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Abstract. This paper studies the Hochschild cohomology of finite-dimensional mono-
mial algebras. If A = KQ/I with I an admissible monomial ideal, then we give sufficient
conditions for the existence of an embedding of K[z1,...,z,]/(xazs for a # b) into the
Hochschild cohomology ring HH*(A). We also introduce stacked algebras, a new class
of monomial algebras which includes Koszul and D-Koszul monomial algebras. If A is a
stacked algebra, we prove that HH*(A)/N = K[z1,...,x.|/{zexs for a # b), where N is
the ideal in HH* (A) generated by the homogeneous nilpotent elements. In particular, this
shows that the Hochschild cohomology ring of A modulo nilpotence is finitely generated
as an algebra.

Introduction. Let K be a field and let A = K Q/I be a finite-dimensio-
nal K-algebra where Q is a quiver and [ is an admissible ideal. We assume
that A is a monomial algebra, that is, the ideal I is generated by a finite
set of paths p. We take the set ¢ to be a minimal generating set for I. The
Hochschild cohomology ring HH*(A) is given by

HH*(A) = Ext’(4, ) = @D Extye (4, A)
i>0
with the Yoneda product, where A° is the enveloping algebra A°P @ g A of A.
Let A be the ideal in HH*(A) generated by the homogeneous nilpotent
elements.

The first part of the paper studies subrings of the Hochschild cohomol-
ogy ring of a monomial algebra. In particular, in Theorem 2.13 we give
sufficient conditions for the existence of non-nilpotent elements x1, ..., z, in
HH*(A) with z,2p = 0 for a # b so that K[z1,...,z,]/(xexp for a # b) is a
subalgebra of HH*(A). We then introduce a new class of monomial algebras

2000 Mathematics Subject Classification: Primary 16E40, 16G20, 16S15.

Key words and phrases: monomial algebras, D-Koszul, Hochschild cohomology.

The first author was partially supported by a grant from the NSA.

The second author would like to thank the first author and Virginia Tech for their
hospitality.

[233]



234 E. L. GREEN AND N. SNASHALL

which we call (D, A)-stacked monomial algebras (Definition 3.1). The class
of (D, A)-stacked monomial algebras includes the Koszul monomial algebras
as well as the D-Koszul monomial algebras of [2, 6]. The second part of the
paper determines, for a finite-dimensional (D, A)-stacked monomial algebra
with char K # 2, the quotient HH*(A)/N, and shows in Theorem 3.4 that
HH*(A)/N = K[z1,...,z;]/{xqxp for a # b). In particular, we show that
this quotient is finitely generated as a K-algebra and of Krull dimension at
most 1.

It was conjectured in [11] that HH*(A)/N is finitely generated as a ring
for any artin algebra A over a commutative artinian ring. Some evidence for
this conjecture came from [11] where it was shown for a finite-dimensional
Nakayama algebra with one relation, and from [8] where it was shown for a
finite-dimensional selfinjective indecomposable algebra of finite representa-
tion type over an algebraically closed field. The conjecture is also known to
be true for any block of a group ring of a finite group [3, 12], and any block
of a finite-dimensional cocommutative Hopf algebra [4] (and see [11]). In [9],
the conjecture is shown for all monomial algebras. The results of this paper
differ from those in [9] in that we obtain a complete description of the ring
HH*(A)/N for a (D, A)-stacked monomial algebra A.

1. Background. One of the main tools we use in this paper is the
minimal projective resolution of a monomial algebra A over A° as given
in [1]. This requires the concept of overlaps of [5] and [10]. We recall the
relevant definitions here, once we have introduced some basic notation.

An arrow « starts at the vertex o(«) and ends at the vertex t(«); arrows
in a path are read from left to right. If p = a3 - - - o, is a path with arrows
ai,...,op then o(p) = 0(aq) and t(p) = t(ay,). (Note that if n = 0 so that
the path is a vertex v, then o(v) = v = t(v).) We denote the length of a
path p by £(p). We fix ¢ as a minimal generating set for the ideal I, and
refer to an element of g as a relation. An arrow « begins (respectively ends)
a relation 7 in g if r = ap (respectively r = pa) for some path p. A path p
is a prefiz of a path ¢ if there is some path p’ such that ¢ = pp/. A path p is
a suffiz of a path ¢ if there is some path p’ such that ¢ = p/p.

DEFINITION 1.1.

(1) A path g overlaps a path p with overlap pu if there are paths u and
v such that pu = vg and 1 < £(u) < ¢(q). We may illustrate the
definition with the following diagram:

q

SN
[

P
Note that we allow ¢(v) = 0 here.
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(2) A path g properly overlaps a path p with overlap pu if q overlaps p
and £(v) > 1.

(3) A path p has no overlaps with a path ¢ if p does not properly overlap
q and g does not properly overlap p.

To describe a minimal projective resolution of A over A°, we use sets R"
which we now define recursively. Let

RO = the set of vertices of Q,
R! = the set of arrows of Q,

R? = p, the minimal set of paths in the generating set of I.

For n > 3, we say R? € R? maximally overlaps R"~! € R"~! with overlap
R" = R Ly if
(1) R*! = R"2p for some path p;
(2) R? overlaps p with overlap pu;
(3) there is no element of R? which overlaps p with overlap being a
proper prefix of pu.

We may also say that R" is a mazimal overlap of R*> € R? with R*!
e RV L

The set R" is defined to be the set of all overlaps R™ formed in this way.

The construction of the paths in R"™ may be illustrated with the following
diagram of R":

RZ
Rn—1 I
| |

| | P u
Rn72

We also recall from [10] that if R}p = Ryq for R}, R} € R"™ and paths
p,q, then R = RY and p = q.

