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STRONG MIXING MARKOV SEMIGROUPS ON C; ARE MEAGER

BY

WOJCIECH BARTOSZEK and BEATA KUNA (Gdansk)

Abstract. We show that the set of those Markov semigroups on the Schatten class C;
such that in the strong operator topology lim; ... T'(t) = @, where @ is a one-dimensional
projection, form a meager subset of all Markov semigroups.

An important problem in the theory of dynamical (open quantum) sys-
tems is the description of their asymptotic behaviour. Given a class of pos-
sible evolutions (scenario), what is the nature of a generic element of the
class? Of course, in order to describe genericity, first we have to define the
notion itself. In our case it is based on the category theorem of Baire. A set
which is a countable intersection of dense and open sets (called residual) is
commonly recognized as a large object. Generic evolutions are those which
belong to a residual subset. We will use this concept to describe the size
of specific classes of semigroups of positive operators on the Schatten class
1. This space plays a central role in the von Neumann model of quantum
mechanics. It has recently been proved (see [5] and [15]) that for the uni-
form norm topology asymptotically stable semigroups are generic. In this
article we consider related questions from the point of view of the strong
operator topology. It turns out that here the situation is different. Generic
are those semigroups which do not possess an absorbing state (hence are not
stable).

Let (H, (-, -)) be a separable (infinite-dimensional) complex Hilbert space.
As usual the norm is denoted by || - || and the Banach algebra of all bounded
linear operators on (H,|| - ||) is denoted by L£(H). Without confusion the
operator norm in £(H) will also be denoted by || - ||. The paper is devoted
to positive contraction semigroups of linear operators acting on the ordered
Banach space of trace-class operators on H. For all the basic facts the reader
is referred to any standard book on operators on Hilbert spaces (for instance
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[6], [17]-[19] and [23]). Our notation and definitions come from [5]. For the
convenience of the reader we recall some of them.

The compact operators on H are denoted by Cy. They form a (closed)
ideal in L(H). A compact operator X € L(H) is trace-class if for each (or
some; see [19] for the details) orthonormal basis ej,eg,... € H we have
> i21(|X]ej, ej) < oo. The trace is defined as 3 72 (Xej, e;) and it is de-
noted by tr(X). Then the functional

X = tr(|X]) = [ X]h

defines a norm (stronger than the operator norm; see [18], [19]). The trace-
class operators form a two-sided ideal in L(H), called the Schatten class 1
(see [17]-[19] and [23]) and denoted by C;. The trace norm is complete on
Cy. It may be easily verified that because H is not finite-dimensional, C; is
not closed in the operator norm in £(H). It is well known (see [19]) that by
means of the dual operation (A, X) = tr(X A), where A € Cy and X € Cy,
the adjoint space to (Cp, || - ||) may be identified with (Cy,|| - ||1). Further,
the dual space to (Cy, || - ||l1) is (L(H), || - ||) (denoted in this context by Coo)
with the dual operation (X, B) = tr(BX), where B € Cs and X € C;. In
particular, C; is not reflexive. The space C; is commonly recognized as the
noncommutative counterpart of the ¢! space (however, it should be pointed
out that C; is neither a Riesz space nor a space with the Schur property).
Since the operators of finite rank are norm dense in C; and the Hilbert space
H is separable (by our assumption), C; is also separable. The norm || -||; has
the following additivity property (sometimes called (AL) condition when we
deal with Banach lattices):

Vxixee, (X1, Xe > 0= || X1+ Xoflr = [ X1l + (| Xz2]l1)-

A noncommutative analog of the /P space, called the Schatten class C,,
also exists but it is not used in this paper.

DEFINITION 1. A positive operator X from C; is called a state if tr(X)
= 1. The set of all states is denoted by S.

It is easy to verify that S is a convex and closed subset of C; for the weak
topology (hence for both operator and trace norms). By direct inspection it
can be shown that it is not closed for the weak* topology (dimH = 00).

DEFINITION 2. A bounded linear operator P : C; — (Cp is said to be
positive if P(C14) C Cy4. A positive operator P is called Markov (markovian)
if for every X € C;, we have |P(X)|1 = ||X]|1 (equivalently P(S) C S).
The set of all markovian operators on C; is denoted by S.

