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AN EXTENSION PROPERTY FOR BANACH SPACES
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WALDEN FREEDMAN (Istanbul and Arcata, CA)

Abstract. A Banach space X has property (E) if every operator from X into c0
extends to an operator from X∗∗ into c0; X has property (L) if whenever K ⊆ X is limited
in X∗∗, then K is limited in X; X has property (G) if whenever K ⊆ X is Grothendieck in
X
∗∗, then K is Grothendieck in X. In all of these, we consider X as canonically embedded
in X∗∗. We study these properties in connection with other geometric properties, such as
the Phillips properties, the Gelfand–Phillips and weak Gelfand–Phillips properties, and
the property of being a Grothendieck space.

Introduction. All Banach spaces enjoy the Hahn–Banach property, the
most basic extension property for bounded linear operators between Banach
spaces. At the other extreme, perhaps, is the property of being an injec-
tive space. This paper introduces a new extension/lifting property lying be-
tween these two, called property (E), as well as two related properties, prop-
erty (G) and property (L), all of which are, in some sense, “anti-Phillips”
properties ([6], [16]). We explore these new properties and their relationships
with other geometric properties, such as the property (V*) of Pełczyński,
and the property of being a Grothendieck space. Property (E) is also related
to the C(K)-EP of [18] (or EP of [7]).
A Banach space X has property (E) if every bounded linear operator

from X into c0 extends to a bounded linear operator from X
∗∗ into c0,

where we consider X as canonically embedded in X∗∗. The space X has
property (L) (resp. property (G)) if whenever a subset K ⊆ X is limited
(resp. Grothendieck) in X∗∗, then K is limited (resp. Grothendieck) in X
(the converses are always true). For a closed subspace F ⊆ X, the pair
(F,X) has the c0-extension property (c0-EP) if every operator from F into
c0 extends to an operator from X into c0.
The main results can be summarized as follows.

(a) X has property (E) if and only if there exists a space Z and a
surjective map Q : Z → X∗∗ such that the pair (Q−1(X), Z) has the c0-EP.
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(b) In particular, let Q : ℓ1(Γ ) → X
∗∗ be a surjective map. If Q−1(X)

is separable, then X has property (E).

(c) If X∗∗/X is separable, then X has the hereditary property (E).

(d) If X has property (E), then every operator from X into c0 is uncon-
ditionally converging. (The converse is false.)

(e) X has the Phillips property and property (E) if and only if X is
finite-dimensional.

(f) X has the weak Phillips property and property (E) if and only if X
is a Grothendieck space. In particular, a C∗-algebra has property (E) if and
only if it is a Grothendieck space. A subspace X of K(H) has property (E)
if and only if X is reflexive.

(g) If F ⊆ X is a subspace such that both F andX/F have property (E),
and in addition the pair (F⊥⊥, X∗∗) has the c0-EP, thenX has property (E).

(h) If X has property (E), then X has both properties (L) and (G).

(i) If X has property (V*), then X has the hereditary property (G) (the
converse is false).

(j) If X is a subspace of a space with an unconditional basis, then X
has property (V*) if and only if X has the hereditary property (G).

(k) If ℓ1 6⊆ X
∗, then X has the hereditary properties (G) and (L).

(l) L1-spaces have the hereditary properties (G) and (L).

1. Notation and background. In general, X, Y and Z denote Ba-
nach spaces over C or R, assumed to be infinite-dimensional unless stated
otherwise; we consider X as canonically embedded in X∗∗, but also write
ι : X → X∗∗ for this canonical embedding when convenient; we set p = ι∗.
Viewing X∗ as canonically embedded in X∗∗∗, we can consider p as a pro-
jection. In keeping with other authors, we denote the quotient space X∗∗/X
by H(X). We denote the closed unit ball of X by BX . By “operator”, or
“map”, or “mapping”, we mean a bounded linear operator; by “subspace”,
a closed infinite-dimensional subspace, unless stated otherwise; by “space”,
a Banach space. When F ⊆ X is a subspace of X, we identify the bidual F ∗∗

with the subspace F⊥⊥ ⊆ X∗∗. As usual, “rwc” means “relatively weakly
compact”. We denote the space of all operators from X into Y by B(X,Y ),
and the space of compact operators on a Hilbert space H by K(H).

