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ON SOME REPRESENTATIONS OF ALMOST EVERYWHERE
CONTINUOUS FUNCTIONS ON R™

BY

EWA STRONSKA (Bydgoszcz)

Abstract. It is proved that the following conditions are equivalent: (a) f is an almost
everywhere continuous function on R™; (b) f = g + h, where g, h are strongly quasicon-
tinuous on R™; (c) f = ¢+ gh, where ¢ € R and g, h are strongly quasicontinuous on R™.

Let \* (resp. A) denote the outer Lebesgue measure (resp. the Lebesgue
measure) on R™. For each n € N (the positive integers) and for each sequence

(k1,...,km) of integers let
[k:m -1 km>
X ,— .
2n AL

. k-1 ky
Py = [ on ’2_71) X
Po=A{PP 4 ki km €2} and P =P

Moreover, let

Observe that:
(1) if (k:l,...,k ) # (ll,...,l ) then PI?l,m,km mPﬁ = 0:

(2) R™ = Uy, komez oo
(3) if ng > ng then for each sequence (ki,...,ky) of integers there is a
unique sequence (lq, ..., l;) of integers such that Plgl,...,k Pﬁ? o

(4) for each x € R™ and each n € N there is a unique integer sequence

(k1(x), ..., km(x)) such that x € B 0 o (x) = P"(x).
For A C R™ and x € R™ denote by
A (AN P (x)) (AN P (x))

dy(A,x) =limsup —————=, d;(4,x) = liminf ————*
( n—oo A(P™(x)) ( ) n—o0 A(P™(x))

the upper and lower density of A C R at x (cf. [2]).

A point x € R™ is called a density point of a set A C R™ if there exists
a A\-measurable set B C A such that d;(B,x) = 1. The family

7, ={A CR™; Ais A\-measurable and d;(A4,x) =1 for x € A}
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is a topology called the density topology (with respect to P) (see [4, 5, 13, 14]
for the definitions of the density topologies with respect to other differen-
tiation bases). The topology 7; introduced above with respect to a fixed
sequence of binary nets of half-open cubes is stronger than the ordinary
density topology ([13]) with respect to arbitrary cubes containing a given
point.

A function f : R™ — R is said to be strongly quasi-continuous (for short,
s.q.c.) at a point x if for every set A € 7; containing x and for every € > 0
there is an open set U such that U N A # () and |f(t) — f(x)| < & for all
te ANU (cf. [7]).

REMARK 1. In the case m = 1 the notion of strong quasicontinuity for
functions f : R — R introduced in [7] by Grande with respect to the bilateral
density is more general than that above. For example, the function

f(x):{o for x <0,

1 for x >0,
is s.q.c. at 0 in the sense of Grande, but it is not s.q.c. at 0 in the above
sense.
Evidently, if f : R — R is s.q.c. at = in the above sense then it is s.q.c.
at z in the sense of Grande.

Observe that if for x € R™ there is an open set U C R™ such that
du(U,x) > 0 and the restriction f|i(x} is continuous at x then f is s.q.c.
at x.

Moreover, by an elementary proof, we obtain:

REMARK 2. If functions f, : R™ - R, n=1,2,..., are s.q.c. at a point
x and (fy,) uniformly converges to a function f then f is also s.q.c. at x.

It is known [8] that every s.q.c. function f : R™ — R is almost every-
where continuous. So, the sum and product of two s.q.c. functions are almost
everywhere continuous. We will prove the following:

THEOREM 1. If a function f : R™ — R is almost everywhere continuous
then there are two s.q.c. functions g, h : R™ — R such that f = g+ h.

Proof. Let cl denote closure and

B ={y € R; Acl(f(y))) > 0}.

Since f is almost everywhere continuous, the set B is countable. Without
loss of generality we can assume that 0 € B, because otherwise we can fix a
real a ¢ B and consider the function f — a.

Let L(B) be the linear span of the set B over the rationals. Since L(B)
is countable, there is a positive number ¢ € R\ L(B). Fix k € Z and n € N.
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If

then we define ( )

k—1)c
Observe that every function f,, n € N, is almost everywhere continuous and
the set D(f,) of its discontinuity points is closed and of A-measure zero.
Moreover, D(f,) C D(fn+1) for n € N.