Let (P*,d*) be the minimal projective A°-resolution of A from [1]. Then

Pr= J] Ao(R")®tR"A
ReR™
where we write ® for ® ¢ throughout.

Any element R™ in R™ may be expressed uniquely as R;-‘_laj and as
kaZ_l for some R?_I,RZ_I € R"! and paths a;,by. We say that the
elements R;“l and szl occur in R™.

The map

52n+1: P2n+1 N P2n
is given as follows. If R*"*! = R%"a; = bR} € R*™*! then

o( R @ t(R*™1) = o(R}") ® a; — by © t(RY")
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where the first tensor lies in the summand corresponding to R?" and the
second tensor lies in the summand corresponding to Ri".

For even degree elements, any element R?" in R?" may be expressed in
the form ij?”_lqj for some R?”_l € R*~1 and paths pj,q; with n > 1.
Let R?" = lef”*Iql = ... = p.R?"" g, be all expressions of R?" which
contain some element of R?"~! as a subpath. Then the map

62n: PQn N P2n—1

is given as follows. If R?™ € R?" then, with the above notation,
T
o(R*") @ t(R*™) — Y p; @
j=1

where the tensor p; ® g; lies in the summand of P?"=1 corresponding to
R

If not specified, then it will always be clear from the context in which
summand of a projective module our tensors lie.

We now recall the product structure of HH*(A). An element n of HH" (A)
is represented by a map P" — A of A°-modules; by abuse of notation we
also denote our chosen representative map by n. The liftings of n are choices
of maps 2™n: P"™™ — P™ for m > 0, such that the following diagram
commutes:

§n+'m 6n+2 §n+1
.

..*>Pn+m ..*>Pn+14>PTL

_anl in Qonl \
om 52 5t 59

pm e Pl PO A
For homogeneous elements § € HH"™(A) and n € HH"(A) represented
by maps P™ — A and P™ — A respectively, the product 67 in Hochschild
cohomology is the element of HH"*™(A) which is represented by the map
0 o £2n, where o denotes the usual composition of maps. Recall that this
agrees with the Yoneda product and is independent of the choice of repre-
sentatives and liftings for n and 6.

2. Subalgebras of HH*(A). In this section we give sufficient conditions
on a finite-dimensional monomial algebra A = KQ/I for HH*(A) to have a
subalgebra of the form

Klz1,. ..,z /(xiz; for i # j).

The first result looks at elements of HH*(A) which are determined by
certain closed paths in the quiver, and for which we need some preliminary
lemmas. The proofs of these lemmas are straightforward, but we include
them for completeness.
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DEFINITION 2.1. A closed path C' in Q is a non-trivial path C' in KQ
such that C' = vCv for some vertex v. We may say that C' is a closed path
at the vertex v. We do not make any assumptions with this terminology as
to whether or not C' is a non-zero element in the algebra A.

If C is a closed path at the vertex v then we say that v is not internal
to C if C' = voivoqv for paths o1, 09 implies that o1 = v or o9 = v.

LEMMA 2.2. Let A = KQ/I be a finite-dimensional monomial algebra
where I is an admissible ideal with minimal set of generators 0. Suppose that
there is a closed path C in the quiver Q at the vertex v such that C £ p” for
any path p with r > 2 and that C°® € o for some s > 2. Suppose also that
there are no overlaps of C* with any relation in o\ {C*}. Then the vertex v
is mot internal to C.

Proof. Suppose that v is internal to C; then C' = vojvoev for distinct
non-trivial closed paths o1, 09. Since A is finite-dimensional, there are natu-
ral numbers Ny, Ny with JZNi € I (for i = 1,2) and hence there is a subword
w; of O'Z-N "1in p, the set of generators for I. But these subwords are in o\ {C*}.
Moreover no subword of ¢; is in g since C*® € p. Thus each w; must be of the
form amf" b; with a; a suffix of oy, b; a prefix of o; and t; > 0. We see that C
properly overlaps wi, and we properly overlaps C' (noting that if a; and b;
are both vertices then ¢; > 2). So there is a proper overlap of C* with some
element of p \ {C®}, which contradicts the hypothesis. =

LEMMA 2.3. Let a and b be paths of length at least 1 and suppose that
ab = ba. Then there is a path p and integers r,s > 1 such that a = p" and
b=p°.

Proof. The proof is by induction on ¢(ab). For the initial case, if £(ab) = 2
then we may take a = b = p and we are done. Now assume the assertion is
true for paths z, 2" with £(z2') < n and 2z’ = 2’z. Suppose that £(ab) = n
and that ab = ba. If ¢(a) = ¢(b) then a = b and we may take p = a = b.
So, without loss of generality, suppose that ¢(a) > £(b). Then we may write
a = bq = ¢'b for some paths ¢, ¢’ with ¢(q) = ¢(¢') > 1. So bgb = ab = ba =
bq'b and hence ¢ = ¢’. Thus bg = ¢b with £(b),£(¢) > 1 and £(bg) < n. By
the induction hypothesis, there is a path p and integers r,s > 1 such that
b=p" and q = p*. Hence a = p" 5. This completes the proof. =

LEMMA 2.4. Let a, b and ¢ be paths such that 1 < {(a) < £(c) and
c®a = bc® for some s > 1. Then there is a path p and integer t > 2 such that
c=rp.