It may be calculated directly from the above definition that the hermi-
tian part Cy g of C; is invariant for Markov operators T' and that T'[¢ . is
a contraction. The asymptotic properties of positive contractions (Markov
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operators) and one-parameter semigroups on C*-algebras or von Neumann
algebras have recently been intensively studied (see [2], [11], [12] and [22]).
The present paper is devoted to the Baire properties of one-parameter marko-
vian semigroups acting on C;. We are motivated by the papers [3], [4], [7],
[8], [13], [14] and [16], where the authors discuss similar questions for marko-
vian semigroups acting on L'(p). Let us emphasize that in [20] R. Rudnicki
showed more generally that convergence of powers a” is a generic property
(for the norm topology) in a wide class of (natural) closed and convex sub-
sets A/ of Banach algebras. Roughly speaking, the set Nj of those elements
a € N whose iterates a” converge in the norm contains a norm dense G. The
residuality of asymptotically stable multiplicative functions T : [0,00) — N
was obtained in [20] as well. Here we study the Baire properties from the
point of view of the strong operator topology. Let us begin with:

DEFINITION 3. We say that a family of Markov operators T3 : C; — Cq,
indexed by ¢ € [0,00), forms a one-parameter continuous semigroup ¥ if:

(1) Ty = Id, the identity operator,
(2) for all t,s > 0 we have Ty1 s =Ty o Ts (=T 0Ty),
(3) for each X € C; we have lim, o+ ||T3(X) — X |1 = 0.

The family of all Markov semigroups ¥ on C; is denoted by 9.

There are several natural topologies used in studying the geometry of
the set 9 (and its subsets). First of all we have the uniform topology inher-
ited from the operator norm topology on the Banach space £(C1,C;) of all
bounded linear operators on C;. Namely the metric

o0

iy = 32 L Sseen I Tle s =il
’ 2m 1 4+ SUPp<t<m T3 rcl,H - U [CLH |

m=1

(used in [15]) and an equivalent one,
o0 1 '
o(%, ) = Z ST ozlfm ITile, ,y — Utle, |l (if we are confined to 1)
m=1 ==

introduce on M a complete metric structure (again the norm in £(Cy,Cy) is
denoted simply by || -||). The Baire properties of 9t for this metric have been
studied in [15]. We recall that a semigroup T € 9 is said to be (uniform)
mizing if there exists a state X, € S such that lim; . |73 —Qx. | = 0, where
Qx,.(X) = tr(X)X.. It has been proved in [15] (see also [5] and [20]) that the
set My of all uniform mixing semigroups is a g-open and dense subset of 1.
If we additionally require that the limit projection is on a strictly positive
state (i.e. (X.x,z) > 0 for all x # 0) or equivalently that X, is one-to-one
then we get a set 91y  which is a dense G for p. In this paper we discuss
the mixing property for the so-called strong operator topology.
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DEFINITION 4. Given a || - ||;-dense sequence X1, Xo,... in S we define
on M the metric
— 1
os(T,U) = Z om+i+2 SUP 1T (X0) — Ue(X0) 1
= 0<t<m
=1

Clearly (90, 05) is a Polish metric space (i.e. complete, separable) and p is
stronger than gg (simply os(F, ) < o(F,4)). Of course the topology defined
by os on 9t does not depend on the specific family of states X7, Xo,... and
it is the strong operator topology.

DEFINITION 5. We say that a Markov semigroup ¥ is almost mizing for
the strong operator topology if for each pair of states X,Y € S we have

lim ||T3(X) — T3(Y)|[1 = 0.
t—o0
The set of all such semigroups is denoted by IMams.

It well known (see [1, p. 59]) that semigroups of endomorphisms 7; =
oy acting on a von Neumann algebra M are almost mixing if and only if
Ni>o@t(M) = C -1 and in this case they are called pure. For classical
contraction semigroups pure Markov operators are sometimes called ezact
(corresponding results for contraction semigroups on general Banach spaces
were obtained much earlier by Y. Derriennic in [9]). We continue by showing

THEOREM 1. Mg is a dense Gg subset of M for the metric ps.

