∈ indA | there exists M ∈ G such that d(M, X) ≤ n}.

Remark 3.1.4. Since the Auslander–Reiten quiver of an Artin algebra A
is locally finite, we see that G ⊆ indA is finite if and only if B(G, n) is finite
for all n ≥ 0.

3.2. The proof of the theorem. We now start proving Theorem 3.0.3. We
first recall the following result obtained in [28]; hereafter we denote by r the
rank of the Grothendieck group of A.

Lemma 3.2.1. Let A be an Artin algebra and X1, . . . , Xt be distinct

modules in indA, with t > r. Then HomA(Xi, τXj) 6= 0 for some i, j with

1 ≤ i, j ≤ t.

Our first lemma connects the number of hooks on paths with the number
of modules.

Lemma 3.2.2. Let X, Y be modules in indA and assume that |Hδ
X,Y | ≤ b

for each path δ : X Y , for some b ≥ 0. Then |Mδ
X,Y | ≤ (b + 1)(r + 1)− 1

for each path δ : X Y .
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Proof. Assume this is not the case. Then there exists a path of the form
δ : X = X0 X1 · · · X(b+1)(r+1)−1 Y with Xi 6= Xj when i 6= j.

This yields a family of subpaths {δk}k=1,...,b+1, where δk is given by δk :
X(k−1)(r+1) · · · Xkr+(k−1). Since each subpath δk contains r+1 (distinct)

Xi’s, 3.2.1 gives, for each k, a path of the form Xik → τXjk
→ Vk → Xjk

.
Gluing these paths together gives a path

X = X0 Xi1 → τXj1 → V1 → Xj1 · · ·

· · ·  Xib+1
→ τXjb+1

→ Vb+1 → Xjb+1
 Y,

containing at least b+1 (distinct) hooks, a contradiction to the hypothesis.

Lemma 3.2.3. Let X, Y be modules in indA and assume that |Mδ
X,Y | ≤ b

for each path δ : X Y , for some b ≥ 0. Then MX,Y is a finite set.

Proof. Assume δ : X = X0
f1
−→ X1

f2
−→ · · ·

ft
−→ Xt = Y is a path. By

[30, Lemma 1.1], fi /∈ rad∞(modA) for each i. Therefore δ can be refined
to a path of irreducible morphisms δ′ : X = X ′

0 → X ′

1 → · · · → X ′

s = Y.

Since |Mδ′

X,Y | ≤ b by hypothesis, we have |M
δ′i
X,X′

i
| ≤ b for each subpath

δ′i : X = X ′

0 X ′

i of δ′, with 1 ≤ i ≤ s. This entails that d(X, Xi) ≤ b for
each i with 1 ≤ i ≤ t. Hence, MX,Y ⊆ B({X}, b) and MX,Y is a finite set
by 3.1.4.

As a consequence we obtain the following result. Observe that the equiv-
alence of (c) and (d) has been obtained in [30] under the assumption that
the given modules X and Y belong to the same component of Γ (modA);
this assumption turns out to be unnecessary.

Corollary 3.2.4. Let A be an Artin algebra and X, Y be modules in

indA. The following conditions are equivalent :

(a) MX,Y is finite.

(b) HX,Y is finite.

(c) There exists an n such that |Mδ
X,Y | ≤ n for each path δ : X Y .

(d) There exists an m such that |Hδ
X,Y | ≤ m for each path δ : X Y .

Proof. Clearly, (a) implies (b) and (b) implies (d). On the other hand,
(d) implies (c) by 3.2.2 and (c) implies (a) by 3.2.3.

As we see, we easily deduce from this corollary the equivalence of the
statements (b), (c), (d) and (e) of our main theorem. However, since indA
generally contains infinitely many modules neither in LA nor in RA, the
above corollary is useless for proving the equivalence of the other statements
since the bounds imposed by (b′), (c′), (d′) and (e′) may thus tend to infinity.
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The idea is to impose a finiteness condition on these modules and use the
distance introduced in Sec. 3.1. This leads to the following result (compare
with [1, 1.5]).

Proposition 3.2.5.