Proof. Since £(a) = £(b) < £(c) we may write ¢ = bqg = ¢'a for some
paths ¢, ¢’ with ¢(q) = ¢(¢') > 1. Then

bqbq e bqa =c’a=0bc® = bq/aq/a . q/a.
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Using ¢(q) = ¢(¢') and £(a) = £(b), it follows that ¢ = ¢’ and a = b. Hence
¢ = bg = gb. Thus we may apply Lemma 2.3 to obtain a path p and integers
r, 7' > 1 such that b = p” and ¢ = p" . Hence ¢ = p! where t =7 +1/ > 2. u

We now come to our first result. Recall that g is a fixed minimal gener-
ating set for I and that we refer to an element of g as a relation.

PROPOSITION 2.5. Let A = KQ/I be a finite-dimensional monomial
algebra where I is an admissible ideal with minimal set of generators p.
Suppose that there is a closed path C in the quiver Q at the vertex v such
that C # p" for any path p with r > 2 and that C* € o for some s > 2.
Suppose also that there are no overlaps of C* with any relation in o\ {C*}.

Then there is a subalgebra K[z] of HH*(A) where x is in degree 2 and is
represented by the map P? — A where, for R* € R?,

U(RQ) ®t(R2) . {U ZfRQ = ("%,
0 otherwise.

Proof. From Lemma 2.2 we know that the vertex v is not internal to C.
Let C = a1 - - - o where the «; are arrows.

The element C*® in R? properly overlaps itself with overlap C**1. If C5+1
is not in R3 then there is some path u with £(u) < £(C) such that C%u € R3.
Hence C*u = vR? for some path v and R? € R?. But then R? overlaps C*
and so by hypothesis R? = C*. Now Lemma 2.4 contradicts the hypothesis
that C' # p” for any path p with » > 2. Hence C*T! € R3. Since there are
no overlaps of C* with any other relation in g, this is also the only element
of R3 in which C* occurs.

Since a1 € R', we may illustrate the element C**! € R3 by the following
diagram:

Cs

Lo | | l
C

CS

The image of o(C*T) @ t(C**1) under the map P3 & P2isv@C—Couv
in the summand corresponding to the element C* of R2. For R? € R?, define
z: P? - A by
v if R? = C*,

0 otherwise.

o(R?) ® t(R?) {

oy 83 . . .
Then the composition P? & P2 % A is zero. Moreover, since the image of

2
any composition P? % P! = Ais in the Jacobson radical of A, it is clear
that = does not lie in Im 6%*, where 6* is the induced map Hom se (P!, A) —
Hom se (P2, A). Thus x represents a non-zero element of HH?(A).
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Now, the element C* € R? overlaps the path C with overlap C*. So we
have the situation:
CS

| |
[ |

(O C

Thus it is clear from Definition 1.1 that the element C* in R? maximally
overlaps the element C*T! in R? with overlap C?¢ in R*. We may illustrate
this element C2* € R* more simply by:

CS

1
I

Cs C®

Moreover, since there are no overlaps of C*° with any element of R?
except C? it follows that there are no overlaps of C' with any element of
R? except C®. The construction of elements of R* now gives that the only
element of R* which has C**! as a subpath is C?*.

The map z lifts to the map 2z: P3 — P! given by
o(R*) @ {(R?) — { Yoo oy @ajp o if B = O
0 otherwise.

The projective P* has summand Ao(C?%) ® t(C?*)A. From Lemma 2.4
and using C # p” for any path p with » > 2, the expressions of C?* which

contain some element of R? as a subpath are precisely those of the form

cicstlcs=i=lfor j = 0,1,...,s—1. So, the image of 0(C?®) ® t(C?®) under
4 . .

the map P* %P3 s Zj;é C7 ® C*7=1 which lies in the summand of P3

corresponding to the element C**! of R3. A simple computation shows that

x may be lifted to the map 2%z: P* — P? given by

o(RY) © t(RY) {U ® v in the C*-component if R* = C?,
0 otherwise.

Thus z? in HH*(A) is represented by the element P* — A with
v if R* = C?s,
0 otherwise.

o(RY) ® t(RY) — {

In order to construct 2" for n > 2 as a map P?® — A, we consider the
sets R2" and R2"!, Inductively, it may be verified that C(»~Ds+l ¢ R2n—1
C™ is the only element in R?" which has C(=Ds+l a9 a subpath, and
C™*t1 is the only element in R*"*! which has C™ as a subpath. Thus, for
n > 2 and from Section 1, the map §27F1: P2+l . P27 ig given, on the
component corresponding to O™t € R2"+1 by

o(C™ Y @ {(C™ ) s v C - Cov
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with image lying in the component corresponding to C™ € R?", and the
map 62%: P?" — P?"~1 ig given, on the component corresponding to C™*
€ R*", by
s—1
0(C™) @YC™) =Y T eIt
j=0
with image lying in the component corresponding to C'("—1s+1 ¢ R2n—1 Tt
is now straightforward to show that the map 22("~Vz: P2n — p2n=2 giyen
by
o(R2") @ t(R2") s {v ® v in the C"~Vs_component  if R2" : cne,
0 otherwise,
is indeed a lifting of z, and hence that z™ is represented by P?* — A with
: 2n __ ns
0(R2n)®t(R2n)H{’U lfR —C s
0 otherwise.
In addition, 2" is a non-zero element of HH?"(A) for all n > 1, since any

composition of the form P?" Ll P?"=1 _ A has image in the Jacobson
radical of A.

Hence z is a non-nilpotent element of HH*(A) and generates a subalgebra
K|[x] of HH*(A). This completes the proof. m

EXAMPLE 2.6. Let Q be the quiver

Let A = KQ/I where C' = a3v583¢ and [ is the ideal (C?, o3¢, 537). Note
that C is a closed path which satisfies the conditions of Proposition 2.5 and
moreover has repeated arrows. From Proposition 2.5, there is a subalgebra
K|z] of HH*(A) where z is in degree 2.