STEP 1. Observe that D(f;) is closed and of A-measure zero. For each
x € D(f1) there is a unique cube P!(x) € P; such that x € P!(x). Observe
that diam(P!(x)) < m/2. For the cube P!(x) there is a finite family of cubes

Qrix - Qi(1,1x),1x EP

whose closures are pairwise disjoint and contained in int(P!(x))\ D(f1) (int
denotes interior) and such that

(UZ(l Qz,l,x) 1
A(P(x)) 2
Moreover, we assume that if P'(x) = P(y) for some x,y € D(f1), then
i(1,1,x) =i(1,1,y) and Q1 x = Qi 1,y for i <i(1,1,x). Let

U U Qi,l,x-

x€D(f1) i<i(1,1,%)

Observe that
(Sl \D fl U U Qz,l,x
xeD(f1)i<i(1,1,x)

and the family {Q;1x; ¢ < i(1,1,x) and x € D(f1)} is P-locally finite, i.e.
for each y € R™ there is an [ € N such that the family of triples (i, 1, x)
with x € D(f1) and Q;1x N P! (y) # 0 is finite.

Now, for each x € D(f1) we find the first positive integer n(1,2,x) such
that diam(P™12%)(x)) < 1/2 and

x € P12 (x) ¢ Pl(x) \ cl(S}).
There is then a finite family of cubes
Ql,n(l,Z,X),Xa SRR Qi(l,n(l,2,x),x),n(1,2,x),x eP

whose closures are pairwise disjoint and contained in int(P™1:2%)(x))\ D(f;)
and such that
1,n(1,2
A(Uz( 1n( %)) Qi,n(l,Q,x),x) 1

1——.
)\(Pn(l,2,x) (X)) > 22
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Moreover, assume that if n(1,2,x) = n(1,2,y) for some x,y € D(f;), then

i(l,n(l,Q,X),X) = i(lvn(vavy)aY) and Qi,n(1,2,x),x = Qi,n(1,2,y),y for i <
i(1,n(1,2,x),x). Let

521 = U U Qi,n(1,2,x),x

€D(f1)1<i(1,n(1,2,x),x)
Observe that
01(521) \ D(fl) - U U Cl(Qi,n(l,Q,x),x)
x€D(f1)i<i(1,n(1,2,x),x)
< i(1,n(1,2,x),x) and x € D(f1)} is P-

and the family {Q;(12.x)x; ¢
locally finite.

For j > 2, we proceed analogously and for each x € D(f;) we find the
first positive integer n(1, 7, x) such that diam(P™17*)(x)) < 1/2/~! and

x € P"iX) (x) ¢ PP (x) \ cl(S) ).
There is then a finite family of cubes

an(l,]x xv"'sz 1,n(1,5,%x),x), (,]x)xep

whose closures are pairwise disjoint and contained in int(P™1%)(x))\ D(f;)
and such that

MU Qi) | L
A(P(1i%) (x)) 2

Moreover, assume that if n(1, j,x) = n(1, j,y) for some x,y € D(f1), then

i(l,n(l,j,x),x) - Z‘<17n<17j7y>7}’) and an 1,j,x),x an 1,5,y), fOI‘ i <
i(1,n(1,j,x),x). Let

Sjl _ U U Qin(1,j,x)x

XGD(fl) igi(l,n(l,j,x),x)

Then

ASH\D(f) = | U d@inaixx)

x€D(f1)i<i(1,n(1,5,%),x)

and the family {Q; (1) x; < i(1,n(1, j,x),x) and x € D(f1)} is P-locally

finite.
Let N, | € Z, be pairwise disjoint infinite sets of positive integers such

that
N:UM

Observe that for each integer [ and for each x € D(f1),

du( U int(S}),x) =1.

JEN

’.]’
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Let
ke/2 if x € S, j € Nay,
91(x) =
fi(x) elsewhere on R™,
and let
hi(x) = fi(x) —g1(x), xe€R™.

Observe that f; = g1 + h1. Moreover, for each x € R™,

(%) du(int(g; ' (91(x))), %) =1, du(int(h; ' (h1(x))),x) = 1.
Indeed, if x € D(f1) and f1(x) = (k — 1)c/2 then for each j € Noi_1 there
is a cube P"19%¥) (x) 5 x. But
A(SHn prli®)(x)) L2
- >1——=
A(PP(L3) (x)) 2
and g1(x) = f1(x), so dy(int(g~ ((k — 1)c/2)),x) = 1.