All measure spaces (Ω,Σ, µ) are assumed to be localizable, i.e., such
that L1(µ)∗ = L∞(µ). The term “L1-space” will mean a space L1(µ) for
some measure µ, and similarly for “L∞-space”. In general, Γ will denote a
nonempty set, possibly uncountable.

For a Banach space property (P), we say X has the hereditary property
(P) if every subspace of X has property (P).

Any other unexplained notation is as found in [2], [3], or [11].
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We now review the definitions of the main properties used in the paper.

(a) Limited subsets. A bounded subset K ⊆ X is a limited subset of X if
for every weak∗-null sequence (fn) in X

∗, 〈x, fn〉 → 0 uniformly for x ∈ K.
Equivalently, every operator T : X → c0 maps K into a relatively compact
subset of c0.

(b) Grothendieck subsets. A bounded subset K ⊆ X is a Grothendieck
subset of X if for every operator T : X → c0, the image T (K) is rwc.

(c) Grothendieck spaces. A space X is a Grothendieck space if every
weak∗-convergent sequence in X∗ is weakly convergent. Two obviously
equivalent properties are that every operator from X into c0 is weakly com-
pact, and that BX is a Grothendieck subset of X.

(d) (V)-sets. A bounded subset K ⊆ X∗ is said to be a (V)-set if for
every wuC series

∑
xn in X, we have

lim
n→∞
〈xn, f〉 = 0 uniformly for f ∈ K.

Equivalently, for every operator S : c0 → X, the set S
∗(K) is a relatively

(weakly) compact subset of ℓ1.

(e) Property (V) and property (V1). A space X has property (V) if every
(V)-set is rwc. Equivalently, for every Banach space Y , every unconditionally
converging operator T : X → Y is weakly compact. A space X has property
(V1) if every unconditionally converging operator T : X → c0 is weakly
compact.

(f) (V*)-sets. A bounded subset B ⊆ X is said to be a (V*)-set if for
every wuC series

∑
fn in X

∗, we have

lim
n→∞
〈fn, x〉 = 0 uniformly for x ∈ B.

Equivalently, every operator fromX into ℓ1 mapsB into a relatively (weakly)
compact set.

(g) Property (V*). A space X has property (V*) if every (V*)-set is
rwc. Equivalently, a bounded subset B of X is rwc if and only if, for every
operator T from X into ℓ1, the image T (B) is relatively (weakly) compact.

(h) The separable complementation property. A space X has the sepa-
rable complementation property (SCP) if every separable subspace of X is
contained in a separable complemented subspace of X. SCP is enjoyed by all
L1-spaces, all weakly compactly generated spaces and their subspaces, and
more generally, all countably determined spaces, and all dual spaces with
the RNP.

(i) The Phillips properties. A space X has the (weak) Phillips property
if the canonical projection p : X∗∗∗ → X∗ is sequentially weak∗-(weak)
norm continuous. These properties are studied extensively in the papers [6]
and [16].
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2. Property (E) and the c0-EP. We recall that a space X has the
(weak) Phillips property if and only if for every operator T : X∗∗ → c0,
the mapping Tι : X → c0, that is, the restriction of T to X, is (weakly)
compact [6]. This fact is the original motivation for the following definition
of property (E), an extension property which is a kind of “anti-Phillips”
property.

2.1. Definition. (a) A space X has property (E) if every operator from
X into c0 extends to an operator from X

∗∗ into c0.

(b) Let F ⊆ X be a subspace of X. The pair (F,X) has the c0-extension
property (c0-EP) if every operator from F into c0 extends to an operator
from X into c0.

We first make some simple observations and related remarks about these
newly defined properties.

(1) Clearly, X has property (E) if and only if the pair (X,X∗∗) has the
c0-EP.

(2) X has the (weak) Phillips property and property (E) if and only if
X is finite-dimensional (a Grothendieck space).

(3) Any Grothendieck space, or any space complemented in its second
dual, has property (E).

(4) If the pair (X,X∗∗) has the C(K)-EP [18], then X has property (E),
although the converse is false: There is a C(K) space which is a Grothendieck
space but is not complemented in its second dual [15].

(5) The collection of spaces with property (E) is a Banach space ideal.
In particular, property (E) passes to complemented subspaces.