In the next result we consider elements of HH*(A) which come from
closed trails or generalizations of such paths. We start with some definitions.

DEFINITION 2.7.

(1) A closed trail T in Q is a non-trivial closed path 7' = «; - -y, in
K Q such that a1, ..., a, are all distinct arrows.

(2) For A > 1, a closed A-trail T in Q is a non-trivial closed path
T =ai - a, in KQ such that ai,...,a, are all distinct paths of
length A.
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Thus if A = 1 then a closed 1-trail is a closed trail. Since Q is a finite
quiver, there are a finite number of closed A-trails for each A > 1. If A > 1,
then an A-trail may have repeated arrows.

DEFINITION 2.8. Let p be any path and let ¢ be a closed path in Q.
Then p lies on q if p is a subpath of ¢° for some s > 1.

Fix A > 1. Let T be a closed A-trail in Q at the vertex v; for ease of
notation write T' = agaq - - - ayp 1 for m > 1, where the «o; are distinct paths
of length A. Let e; = o(c;) for i =0,...,m — 1, so eg = v. Let

Th = oy am_100,

To = an---apa,

Tin—1= Qm—100 - Qy—2

and set Tp = T. Then the paths Ty, T1,...,T»—1 are all of length Am and
lie on the closed path apay - am—1. We say that {To,T1,...,Tym—1} is a
complete set of closed A-trails on g -« Q1.

Fix L > 2 and write L = Nm + 1 where 0 <[ <m —1and N > 0.
For t € N, let [t] € {0,1,...,m — 1} denote the residue of ¢ modulo m. Let
W = T({Vaoal -« - y_1 with the conventions that if N = 0 then Tév = ¢p and
if ] =0 then W = TON. More generally, for k =0,1,...,m — 1, define

Uk(W) = Tévakakﬂ Ol —1
with the conventions that

(i) if t > m then oy = oy,

(ii) if N =0 then T} = ey,

(iii) if I = 0 then oF(W) = T}N.
Note that, for all k, o*(W) lies on the A-trails Ty, T1,...,Ty,_1. Define or
to be the set

or = {W,o(W),...,a™ Y(W)}.

We say that or is the set of paths of length AL that are associated to the
A-trail T. Note that {W,a(W),...,c™ (W)} is also the set of paths of
length AL that are associated to each A-trail Ty for k =0,...,m — 1.

We keep this notation throughout the rest of the paper.

PROPOSITION 2.9. Let A = KQ/I be a finite-dimensional monomial
algebra, where I is an admissible ideal with minimal set of generators o.
Let A > 1. Let T be a closed A-trail in the quiver Q at the vertex v;
write T = agaq - - - a1 where the «; are distinct paths of length A in Q.
Suppose that there is some integer L > 2 such that ¢ contains the set
or = {W,o(W),...,a™ Y (W)} of paths of length AL that are associated
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to the A-trail T'. Let L = Nm +1 with 0 <1l <m —1 and N > 0. Suppose
also that, for each i, the path oy has no overlaps with any relation in o\ or.
Then there exists a subalgebra K[x] of HH*(A) such that x is in degree

2m/gcd(L, m) and is represented by the map P?™/&d(Lm) . A where, for
RQm/gcd(L,m) c R]Qm/gcd(L,m)7

o(Ty) if R2m/ged(L,m) — TkL/ng(L,m)
fork=0,...,m—1,
0 otherwise.

Proof. With the above notation we have T' = Ty, W = T[{Vag Sy,
«; is the prefix of length A of ¢/(W), and Q[4i—1) is the suffix of length A
of o' (W).

Since no path «; has overlaps with any relation in p \ o7, the path W
has no overlaps with any relation in o\ o7. Thus if a relation R? overlaps
W then R? € pr. The element o(W) in R? maximally overlaps the ele-
ment W € R? with overlap Wap € R®. The relation o'(W) maximally
overlaps Way € R? with overlap Wl (W) in R*. We continue in this way
with maximal overlaps to obtain the element Wa!(W) - - - ¢! =1 (W) in R?*
where 1 = m/ged(L, m) and, moreover, p is minimal such that we obtain
an element of R™ with n even which is also a closed path in Q. Note that
Waot(W) .- ot=D(w) = TOL/ng(L’m). Similarly we may use a sequence of

0(RQm/gcd(L,m)) ®t(R2m/gcd(L,m)) N

maximal overlaps to give elements TkL fecd(Lim) 4y R fork=1,...,m—1.
Let RZ“ = TkL/ng(L’m) for k = 0,...,m — 1, and observe that O(Ri“) =
HRM) = ey

Noting that o(7y) = ey, for R € R?*, define x: P?* — A by

: 20— P24 — _
o(R*) @ t(R2¥) {ek if R R for k=0,...,m—1,
0  otherwise.

Now consider the set R?*+1, The relation ¢**~D+1(T) maximally over-
laps Rg“ to give Rg” ag in R?#+1 (since Rg“ is a closed path in Q). We may
write this element of R?**! as Rg” = Rg“ ap = ap R, Similarly, we may
define elements RZ“H = Ri“ak = akRz’fH e R+ for k=0,...,m— 1.
Moreover none of the Ri“ occur in any other elements of R?**1, since if a
relation R? overlaps an element of o7 then R? € or, and if an element of o7
overlaps a relation R? then also R? € or.

2p+1

The image of o(Ri‘Hl) ® t(Ri“H) under the map P2+ ! T po i
exr @y, —ap®eyyq with the first tensor in the summand of P?# corresponding
to the element Ri" and the second tensor in the summand corresponding

2 ., §2utt .
to the element Rk’il. Hence the composition P2#+1 °— P2 % A is zero.
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Moreover, since the image of any composition P? L P?=1 5 Ais in
the Jacobson radical of A, it is clear that = does not lie in Im 6?#*. Thus x
represents a non-zero element of HH?#(A).