Ifxe S']1 for some j € N, then from the construction of g; it follows that
dy(int((91) "' (91(x))), x) = 1.

If x € R™\ (D(f1) U, 5]1) then d,((g1)"!(g1(x))),x) = 1, since f; is
continuous at x.

If x € D(f1) then hi(x) = 0. Since Uz Ujen,,_, S; € (h1)7(0), we
have d,(hy ' (hi(x))),x) = 1.

If x ¢ D(f1) then d,(int(h;*(h1(x))),x) = 1, since hy is the differ-
ence of the function f; continuous at x and the function ¢; such that
dy(int(g; (91(x))),x) = 1 for each x € R™.

From (%) it follows that g; and hy are s.q.c.

STEP n (n > 2). For aset A C R™ and n > 0 let
O(A,m) = | B(x,n), where B(x,n) = {t € R™; |t —x| < n}.
x€A

Assume that there are two functions g,_1,hn—1 : R™ — R such that:

L4 fn—l = gn—1 + hn—l;

® g 1(R™)Uhy,_1(R™) C {ke/2" Y k € Z};

e for each x € R™,

dy(int(g, 1 (gn-1(x))),x) =1, du(int(h, ) (hn-1(x))),x) = 1.
For k € Z let
Gk = gpt1(ke/2") N D(fn),  Hup = hy2y(ke/2") N D(fn).

(1) If Gy, —9n # 0 then as in the first step, for each x € G, _2n we find
the first positive integer r(n,1,—2" %) such that x € P"(mL=2"X)(x)
O(Gp,—27,1/2™) and
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AP (x) N gty (=) 1
NP2 (x)) -5
Moreover, if x € D(f,,) \ D(fn_1) then PTL=2"X)(x) N D(f,,_1) = 0.
There is a finite family of cubes
Ql,r(n,l,—Q”,x),xv QQ,T(n,l,—Q”,x),xv SRR Qi(1,T(n,1,—2",x),x),r(n,l,—Z”,x),x eP
whose closures are pairwise disjoint and contained in
(int(P" L") (x)) N g,y (=€) \ D(f)
and such that
i 17 ’17_2117 5
MU 202929 Q1 ang ) 1

> —.
)\(Pr(n,l,—2",x) (X)) 2
Moreover, we assume that if y € P"L=2"%) for some x,y € Gp,—on
then i(l,r(n,l,—2",x),x) = i(lar(n717_2n7Y)7y) and Qi,r(n,l,—2",x),x
Qir(n,1,—2ny)y for i <i(1,7(n,1,-2",x),x). Let

n,—2"
Sl - U U Qi,r(n,l,—Q”,x),x-

xeGn,—Zn igi(l,r(n,l,—Z",x),x)

Observe that
CI(S{H—Q") \ Gn,—2" = U U Cl(Qi,r(n,l,—2”,x),x)
xeGn,—Qn igi(l,r(n,l,fQ”,x),x)

and the family {Q; ;(n1,—2n x)x; @ < i(1,7(n, 1, =2",%x),%x) and x € Gy, _9n}
is P-locally finite.

If Gj,,—9n» = 0 then we put S?,—zn = 0.

Next, fix k € (—2", 2"]. If Gy, 1, # 0 then for each x € G, ;; we find the
first positive integer r(n, 1, k, x) such that

x € PR (x) € O(Grp, 1/2M\ | (ST,

_on<i<k
AP0 0) 0.6, e/2) 1
)\(P'r(n,l,k,x) (X)) 2

and moreover, if x € D(f,) \ D(fn_1) then P"1EX) (x) 0 D(f,_1) = 0.
There is a finite family of cubes
Ql,r(n,l,kz,x),xv QQ,r(n,l,k,x),X) sy Qi(l,r(n,l,k,x),x),r(n,l,k,x),x eP
whose closures are pairwise disjoint and contained in
(int(P"0" M99 (x)) 1 gL (ke/2™) \ D(f)
and such that " i
)\(UZ(:iT(n’L ) %) Qi,r(n,l,k,x),x) > 1
)\(Pr(n,l,k’,x) (X)) 2’
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Moreover, we assume that if y € P’"("’l’k’x)(x) for some x,y € G, then

i(l,r(n,l,k‘,x),x) = i(l’r(n’l’kaY)aY) and Qi,r(n,l,k,x),x = Qi,r(n,l,k,y),y
for i <i(1,r(n,1,k,x),x). Let