(a) Let P be an indecomposable projective A-module and M be a prede-

cessor of P . If M ∈ RA, then M ∈ B({P}, r).
(b) Let I be an indecomposable injective A-module and N be a successor

of I. If N ∈ LA, then N ∈ B({I}, r).

Proof. We only prove (a) since the proof of (b) is dual.
We first show that any path of irreducible morphisms ε : N = Xs →

Xs−1 → · · · → X0 = P , with N a successor of M , is sectional. Indeed, if
this is not the case then there exists a minimal j such that (Xj+1, Xj, Xj−1)
is a hook in ε and the subpath Xj → Xj−1 → · · · → X0 = P is sectional.
In particular HomA(Xj−1, P ) 6= 0 and so idA Xj+1 ≥ 2 by [22], contra-
dicting N ∈ RA. Therefore, any such path is sectional and, in particular,
any such path has length at most r by 3.2.1 and the non-sectionality of
cycles [5, 6].

Now, let

δ : M = Ms
fs
−→ Ms−1

fs−1

−→ · · ·
f1
−→ M0 = P

be an arbitrary path from M to P . We claim that δ contains no morphism
in rad∞(modA), and hence that δ can be refined to a (sectional) path of
irreducible morphisms. Indeed, if f1 ∈ rad∞(modA), then it follows from
[30, 1.1] that there exists a path

M M1 → Nr

gr
−→ Nr−1

gr−1

−→ · · ·
g1
−→ N0

g0
−→ M0 = P,

where g := g0g1 · · · gr 6= 0 and Ni 6∼= Nj for any i 6= j. By 3.2.1, there exist
i, j such that HomA(Ni, τNj) 6= 0. This yields a path

M M1  Ni → τNj → Vj → Nj

g0g1···gj
−−−−→ M0 = P.

By [22], we have, as before, idA(τNj) ≥ 2, a contradiction since M ∈ RA.
Therefore, f1 /∈ rad∞(modA), and hence can be refined to a (sectional) path
of irreducible morphisms.

Inductively, assume that there exists an integer l, with l ≥ 1, such that
the subpath

Ml
fl−→ Ml−1

fl−1

−→ · · ·
f1
−→ M0 = P

of δ can be refined to a (sectional) path of irreducible morphisms. We show
that fl+1 6∈ rad∞(modA). Indeed, if fl+1 ∈ rad∞(modA), then it follows
from (the proof of) [30, Lemma 1.1] that there exists a path of irreducible
morphisms Yt → · · · → Y1 → Y0 = Ml containing at least r + 1 distinct
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modules Y ′

0 , Y
′

1 , . . . , Y
′

r
and such that HomA(Ml+1, Yt) 6= 0. Applying 3.2.1

to these modules entails the existence of a path of irreducible morphisms
τY ′

j → V ′

j → Y ′

j → · · · → Y0 = Ml, where HomA(Y ′

i , τY ′

j ) 6= 0 for
some i, j. By the induction hypothesis, we get a path of irreducible mor-
phisms τY ′

j → V ′

j → Y ′

j → · · · → Y0 = Ml → · · · → M0 = P containing
at least one hook. By the first part of the proof, τAY ′

j 6∈ RA, which, again,
contradicts the fact that M ∈ RA. This shows that fl+1 /∈ rad∞(modA).
Consequently, the path δ can be refined to a path of irreducible morphisms.
Moreover, by the first part of the proof, δ is sectional and, by 3.2.1 and the
non-sectionality of cycles, l(δ) ≤ r. Therefore d(M, P ) ≤ r and the proof is
complete.

This yields a new proof of the following corollary, first stated in [1]; it
now follows directly from 3.2.5 and 3.1.4.

Corollary 3.2.6.

(a) There are only finitely many indecomposable modules in RA which

are predecessors of a projective module.

(b) There are only finitely many indecomposable modules in LA which

are successors of an injective module.

As a consequence, we get the proof of Theorem 3.0.3.

Proof of Theorem 3.0.3. The equivalence of (a), (b) and (b′) follows
from 2.3.1. On the other hand, the equivalence of (b), (c), (d) and (e) follows
from 3.2.4 and the fact that there are only finitely many injective modules
and projective modules in indA.