By considering maximal overlaps it can be verified in a similar way to
that shown in the proof of Proposition 2.5 that there is a lifting of = to the
map P* — P2?" given by

er ® ep in the TkL/ng(L’m)—component
o(R*) © t(R*) — if Rin = 72L/Edm) for k=0, m— 1,

0 otherwise.

Note that T 2/&UE™) — (R2M2 for = 0,... m — 1. Then 2 in HH*(A)

is represented by the element P* — A with

0(R4u) ® t(R4u) — { €L if R4'u = TsL/ng(L’m) for k = 0, e, — 1,
0  otherwise.
Using similar computations to those in the proof of Proposition 2.5, we
deduce, more generally, that " is represented by P?*" — A with

o(R™) @ (B2 s ) 6k if R2em — BB m) o — 0, m— 1,
0  otherwise,

and 2" is a non-zero element of HH?*"(A) for all n > 1.
Hence z is a non-nilpotent element of HH*(A) and generates the required
subalgebra K[z] of HH*(A). m

The following corollary is the special case when A = 1.

COROLLARY 2.10. Let A = KQ/I be a finite-dimensional monomial
algebra, where I is an admissible ideal with minimal set of generators o. Let
T be a closed trail in the quiver Q at the vertex v; write T = qga] - -+ Qyp—1
where the «; are distinct arrows in Q. Suppose that there is some integer
L > 2 such that o contains the set or = {W,a(W),...,a™ Y (W)} of paths
of length L that lie on the trail T. Let L= Nm +1 with 0 <l <m —1 and
N > 0. Suppose also that, for each i, the arrow a; does not begin or end any
relation in o \ or.

Then there exists a subalgebra Klz| of HH*(A) where = is in degree
2m/ged(L,m) and is represented by the map p2m/ged(Lom) _, A yhere, for

R2m/gcd(L,m) c RQm/gcd(Lﬂn)?

o(Ty) if R2m/ged(L,m) — TkL/ng(L’m)
fO’f'k:O,...,m—L

0 otherwise.

REMARK. (1) Suppose that a trail 7" satisfies the conditions of Corol-
lary 2.10 and has a repeated vertex. Then T = pipops for paths p; with

0(RQm/gcd(L,m))®t(R2m/gcd(L,m)) N
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p1 € vKQw, po € wKQuw and ps € wKQu for some vertices v, w, and
1 < l(p2) < (T). Since A is a finite-dimensional monomial algebra, there is
some positive integer N with p € I and hence there is a subpath ¢ of p
which lies in p. Now the first arrow of ¢ is an arrow on the trail 7" and so ¢
must be in g7 since the conditions of Corollary 2.10 hold. Hence N =1 and
thus po € 1.

(2) In the case A =1 and m = 1, the closed trail T" is simply a loop «
and or = {a”} for some L > 2. Furthermore if o € g and « neither begins
nor ends any relation in ¢\ {a*} then both Propositions 2.5 and 2.9 apply.

ExaAMPLE 2.11. This is an example of an A-trail with A = 2. Let A =
KQ/I where Q is the quiver

and I = (afydaf,voapvy0). We may apply Proposition 2.9 with 2-trail
a0 to show that K[x] is a subalgebra of HH*(A) where z is in degree 4.

ExXAMPLE 2.12. In this example A = 1 and the trail has a repeated
vertex. Let A = KQ/I where Q is the quiver

and I = (af, 37,70, 0¢,ea). Then we may apply Corollary 2.10 with trail
afyde to show that K|x] is a subalgebra of HH*(A) where x is in degree 10.

Let A = KQ/I be a finite-dimensional monomial algebra, where I is an
admissible ideal with minimal set of generators p. Then p is a finite set.
Thus there are a finite number of closed paths C1,...,C, in Q such that
for each C; with 1 <4 < u, we have C; # p;" for any path p; with r; > 2,
C € o for some s; > 2 and there are no overlaps of C;* with any relation
in o\ {C/"}. By Proposition 2.5, for each C; there is a map z; of degree 2
from P? to A. We call z; the element of HH?(A) corresponding to the closed
path C;.

Also, for each A > 2, there are a finite number of closed A-trails Ty, 11, . ..
..., T in Q such that for each T; with v+ 1 < ¢ < r, there is some integer
L; > 2 so that the set o7, of paths of length AL; that are associated to the
A-trail T; is contained in o but that no path «;; of length A on the A-trail
T; has overlaps with a relation in ¢ \ or,, where T; = ajoa1 - @im,—1. We
say that two A-trails are distinct if neither lies on the other.
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By Proposition 2.9, for each A;-trail T; there is a map x; of degree
2m;/ged(L;, m;) from p2mi/ged(Limi) 16 A We say that z; is the element of
HHZ™i/8ed(Lima) (A corresponding to the A;-trail Tj.

Keeping the above notation, we now combine Propositions 2.5 and 2.9
in the following theorem.

THEOREM 2.13. Let A = KQ/I be a finite-dimensional monomial alge-
bra, where I is an admissible ideal with minimal set of generators g.

Let C4,...,Cy be closed paths in the quiver Q at the vertices vy, ..., vy,
respectively, such that for each C; with 1 < i < u, we have C; # p;* for any
path p; with r; > 2, C;* € o for some s; > 2 and there are no overlaps of
C;" with any relation in o\ {C;'}.

Let Tyi1,...,T be closed paths in the quiver Q such that the T; are
distinct closed A;-trails with A; > 1. For each u+ 1 < ¢ < r, write T; =
Q001 - Qm,—1 where each o is a path of length A;. Suppose that there
are integers L; > 2 so that the set or; of paths of length A;L; which are
associated to the trail T; is contained in o but no path o;; has overlaps with
any relation in o\ or,.