k
5?7 = U U Qi,r(n,l,k,x),x
X€Gn & i<i(1,r(n,1,k,x),x)
and observe that
&
CI(SIL ) \ Gn,k = U U Cl(Qi,r(n,l,k,x),x)'
x€Gp k 1<i(1,r(n,1,k,x),x)
Also observe that the family {Q; ,n,1k,x),x; @ < i(1,7(n,1,k,x),x) and x €
Gp i} is P-locally finite.
If G, 1, = 0 then we put S?’k = (). Now, let
st= |J st
—on< <N
(1') Analogously, if H,, , # 0 for k € [-2", 2"] then as in (1) for the sets
H,, ;. we construct sets K?k and
Kr= |J K
—on<<on
which are counterparts of S?’k and ST constructed in (1) for the sets Gy, 1,
contained in the complement of ST and having analogous properties.
(2) For j > 2 and k € [-2"T~1 2nHi—1] with G, # () we find families

of cubes Q1,r(n,j k)50 Q2r(nj ) - -5 Qil1r(ngikx) 0.0 (n,jikx)x € P whose
closures are pairwise disjoint and contained in

(int(PT0"9E2) (x)) N g, 1y (ke/2™)) \ D(fn)
and such that

i 17 7‘7k7 b}
MU ™) Qo ) 1
A(Pr(njkx) (x)) 27"
Let
7k J—
sit= U U Qi (o) x
X€G & i<i(1,7(n,j,k,x),%)
Then
&
ASTFN\ Goge = | U d@irmirm-
XeGn,k igi(l,r(n,j,k,x),x)
Also let

Sn = U STk

J J
—ont+i—lLp<ont+i—1

If G, = 0 then we put Sf’k = 0.
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(2') Now, if Hy g # 0 for k € [-2"+=1 27+=1] and j > 2, then for the
sets H,, ; we construct sets ank and

K= U K5

—onti-1<p<onti—1

which are counterparts of S;L’k and S;‘ constructed in (2) for the sets Gy, 1,
contained in the complement of S}’ and having analogous properties.
From the above construction it follows that for every k € Z we have

o du(Ujen, int(S7),x) =1 for each x € Gy,
o dy(Ujen, int(K7),x) =1 for each x € Hy .

Finally, we define gy, hy, : R™ — R as follows:
1) gn(x) = gn-1(x) + ¢/2" for x € S%, J € Noy, k € Z;
2) hn(x) = hyp—1(x) —¢/2" for x € K7, j € Noj_1, k € Z;
3) for x € R™\ Uk‘EZ(UjENgk S;“ U UjeN%_1 KJ”) let
gn(X) = gn-1(x) + (fa(x) = frn-1(x));
4) hp(x) = fn(x) — gn(x) for all x € R™.

As in the first step, we verify that g,, h, are s.q.c. Moreover, observe
that:

e by 1) and 3), for x € R™ \ Uyez U]EN%_1
|9n(%) — gn-1(x)| < /2"
e by 4) (and 2)), for x € K", j € Nox—1, k € Z we have

190 (%) = gn-1(xX)[ = |(fn(x) = hn (X)) — gn-1(x)|

= |(fn(x) = hn-1(x) +¢/2") = gn1(x)]
= |fa(x) = (fa1(x) = gn-1(x)) + ¢/2" — gn—1(x)|
< fa(x) = fam1 ()] + /2" < e/2" 1,

So, |gn — gn-1| < ¢/2"! everywhere on R™. Similarly we can check that

|y — hn—1| < ¢/2"2 everywhere on R™.

The sequences (gp)n and (hy,), uniformly converge to some functions g
and h respectively, which, by Remark 1, are s.q.c. Moreover,

K]” we have

g+ h= lim g, + lim h, = lim (g, + h,) = lim f, = f.
n—oo n—oo n—oo n—oo
This finishes the proof.

REMARK 3. If the function f from Theorem 1 is of Baire class a (o > 0)
then the functions g, h can be found in the same class.
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REMARK 4. From the proof of Theorem 1 it follows immediately that if
U is an open set in R™ and if f : U — R is an almost everywhere continuous
function then there are s.q.c. functions g, h : U — R such that f = g+ h.

REMARK 5. If U C R™ is a nonempty open set and f : U — R is a s.q.c.
function then for each cube P € P the restricted functions f|p and f[gm\p
are also s.q.c. at all points of their domains.