Proof. Tt follows from [15, Theorem 1] that 9,5 is ps-dense in M. Since
all states belong to Cy g, it follows that T € M, if and only if

VieN Vimen Ven Fe>nv | Te(Xk) — Te(Xom) |1 < 1/j

(we recall that T} are contractions on Cq ). It remains to observe that the
sets

{Tem: ||Tu(Xk) - Ty(Xm)h <1/5}
are ps-open. m
As in [5], we introduce

DEFINITION 6. A semigroup ¥ € 9 is called strong mizing if there exists
a state X, € S such that for every X € S,

lim ||T3(X) — X.|j1 = 0.
t—o0
The set of all strong mixing Markov semigroups is denoted by 9.

We notice that X, is invariant for all 7} (in [1] the invariant X, are called
absorbing). Clearly a pure semigroup of endomorphisms «; = T} possessing
an absorbing state is exactly strong mixing (see [1, p. 61]).
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In what follows we will show that the strong mixing semigroups are mea-
ger in 9. For this we consider the set

f)ﬁ(),w* = {‘Z eM: vZeCo thm tI‘(Tt(X)Z) = O}.
LEMMA 1. Mg = is os-dense in IN.

Proof. It follows from the classical theory of one-parameter semigroups
that for each X € C; we have

T,(X) = lim T (X),

h—0t

M (X) = et4n (X —t/hz t/h E(X) and Ay = 2h - d,

The above convergence is uniform on compact subsets of Ry (see [10]

for all details). We denote by T = {Tt(h) : t > 0} the (Markov) semigroup
with generator Ajp. Given € > 0 and M > logy(16/¢) we fix h > 0 such that

supg<s<ar [Tt — Tt(h) | <e/8. In particular,

1 €

hy < oS4 - 5

0s(F, %) < o(%,T") < 8+2M <7
We find K > 1 such that Y32 ., (t/h)F/k! < £/16 for all t € [0, M]. It
follows from Lemma 3.3 in [5] that for a finite family of states Xi,..., Xy,

where L > log,(8/¢) is fixed, there exists a Markov operator 7" such that
sup{|7%(X) ~ THX)h 1 <1< L 1< k< K} <e/8

and limy_, tr(ZTk (X)) = 0 for any state X € S and any compact operator

Z € Cy. Let ¥ be the Markov semigroup defined by the generator (7' — Id) /h.
For all 0 <t < M and 1 <[ < L we obtain

10— 10001 = e 50 I e ) - g x)
k=0 ) 1
K oo k
o W e ()2
2N 2 T
€ = (t/R)F e e €
SET 2 TSRt

It follows that

oo
h € Z 1 Z 1 e 1 1
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Now,
= h h & € € 1 1
0s(%, %) < 0u(T,F) + 05T T) < gt gp <&
It remains to show that ¥ € Mo,w=- For this let Z € Cy, X € C; be arbitrary.
Since the Poisson convolution semigroup of measures

,Ut(k') — —t/h (t/h

k!
tends weakly to oo as t — oo, we obtain

lim tr(Z74(X)) = lim tr( —t/hz t/h ))

t—o0 t—o00

= lim e —t/hz _ tr(ZT*(X)) =0. u

Define
Minv = {{Z S m : EXES Vt€R+ E(X) = X},
Mo w+ ={T €M : Vien Vzee, Vxes Ynen Fisn tr(ZTH(X)) < 1/1}.
Finite intersections of the sets U, z x+ = {T : tr(ZT3(X)) < e} C M,
where ¢ > 0, Z € Cyp, X € C1, and t > 0, form a base of the so-called weak*
operator topology (w*.0.t.) on 9. Of course w*.o.t. is weaker than the metric
topology generated by gs. Since the Banach spaces Cy, C; are separable, we

may choose countable dense sequences Z1, Zs,... € Cy and X1, Xs,... € S.
It follows that

[ e olENe Ol e o]

Mo = (V1) () ULT: (ZT(x5) < 1/}

I=1i=1j=1n=1t>n
is a w*.0.t. G5 subset of M. Applying Lemma 1 we obtain

THEOREM 2. ﬁ(},w* s a ps-dense and w*.o.t. Gy subset of IMN.
It is not hard to notice that 9, € My = (ﬁoﬁw*)c. Hence Theorem 2
implies

COROLLARY 1. In the strong operator topology (i.e. for the metric og)
the set Muys is a meager subset of M.
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