Then

Klzy,...,z;]/(zqxp for a # b)

is a subalgebra of HH*(A) where x; corresponds to the closed path C; for
Jj=1,...,u and to the closed trail T} for j =u+1,...,r.

For j =1,...,u, the vertices v1,...,v, are distinct, and the element x;
corresponding to the closed path C; is in degree 2 and is represented by the
map P? — A where, for R?> € R?,

o(R?) ® t(R?) {vj if R? =C}

j )
0  otherwise.

For j = uw+1,...,r, let Tjo,...,Tjm;—1 denote the complete set of
closed Aj-trails on the closed path T;. The element x; corresponding to
the closed Aj-trail T} is, in the above notation, in degree 2p1; where p; =
mj/ged(Lj,m;) and is represented by the map P*i — A where, for R
c 722uj7

U(Tj,k) if R21j — jy%é/gcd(Lj,mj)
o(R*9) @ t(R™) — fork=0,...,m; —1,
0 otherwise.

Proof. We start by showing that the vertices vy, ..., v, are distinct. Sup-
pose that there are distinct closed paths C,, (' at the vertex v, = v such
that Cie, C;® € o for some s4, 5, > 2 and there are no overlaps of Cg* with
any relation in o\ {C*} or of C};* with any relation in ¢\ {C;*}. The alge-
bra A is finite-dimensional so there is some N > 1 with (C,Cy)"™ € I. Since
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no subword of C', or of (j is in g, there is some relation in g of the form
w(CyCy)Now' for some paths w,w’ and Ny > 0.

If w is trivial, that is, w = v, then w(C,Cy)Now’ overlaps C$e, which
contradicts the hypothesis on C,. If w is non-trivial and is a subword of Cj,
so that there is a path p with C, = pw, then w(C,Cy)Now’ overlaps cyr,
which contradicts the hypothesis on Cj. Finally, if Cp is a subword of w
with w = pC, and p non-trivial, then w(C,Cy)Now' overlaps C%e, which

contradicts the hypothesis on C,. Hence the vertices v1, ..., v, are distinct.
For j =1,...,u, define zj: P> — A by
e P2 S
0(R2)®t(R2)»—>{UJ lfR —C],
0 otherwise.

By Proposition 2.5, each of the elements z1,...,z, is in degree 2 and gen-
erates a subalgebra of HH*(A) isomorphic to K|x].

Now there is a lifting of z, to the map P* — P? given by

o(RY) @ t(RY) o { vy ® v, in the Ce-component if R4 = C2sa,
otherwise,
and hence, for a # b, the composition z,x is zero since the vertices v,
and v, are distinct.

For j =1,...,u, each z; is non-nilpotent, so if for some ¢ > 1 and scalars
¢; € K we have Y% | ¢zl = 0 then 0 = x; Y it ¢zl = cjx;-H and hence
c¢j = 0. Thus

Klzy,...,zy]/(zqxp for a # b)

is a subalgebra of HH*(A).
For j =u+1,...,rlet Tjo,...,Tjm,—1 denote the complete set of closed
Aj-trails on the closed path Tj. Define z;: P?*i — A by

o(Tjy) if R? = Tflg/ng(Ljvmj)

o(R2H1) @ ((R2H) v for k= 0,....m; — 1.
0 otherwise.
By Proposition 2.9, each of the elements x,1, ..., T, generates a subalgebra

of HH*(A) isomorphic to K[z] and, with the above notation, z; is in degree
2mjj/ged(Lj, mj) = 2p;.

Next we show that z,2p =0for 1 <a<randu-+1<b<r.

Let T}, = aga - - -y, —1 With o(ay) = e; for k =0,...,mp — 1. Keeping
the notation of Proposition 2.9, let o1, = {W;,a0(Wp),...,0™ 1(W},)} be
the set of paths of length AL that are associated to the trail Ty, and let u, =
my/ged(Ly, my). For k= 0,...,mp—1, let R € R, R € R2w+ he
defined as in the proof of Proposition 2.9. Recall that RZ”” = Tlfﬁ/ng(Lb’m”),
so that o(R;™) = t(R:*), and also that R = R¥* .. Again from the
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proof of Proposition 2.9, the map x; lifts to the map P?*+1 — Pl given by
A
Yo et Bric1 @ Britr - Bra,

o(R¥H) @ (R ) i ¢ if Rt = RAH for =0, my — 1,
0 otherwise,
where the path oy = Br10k2- - Bk a, with arrows Si1, Bk2, ..., O a,, and

where Oi1 - Bri—1 ® Brit1 - - Pk 4, lies in the component Ao(f;) @ t(Bg:)A
of P

For each k = 0,...,mp — 1, the only element of R?**2 which con-
tains Rz“ vt as a subpath is obtained from o® (W) in R? maximally over-
lapping Ri’“’“, with overlap Ri’”’ak(Wb). Let Ri“”“ = Rz’”’ak(Wb) for
k=0,...,mp— 1. Then the map x lifts to the map P**+2 — P? given by

o(o* (W) ® (ok(Wy))  if R+ = Rt
0(R2ub+2)®t(R2Mb+2) — for k=0,...,mp —1,

0 otherwise.
Hence, for 1 < a < u, the composition of x, with x, is zero since the relation
Cge is not in o7, .

For u+1 < a < r, we now specify further liftings of the map x; in order
to compute xpx,.