Now we will investigate products of s.q.c. functions.

THEOREM 2. Let f : R™ — R be an almost everywhere continuous func-
tion such that A(cl(f~1(0))\int(f~1(0))) = 0. Then there are s.q.c. functions
g, h such that f =g - h.

Proof. Set A = {x; f(x) > 0}, B = {x; f(x) < 0} and observe that

A(R™\ (int(A) Uint(B) Uint(f~1(0))) = 0.

If int(A) # () and if O is a component of int(A) then x — In(f(x)) for
x € O is an almost everywhere continuous function, and by Theorem 1, there
are s.q.c. functions go, ho : O — R such that In(f(x)) = go(x) + ho(x) for
x € O. Consequently, flo = (e™))|o = e9lo . ehlo is the product of two
s.q.c. functions.

Analogously, if int(B) # 0 and if O’ is a component of int(B) then

—flor is the product of two s.q.c. functions, and consequently, so is flor.
Hence, there are s.q.c. functions g1, h; : (int(A4) U int(B)) — R such that

flint(Ayuine () = 91 - ha.

Now, let

F = {x € cl(int(f~(0))) \ int(f ~*(0)); du(int(f~'(0)),x) > 0}.

As in the proof of Theorem 1, we can prove that there is a P-locally finite
(in int(f~1(0))) family of cubes Q! € P (i,j € N) whose closures cl(Q?) are
pairwise disjoint and contained in int(f~1(0)) and such that:

o if S7 = ;e Q) then cl(S7) = U,y cl(Q));

e the sequence (cl(S7)); converges in the Hausdorff metric to cl(F);

e for each infinite set Ny C N and for each x € F,

du( U Sj,x> > 0.
J€No
Let { Ny} be a family of pairwise disjoint infinite subsets of N such that

o
N= ] N
k=1
and let (wy,), be a one-to-one enumeration of all non-zero rationals.
Since the boundaries Fr(A) and Fr(B) are of A-measure zero, similarly
we can prove that there is a locally finite (in int(A)Uint(B)) family of cubes
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W/ € P whose closures are pairwise disjoint and contained in int(A)Uint(B)
and such that:
o if V/'= Uy W/ then cl(V7) = ;e cl(W7);
e (cl(V7)); converges to cl((Fr(A) UFr(B))\ F) in the Hausdorff metric;
e for each infinite set Ny C N and for each x € (Fr(A) UFr(B)) \ F,

du<jgvoV],x> > 0.

Since gy is almost everywhere continuous on its domain, in each cube W}/
we can find a finite family of cubes

J J
Ui,l""vU'

ik(ig) €P

whose closures are pairwise disjoint and contained in int(WZ-j ) and such that
for every cube U, there is a positive real r (i, j, k) such that:

o [g1(x)| > (i, j, k) for x € cl(U},), i,5 € N and k < k(i, 5);
aw?,) 91 <r(i,j,k)/jw; for i,l €N, j € Ny;, k < k(i,7);
o for each x € (Fr(A) UFr(B)) \ F and for each infinite set Ny C N,

du( Jgu U Uﬂkx) :du< U Vj,x) > 0.

JENy ieN kgk(l,]) JENy

® OSC

Fix a point X‘gk in each cube int(Uijk), i, €N, k <Ek(,j). Put

( Wy ifxeS", ne Ny, keEN,
0 ifxES",nGNgk,Ll, k eN,
0 elsewhere on f~1(0),
900 = 90 e e e N n e Ny, k < k(isn),
gl(xi,k) ’
g1(x) elsewhere on int(A) U int(B),
L f(x) if x € R™\ (int(A4) Uint(B) U f~1(0)),

and
0 ifxeS", ne Ny, keEN,
ifxeS" ne Ny_11, k€N,
0 elsewhere on f~1(0),

h(x) = { m(x)gi(x}
(x) M ifx €U, i €N, n€ Nji, k<k(i,n),

hi(x) elsewhere on int(A) U int(B),
1 if x € R™\ (int(A4) Uint(B) U f~1(0)).
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Since g(U) C (w; —1/j,w;+1/j) foralli,j € N, n € Nj1, k < k(i,n),
and for each infinite set Nog C N we have
du( U Ul x) >0
JENo
for each
x € H =R™\ (int(A) Uint(B) Uint(f~1(0)) U F),

the function g is s.q.c. at every x € H.
Evidently, it is also s.q.c. elsewhere on R™. Analogously, h is s.q.c. Ob-
viously, f = g - h and the proof is complete.