For the other statements, we only prove the equivalence of the conditions
(c′) and (c); the other equivalences are similar. We first prove that (c′)
implies (c). Indeed, if this is not the case, there exists an infinite family
(τMλ, Vλ, Mλ)λ∈Λ of (distinct) hooks lying on paths from an injective I to
a projective P . By 3.2.6, there exists an infinite subset Λ′ of Λ such that
τMλ 6∈ LA and Mλ 6∈ RA for each λ ∈ Λ′. This yields infinitely many hooks
between a module not in LA and a module not in RA, a contradiction to
the hypothesis.

Conversely, assume that (c) holds true and that (τM, V, M) is a hook
lying on a path L τM → V → M N , with L 6∈ LA and N 6∈ RA. Since
L 6∈ LA, there exists a predecessor L′ of L such that pdA L′ ≥ 2, and hence
an indecomposable injective module I such that HomA(I, τL′) 6= 0. This
yields a path δ : I → τL′ → V ′ → L′

 L.

Dually, there exists a path ε : N N ′ → W ′ → τ−1N ′
 P for some

indecomposable projective module P . Gluing these paths together yields a
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path I
δ
 L τM → V → M N

ε
 P, showing that the hook (τM, N, M)

belongs to a finite set, and hence (c′) holds true.

4. Quasi-directed components. In this section, we first deduce new
characterizations of quasi-directed and convex components from the results
obtained in Sec. 3. Finally, we study the infinite radical of modA and show
that any convex and almost directed component is generalized standard,
and hence quasi-directed (Theorem 4.2.3).

4.1. The immediate consequences. Our first result, which follows directly
from 2.4.1 and 3.2.4, characterizes the semiregular quasi-directed compo-
nents.

Corollary 4.1.1. Let A be an Artin algebra and assume that Γ is a

semiregular component of Γ (modA) without projective modules. The fol-

lowing conditions are equivalent :

(a) Γ is quasi-directed.

(b) Γ is directed.

(c) For each X in Γ , there are only finitely many modules lying on a

cycle from X to X.

(d) For each X in Γ , there are only finitely many hooks lying on a cycle

from X to X.

(e) Given X, Y in Γ , there are only finitely many modules lying on a

path from X to Y .

(f) Given X, Y in Γ , there are only finitely many hooks lying on a path

from X to Y .

Further , if Γ contains injective modules, these conditions are equivalent to:

(g) For each X ∈ Γ , there are only finitely many modules lying on a

path from an injective module in Γ to X.

(h) For each X ∈ Γ , there are only finitely many hooks lying on a path

from an injective module in Γ to X.

Furthermore, Γ is convex , B = A/ann(Γ ) is a tilted algebra and Γ is a

connecting component of Γ (modB).

Of course, the dual statement on semiregular components without in-
jective modules also holds, and we leave the primal-dual translation to the
reader.

We deduce from this result a surprising fact: the condition of being gener-
alized standard is unnecessary in the definition of semiregular quasi-directed
components.
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Corollary 4.1.2. Let A be an Artin algebra and assume that Γ is a

semiregular component of Γ (modA). Then Γ is quasi-directed if and only

if Γ is almost directed.

Proof. Since the necessity is obvious, assume that Γ is not quasi-directed.
By 4.1.1(c), there exists an X in Γ such that |MX,X | = ∞. It then follows
from [30, Lemma 1.1] that |MX,X∩Γ | = ∞, saying that Γ contains infinitely
many non-directing modules.

Our classification is completed with the characterization of the non-
semiregular quasi-directed and convex components, a corollary which follows
directly from 2.4.2 and 3.2.4.

Corollary 4.1.3. Let A be an algebra and assume that Γ is a non-

semiregular component of Γ (modA). The following conditions are equiva-

lent :

(a) Γ is quasi-directed and convex.

(b) Given X, Y in Γ , there are only finitely many modules lying on a

path from X to Y .

(c) Given X, Y in Γ , there are only finitely many hooks lying on a path

from X to Y .

(d) There are only finitely many modules lying on a path from an injec-

tive module in Γ to a projective module in Γ .

(e) There are only finitely many hooks lying on a path from an injective

module in Γ to a projective module in Γ .