Let R™ € R" for some n > 2u be such that R™ contains some element of
or, as a subpath. Then R" is formed from elements of o7, in the sense that
R™ lies on Tp. Moreover there are precisely m; elements of R™ which are
formed in this way. We may label these elements as R}! for k =0,...,m;—1
in such a way that the element R} starts at the vertex ej. Since Ri“ b is
a path in e, K Qej,, we also have Ri’””q = RZ’“’RZ for k =0,...,my — 1,
R{ € R? and ¢ > 2. Thus for each ¢ > 2, x; lifts to the map P2wta . pa
given by

o(Rf) @ t(R) if R0 = Rt
o(R¥+0) @ {( R+ for k=0,...,my— 1,

0 otherwise.

It is now clear that the composition xpx, is zero for a # b and u+1 < a <,
since for each n, the elements of the sets R™ formed from the A,-trail T,
are distinct from the elements of the sets R™ formed from the Aj-trail Ty,

As noted earlier, for each ¢ = 1,...,r, the elements z; being non-
nilpotent implies that if S7_, c;zl* is a homogeneous element in HH*(A)
for some t; > 1 and scalars ¢; € K and if Z:=1 cszl = 0, then each ¢; = 0.
Hence

Klxy,...,z;]/(xqzp for a # b)

is a subalgebra of HH*(A) and the proof is complete. m
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In Section 3, we apply this theorem to the class of (D, A)-stacked mono-
mial algebras (see Definition 3.1), which includes the Koszul monomial al-
gebras, but we first present two examples illustrating Theorem 2.13.

EXAMPLE 2.14. Distinct A;-trails considered in Theorem 2.13 may have
vertices in common as the following example illustrates. Let A = KQ/I
where Q is the quiver

ﬁl\_\ac/fln
T

and I = (af, Bv,v,(n,nb,0(). Then we may apply Theorem 2.13 with
trails a8y and (nf (so A; = 1) to show HH*(A) has K[z,y|/(zy) as a
subalgebra where  and y are both in degree 6.

ExaMPLE 2.15. This example shows that distinct closed paths consid-
ered in Theorem 2.13 may have arrows in common. Let A = KQ/I where
Q is the quiver

Cy = afyd, Cy = (nPBe and I is the ideal (C%,C7,afe). Then, from The-
orem 2.13, K[z,y|/(xy) is a subalgebra of HH*(A) where z and y are in
degree 2.

Since HH*(A) is a graded commutative ring, we have the following corol-
lary to Theorem 2.13.

COROLLARY 2.16. With the hypotheses and notation of Theorem 2.13,
let S = Klzi,...,2.]/{xqxp for a #b). Then SNN = {0} and hence there
is an embedding of S into HH*(A)/N.

3. (D, A)-stacked algebras. In this section we determine the quotient
HH*(A)/N for all (D, A)-stacked monomial algebras A when char K # 2,
showing that the subalgebra of Corollary 2.16 is isomorphic to the ring
HH*(A)/N. This class includes all Koszul monomial algebras. Moreover, we
show that HH*(A)/N is a finitely generated K-algebra of Krull dimension
at most 1, giving an affirmative answer to the conjecture of [11] for these
algebras.

DEFINITION 3.1. Let A = KQ/I be a finite-dimensional monomial alge-
bra, where I is an admissible ideal with minimal set of generators po. Then
A is said to be a (D, A)-stacked monomial algebra if there is some D > 2
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and A > 1 such that, for all n > 2 and R"™ € R"™,
oR 5D if n is even,
(B") = {”T‘lDJrA if 7 is odd.
In particular all relations in ¢ are of length D.

REMARK. By [5], a monomial algebra A is (D, A)-stacked if and only if
0 = R? has the following properties:

(1) every path in p is of length D;

(2) if R3 € R? properly overlaps R? € R? with overlap R3u then ¢(u)
> A and there exists Rg € R? which properly overlaps R% with
overlap R?u/, ¢(u') = A and v’ is a prefix of u.

For D > 2, A > 1 with A dividing D we now give an algebra A which is
a (D, A)-stacked monomial algebra. We denote the global dimension of an
algebra A by gldim A.

ExAMPLE 3.2. Let D > 2, A > 1 with D = dA for some d > 2.
Let Q be the oriented cycle with D vertices vg,v1,...,vp_1 and D arrows
ag, a1, ...,ap—1 with o(a;) = v; for all 7. Let I be the ideal

(g apa41---ap_10g---opa—1: 0 <k <d—1).

Then A = KQ/I is a (D, A)-stacked monomial algebra of infinite global
dimension.

In Proposition 3.3 we will show that if A is a (D, A)-stacked monomial
algebra with gldim A > 4 then necessarily A divides D.

Let v denote the Jacobson radical of a finite-dimensional algebra A. The
Ext algebra E(A) of A is defined by

E(A) = Ext}(A/r, AJv) = @) Extiy(A/r, A/r).

>0

REMARK. (1) From [7], the (D, A)-stacked monomial algebras are pre-
cisely the monomial algebras for which every projective module in the mini-
mal projective resolution of A/t over A is generated in a single degree and for
which the Ext algebra of A is finitely generated as a K-algebra. Moreover,
from [7], E(A) is generated in degrees 0, 1, 2 and 3.

(2) The (2,1)-stacked monomial algebras are precisely the quadratic
monomial algebras, or equivalently, the Koszul monomial algebras. In this
case, E(A) is generated in degrees 0 and 1.

(3) The (D,1)-stacked monomial algebras for D > 2 are also known
as D-Koszul monomial algebras (]2, 6]). In this case, E(A) is generated in
degrees 0, 1 and 2.
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(4) The algebra defined in Example 2.11 is a (6, 2)-stacked monomial
algebra and, using [10], one may check that F(A) is generated in degrees 0,
1, 2 and 3, but not in degrees 0, 1 and 2.