THEOREM 3. If f : R™ — R is an almost everywhere continuous function
then there are a constant ¢ € R and two s.q.c. functions g,h such that f =
c+g-h.

Proof. Let ¢ € R be such that
Ael(f7H(e))) = 0.

Then the function f; = f — c satisfies the assumptions of Theorem 2, and

consequently, there are s.q.c. functions g, h such that fi = g-h. So, f = c+g-h
and the proof is finished.

REMARK 6. If f : R™ — R is the product of a finite family of s.q.c.
functions f;, where 7 < n, then f satisfies the following condition:
(H) if A C c(f~%0))\ f~1(0) is such that d;(f~1(0),x) = 1 for each
x € A then the set A is nowhere dense in f~1(0).

Proof. 1 repeat the proof of Remark 5 from [6]. Let
B ={x; f(x)=0and di(f'(0),x) = 1}.
If B # () and A is not nowhere dense in f~1(0), then there is x € A and a
positive integer i < n such that x is a density point of f;(0). Since f;(x) # 0

and f; is s.q.c. at x, we obtain a contradiction. If B = () then A = () and the
proof is complete.

Let (wp)n be a sequence of all rationals. From the last remark it follows
that the function

1/n  for z1 = wy,
f(zl,...,xm>={ / :

0 elsewhere on R™,
is almost everywhere continuous, but it is not the product of any finite family
of s.q.c. functions.
Each strongly quasicontinuous function is also quasicontinuous in the
sense of Kempisty.
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Recall ([9], [10]) that a function f : R™ — R is quasicontinuous at a point
x € R™ (in the sense of Kempisty) if for each € > 0 and each open set U > x
there is a nonempty open set V' C U such that f(V) C (f(x) —¢, f(x) +¢).

This is a purely topological notion while the notion of almost continuity
is a measure-theoretic one. The sums and products of finitely many quasi-
continuous real functions on R™ are cliquish functions, i.e. are discontinuous
only at points of some first category sets ([10]). In Borsik’s articles [1], [2] it
is proved that each cliquish function f : R”™ — R is the sum of two quasicon-
tinuous functions. The results of the present article have similar corollaries:

COROLLARY 1. Let f : R™ — R be a cliquish function. Then

f=h+/f2 and f=c+[f5-[a,
where ¢ € R is a constant and f1, fo, f3, fi are quasicontinuous functions.
Proof. By [11] and [12] there is a homeomorphism A : R™ — R™ such
that A(h=1(D(f))) = 0. The function ¢(x) = f(h(x)), x € R™, is almost

everywhere continuous. So, by Theorems 1 and 3 there are a constant ¢ € R
and strongly quasicontinuous functions ¢1, g2, ¢3, ¢4 : R”™ — R such that

p=¢1+¢2 and ¢ =c+ @3- P
Observe that for i = 1,2, 3, 4 the functions f; = ¢;oh~! are quasicontinuous,
f=¢oh™ =¢10h +gaohh = fi+ fo
and
f=foh ™ =c+(g3oh™) (psoh™ ') =c+ f3- fa
This finishes the proof.
COROLLARY 2. Let f : R™ — R be a cliquish function such that the

set cl(f71(0)) \ int(f~1(0)) is nowhere dense in R™. Then there are two
quasicontinuous functions f1, fo : R™ — R with f = f1 - fo.

Proof. As in the proof of Corollary 1, by [11] and [12], there is a homeo-
morphism A : R™ — R™ such that A(h~!(cl(f~1(0)) \ int(f~1(0)))) = 0. Let
¢(x) = f(h(x)) for x € R™. Then

Ael(@™1(0)) \ int(¢~(0))) = A(cI(f 0 1) 71(0)) \ int(f o h)"1(0)))

= A((h™H(F7H0) \ int(RH(f71(0))))
= AR (el(f7H(0) \ int(f71(0)))) = 0.
So, by Theorem 2 there are strongly quasicontinuous functions ¢1, ¢o : R™
— R such that ¢ = ¢1 - ¢o. Put f; = ¢p10h and fo = ¢2 0 h and observe that
the functions f; and fy are quasicontinuous and
f=d¢oh=(d10h) (p20h) = f1- fo
This completes the proof.
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