Furthermore, B = A/ann(Γ ) is a laura algebra and Γ is the unique non-

semiregular , convex and faithful component of Γ (modB).

We stress that the statement of 4.1.2 does not hold in general for non-
semiregular components, as shown by the following example. Moreover, this
example shows that the conditions (c) and (d) of 4.1.1 cannot be added
to the five equivalent conditions of 4.1.3 (while this is trivial for (b) since
the Auslander–Reiten quiver of any representation-finite algebra is quasi-
directed).

Example 4.1.4. Let A be the the radical square zero algebra given by
the quiver

1
• •//• •//

2
• •//• •//

3
•

•��

4
•

•OO

• •//
5
• •//

6

Then, if we denote by Pi (or Ii, or Si) the indecomposable projective (or
injective, or simple, respectively) corresponding to the point i in the
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quiver, the Auslander–Reiten quiver Γ (modA) of A has the shape shown
in Fig. 1, where we identify the two copies of S2. If Γ is the non-semiregular

• •

•

•

•

• •••

S4

Γ

•
P1

S1

P4

S5P3

S6 I6

S3

I7

I2

•

GFED@ABCS2

GFED@ABCS2

•

P2

•••

•

•

•

•

•

• •

• •

•

I5

I1

P5

Fig. 1. Γ (mod A)

component indicated in Fig. 1, it is not hard to see that Γ contains only
directing modules and that the sets MX,X and HX,X are finite for all X
in Γ . However, Γ is not generalized standard since rad∞(P2, I2) 6= 0, nor is
it convex.

In the above example, Γ is not convex. Our next aim is to show that
4.1.2 holds in general when we assume that Γ is convex. To do this, we need
to establish new facts on the infinite radical.

4.2. The infinite radical

Lemma 4.2.1. Let A be a tilted Artin algebra and M, N be two modules

in indA. If rad∞(M, N) 6= 0, then there exist infinitely many non-directing

modules lying on a path from M to N .

Proof. First, if M (or N) does not belong to a connecting component,
a postprojective component or a preinjective component, then it follows
from [15, 3.7] that M (or N , respectively) belongs to a component obtained
from a quasi-serial component (that is, a stable tube or a component of
the form ZA∞, [24]) by coray insertions or ray insertions, and the result
follows trivially. Otherwise, by [23, p. 41], we may assume without loss of
generality that M belongs to a postprojective component while N belongs
to a connecting component Γ , different from the one containing M .
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Following [17, 1.4], there exists an infinite path

(∗) · · · → Ni
hi−→ Ni−1

hi−1

−→ · · ·
h2−→ N1

h1−→ N0 = N

of irreducible morphisms such that, for each i, there exists ki in rad∞(M, Ni)
with h1h2 · · ·hiki 6= 0. Since Γ is acyclic, there exists i ≥ 1 such that no
projective in Γ is a predecessor (by a path of irreducible morphisms) of Ni.
Observe that Nj is left stable for all j ≥ i. Let Γ ′ be the left stable part of Γ
containing Nj for all j ≥ i. By [14, 3.6], Γ ′ is isomorphic to a full subquiver
of Z∆, where ∆ is a finite and acyclic quiver. Let ∆′ be the copy of ∆
containing Ni. By the Liu–Skowroński criterion [16, 25], ∆′ is a complete
slice of the representation-infinite algebra B = A/ann(∆′). Therefore, we
can assume that N = Ni and that N belongs to a connecting component
ΓN of Γ (modB) without projective modules. In this case, Γ (modB) admits
a unique postprojective component ΓM (necessarily different from the one
containing N), and this component contains MB .