We now give some properties of these algebras.
PROPOSITION 3.3. Let A be a (D, A)-stacked monomial algebra. Then

(1) for n > 2, each path in R*" can be written as RIR3--- R2 with
R? € o;

(2) if gldim A > 3 then D > A;

(3) if gldim A > 4 then D = dA for some d > 2.

Proof. (1) The proof is by induction on n. The result is clear when n = 1.
Assume true for n — 1 and consider a path R?" € R?". Write R?" = R g
and R?"~! = R?2¢ for some paths ¢,¢’, so that R?* = R**“2¢'q. By
induction, R?"~2 = R?... R?2_| with R? € p. We know that ((R?"72) =
(n — 1)D and ¢(R*) = nD so that ¢(¢'q) = D. Suppose that R?" is the
overlap formed from R2 € R? maximally overlapping R?"~!. Then R2 is
a suffix of ¢/q. Since R2 has length D it follows that R?2 = ¢/q and so
R* =R?...R2_ | R2, and the proof is complete.

(2) Suppose gldimA > 3. Then R?® # ) so there is some R3 € R3,
and ¢(R3) = D + A. The element R3 is constructed from an element of R?
maximally overlapping an element of R?, and both these elements have
length D. Hence D + A < 2D so that A < D.

(3) Suppose gldim A > 4. Then there is some R* € R*%. From (1) we may
write R* = R%R% with R%,R% € o and suppose R3 is the relation which
maximally overlaps R%; we illustrate R* with the following diagram:

The path R% € R? overlaps R% € R? with overlap of length 2D — A. Then
there is some relation, Rg say, which maximally overlaps R3 with overlap of
length D + A. The paths R%, R% and R% are placed as follows:

By maximality, D+ A < 2D — A. If R} = fig then D = 2A and we are done.
So suppose R% #* Eg and D > 2A.

Now the path R2 € R? overlaps Eg € R? with overlap of length 2D —2A.
Then there is some relation, ]:’;2 say, which maximally overlaps ]A?:g with
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overlap of length D + A. By maximality, D4+ A < 2D —2A. If R% = Ei then
D = 3A and we are done. So suppose R3 # }NEE and D > 3A.

Continuing in this way, at the (d—1)-st stage we get D+A < 2D—(d—1)A
and so D > dA. This process must terminate eventually with equality and
hence D = dA for some d > 2. n

With the notation of Proposition 3.3, if R?" € R?" is written as R% - R2
then we say that R? is the first relation in R?", and that R2 is the last
relation in R?".

We now prove our main theorem, and include in our hypotheses the re-
quirement that gldim A > 4. Note that if gldim A is finite then HH*(A) /N 2
K and there are no closed paths C or A-trails T which satisfy the hypotheses
of Theorem 3.4.

THEOREM 3.4. Let A = KQ/I be a finite-dimensional (D, A)-stacked
monomial algebra, where I is an admissible ideal with minimal set of gen-
erators . Suppose char K # 2 and gldim A > 4.

Let Cq,...,Cy be all the closed paths in the quiver Q at the vertices
V1, . .., Uy respectively, such that for each C; with 1 < i < u, we have C; # p;’
for any path p; with r; > 2, Cid € o whered = D /A, and there are no overlaps
of C& with any relation in o\ {C%}.

Let Tyi1,..., T, be all the distinct closed A-trails in the quiver Q such
that for each T; with w4+ 1 <1 < r, the set o, of paths of length D which
are associated to the trail T; is contained in o but, if T; = o0+ Qim;—1,
then no path o, ; of length A has overlaps with any relation in o\ or;.

Then

HH*(A)/N = K(x1, ...,z /{xqzp for a # b)
where

(a) for j = 1,...,u, the vertices v1,...,v, are distinct, and the ele-
ment x; corresponding to the closed path Cj is in degree 2 and is
represented by the map P> — A where, for R? € R?,

; 2 _ nd
0(R2)®t(R2)'—>{vj if R —.ij
0 otherwise,

(b) forj=u+1,...,7r, let Tjp,...,Tjm,—1 denote the complete set of
A-trails on the closed path T;j. Then the element x; corresponding to
the closed A-trail T; is, in the above notation, in degree 2u1; where
pj = mj/ged(d, m;) and is represented by the map P21 — A where,
for R2Hi € R4,

o(Tjk) of R =T, J/ggcd(d,mj)

o(R*7) @ Y(RM7) fork=0,...,m;—1,

0 otherwise.
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Proof. Consider Theorem 2.13 and its notation. We begin by showing
that s = d and each A; = A and L; = d.

Let C be a closed path in the quiver Q at the vertex v such that C' # p”
for any path p with r > 2, C*® € g for some s > 2 and there are no overlaps
of C* with any relation in ¢\ {C*}. Then, from the proof of Proposition 2.5,
C® € R? and C**! € R3. Hence ¢(C®) = D and £(C*™!) = D + A. Thus
¢(C) = A and hence As = D. Thus s = d.

In the notation of Theorem 2.13, let T; be an A;-trail with o7, containing
paths of length A;L;. Since all paths in o are necessarily of length D, we
have A;L; = D. Now, from the proof of Proposition 2.9, we have W; € R?
and Wiap € R3 with ap) a path of length A;. Since A is (D, A)-stacked,
we know that £(W;) = D and {(W;a) = D + A. Hence {(ap)) = A and
A; = A. Now we have AL; = D and so L; = d.

Thus, applying Theorem 2.13 and Corollary 2.16, and with the above
notation, we see that K[z1,...,2,]/(xqzp for a # b) is isomorphic to a sub-
algebra of HH*(A)/N.

Since char