Now, let T be a quasi-serial component of Γ (modB) with Hom(ΓM , T )
6= 0 and Hom(T , ΓN ) 6= 0, and let X be a module in T . Since B is connected,
there exists a path

P1
f1
−→ P2

f2
−→ · · ·

fn−1

−→ Pn
fn
−→ X,

where Pi is projective for each i and P1 belongs to ΓM . Moreover, we can
assume that P2 /∈ ΓM . Consequently, f1 ∈ rad∞(P1, P2) and it follows from
[21, 27, 30], for instance, that for each t ≥ 0 there exists a path

P1 = X0
h1−→ X1

h2−→ · · ·
ht−1

−→ Xt
h

−→ P2,

where hi is irreducible for each i and h belongs to rad∞(Xt, P2). Since ΓM is
acyclic, right stable and contains only finitely many τ -orbits, there exists a
t ≥ 0 such that Xt is a successor of M , inducing a path M  Xt  P2  X.
On the other hand, since ∆′ is a complete slice, rad∞(X, T ) 6= 0 for a certain
indecomposable module T in ∆′ and, dually, there exists a path of the form
X  N . Gluing these paths together yields a path of the form M  X  N .
The result then follows from the fact that T contains infinitely many non-
directing modules X.

The fact that the previous result holds true for tilted algebras implies
that it holds true for any Artin algebra.

Theorem 4.2.2. Let A be an Artin algebra and M, N be two modules

in indA. If rad∞(M, N) 6= 0, then there exist infinitely many non-directing

modules lying on a path from M to N .

Proof. Let f be a non-zero morphism in rad∞(M, N), and let Γ be the
connected component of Γ (modA) containing N . Following [17, 1.4] and
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[30, Lemma 1.1], there exists an infinite path

(∗) · · · → Ni
hi−→ Ni−1

hi−1

−→ · · ·
h2−→ N1

h1−→ N0 = N

such that

(a) For each i, there exists ki ∈ rad∞(M, Ni) such that h1h2 · · ·hiki 6= 0.
(b) For each i, Ni ∈ Γ .
(c) Ni 6= Nj when i 6= j.

If (∗) contains infinitely many non-directing modules, this ends the proof.
Otherwise, we can assume that (∗) contains only directing modules. More-
over, it follows from [19, 28] that (∗) crosses only finitely many τ -orbits.
Without loss of generality, we can therefore assume that (∗) intersects the
τ -orbit of N infinitely many times. In particular, N is left stable and non-
periodic.

Let lΓ be the left stable part of Γ containing N . Then lΓ contains no
oriented cycle. Indeed, assume that δ : X = X0 → X1 → · · · → Xn = X
is a cycle lying in lΓ . Since lΓ is left stable, there exists i ≥ 0 such that
Ni belongs to the τ -orbit of N and is a predecessor of X. Conversely, there
exists r ≥ 0 such that τ rX is a predecessor of Ni. But then, since X is a
predecessor of τ rX by [10, 1.4], we obtain a path X  τ rX  Ni  X,
saying that Ni is not directing, a contradiction.

Moreover, lΓ contains only finitely many τ -orbits. Indeed, if this is not
the case, then there exists a stable connected component C of lΓ having
infinitely many τ -orbits. Let X be a module in C such that the length of
any walk in Γ from a non-stable module to the τ -orbit of X is at least 2r,
where r is the rank of the Grothendieck group of A. But then, since X is a
predecessor of τ sX for all s ≥ 1 by [10, 1.5], the above argument gives the
existence of a Nj which is not directing, a contradiction.

Therefore, by [14, 3.6], lΓ is isomorphic to a full subquiver of Z∆,
which is stable under predecessors, where ∆ is a finite and acyclic quiver.
Let ∆ be a fixed copy of ∆ such that no module in ∆ is a successor

(by a path of irreducible morphisms) of a projective module in Γ . Such
a ∆ exists by [18, 1.2], for instance. Let D be the full subquiver of lΓ
consisting of all predecessors of ∆ in lΓ . Moreover, let T be the direct

sum of all modules in ∆. We claim that HomA(T, τT ) = 0. Indeed, if
this is not the case, then there exist indecomposable direct factors Y
and Z of T and a non-zero morphism s : Y → τZ. Observe that s ∈
rad∞(modA) since D is a full subquiver of Z∆ which is acyclic and closed
under predecessors. By hypothesis, there exists Ni in (∗) such that Ni is
a predecessor of Y . On the other hand, since s ∈ rad∞(modA), it fol-
lows from [17, 1.4] that there exists an infinite path of irreducible mor-
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phisms

· · · → Yj → Yj−1 → · · · → Y1 → Y0 = τZ

in D such that HomA(Y, Yj) 6= 0 for all j ≥ 0. Since D has only finitely
many τ -orbits and no oriented cycle, there exists j ≥ 0 such that Yj is a
predecessor of Ni, giving a path Ni Y → Yj Ni, a contradiction to the
fact that Ni is directing. Consequently, HomA(T, τT ) = 0.

Now, let B = A/ann(T ). Observe that ann(T ) = ann(D) by [25, Lem-
ma 3]. Consequently, T is a faithful B-module and D consists of B-modules.
Since HomB(T, τT ) = 0, B is a tilted algebra by [16, 25]. Moreover, T is a
slice B-module lying in a connecting component without projective modules.

Let p ≥ 0 be such that Nq ∈ D for all q ≥ p. We claim that there
exists q ≥ p such that Im(kq) has at least one indecomposable direct factor
not in D. Indeed, let l be the length of the A-module M . By [26, 2.6], for
instance, there exists Nq ∈ D such that any predecessor X of Nq is such that
l(X) > l. Obviously, kq : M → Nq is not surjective, and hence Im kq 6= Nq.
But then, since l(Im kq) ≤ l, it follows from the hypothesis made on Nq that
there exists an indecomposable direct factor Q of Im kq such that Q /∈ D.
In particular, Q belongs to a connected component of Γ (modB) different
from the one containing Nq.

Therefore the inclusion Q →֒ Nq belongs to rad∞(modB) and it follows
from 4.2.1 that there exist infinitely many indecomposable non-directing
B-modules (and hence A-modules) X lying on a path Q X Nq, giving
infinitely many indecomposable modules X lying on a path of the form
M → Q X Nq N . This concludes the proof.

Theorem 4.2.3. Let A be an Artin algebra and Γ be a component of

Γ (modA). If Γ is convex , then it is quasi-directed if and only if it is almost

directed.

Proof. The necessity is obvious. For the sufficiency, it remains to show
that Γ is generalized standard. Assume to the contrary that rad∞(M, N)
6= 0 for some indecomposable A-modules M and N in Γ . By 4.2.2, there
exist infinitely many non-directing modules X with a path M X N ,
a contradiction since Γ is convex and almost directed.

We also get the following results, where the first corollary is a general-
ization of [30, Corollary 3.15].

Corollary 4.2.4. Let A be an Artin algebra. The following are equiv-

alent :

(a) A is representation-finite.

(b) Γ (modA) contains only finitely many non-directing modules.
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(c) Every connected component of Γ (modA) is quasi-directed.

(d) Every connected component of Γ (modA) is almost directed.

Proof. Trivially (a) implies (c), and (c) implies (d) by definition. It re-
mains to show that (d) implies (b) and (b) implies (a).

(d)⇒(b). Assume to the contrary that (d) holds true but A contains
infinitely many non-directing modules. Since every connected component
of Γ (modA) is almost directed, Γ (modA) contains infinitely many compo-
nents. Moreover, any such component contains directing modules (otherwise
there would exist a finite component and A would be of representation-finite
type), which contradicts the fact that Γ (modA) contains at most finitely
many τ -orbits containing directing modules, see [19, 28].

(b)⇒(a). Assume to the contrary that (b) holds true but A is repre-
sentation-infinite. Then rad∞(modA) 6= 0 and the contradiction follows
from 4.2.2.

Corollary 4.2.5. Let A be an Artin algebra which is not quasi-tilted.

Then A is a laura algebra if and only if there exists a component in

Γ (modA) which is faithful , convex and almost directed.

Proof. This is a direct consequence of [29], [20, 3.1] and 4.2.3.

We also deduce from [30, Corollary 3.12] and 4.2.3 the following char-
acterization of the pip-bounded components. Recall from [8] that a non-
semiregular component Γ of Γ (modA) is called pip-bounded if there exists
an n0 such that any path of non-isomorphisms in indA from an injective
module in Γ to a projective module in Γ has length at most n0.

Corollary 4.2.6. Let A be an Artin algebra. A non-semiregular

component of Γ (modA) is pip-bounded if and only if it is convex and

directed.
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