(6) [14, Theorem 1.1] implies the following generalization of Sobczyk’s
Theorem: Let X be a space with subspace F . If X/F is separable, then
(F,X) has the c0-EP. We make extensive use of this in what follows.

(7) If X has the SCP and property (E), then every separable subspace
of X has property (E).

(8) In comparison to the C(K)-EP [18], if there exists a sequentially
weak∗-weak∗ continuous “selection” function s : X∗ → X∗∗∗ such that for
every f ∈ X∗ we have p(sf) = f , then X has property (E).

Now since operators from a space X into c0 correspond to weak
∗-null

sequences in X∗, it is easy to see that property (E) can also be considered a
lifting property: X has property (E) if and only if every weak∗-null sequence
in X∗ lifts to a weak∗-null sequence in X∗∗∗, that is, for every weak∗-null
sequence (fn) in X

∗, there exists a weak∗-null sequence (Gn) in X
∗∗∗ such

that pGn = fn for all n. We give a number of additional characterizations
of property (E) as the first result.
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2.2. Theorem. The following are equivalent :

(a) X has property (E).

(b) Weak∗-null sequences in X∗ lift to weak∗-null sequences in X∗∗∗.

(c) For every T : X → c0, there exists an operator U : H(X)→ ℓ∞ such
that T ∗∗ − Uπ : X∗∗ → c0 ⊆ ℓ∞, where π : X

∗∗ → H(X) is the canonical
quotient map.

(d) For every T : X → c0, there exists a space Y with property (E) such
that T factors through Y .

(e) For every space Z and any T : X → Z, there exists a space Y with
property (E) such that T factors through Y .

(f) There exists a space Y with property (E) such that X ⊆ Y and the
pair (X,Y ) has the c0-EP.

(g) There exists a space Y with property (E) such that X ⊆ Y and Y/X
is separable.

(h) There exists a space Z and a surjective map Q : Z → X∗∗ such that
the pair (Q−1(X), Z) has the c0-EP.

(i) There exists a space Y with property (E) and a surjective map
Q : Y ∗∗ → X∗∗ such that Q−1(X) = Y .

Proof. The equivalence of (a), (b), and (c) is easy to see, as are the
implications (a)⇒(e)⇒(d) and (a)⇒(f)⇒(d). We show that (d)⇒(a). Let
T : X → c0, and choose Y with property (E) such that T factors through Y .
Let R : X → Y and S : Y → c0 be such that T = SR. Let Q : Y

∗∗ → c0 be
an extension of S. The mapping QR∗∗ : X∗∗ → c0 is then easily seen to be
an extension of T . The implication (a)⇒(g) is trivial, and the implication
(g)⇒(f) holds by [14, Theorem 1.1], so (a)–(g) are all equivalent.

Since the implications (a)⇒(i)⇒(h) are obvious, to complete the proof,
it suffices to show that (h)⇒(a). Here, we use an idea from the proof of
[7, Prop. 1.1]: Let T : X → c0, and let J : Q

−1(X) →֒ Z be the inclusion
mapping. By hypothesis, the operator TQJ : Q−1(X) → c0 extends to
an operator S : Z → c0. Now, if z ∈ ker(Q), then Sz = 0, so we obtain a

mapping S̃ : X∗∗ = Z/ker(Q)→ c0. For every x ∈ X, let z ∈ Z be such that

Qz = x. Then S̃(z + ker(Q)) = Sz = TQJ(z) = Tx. Hence, S̃ extends T ,
proving that (h)⇒(a).

It follows immediately from part (f) that if X has property (E) and F
is a subspace such that (F,X) has the c0-EP, then F has property (E).

Before deriving some corollaries from this theorem, we mention that
there is yet another way to think about property (E) and the c0-EP using
the language of exact sequences. For example, a space X has property (E)
if and only if the contravariant functor B(·, c0) is exact when applied to the



172 W. FREEDMAN

canonical short exact sequence

0→ X → X∗∗ → H(X)→ 0.

Now, for spaces X,Y , and Z, the space X is said to be an extension of Y
by Z (or a twisted sum of Y with Z) if there exists a short exact sequence

0→ Y
i
−→ X

π
−→ Z → 0.

The twisted sum X splits if there exists a map r : Z → X such that πr is
the identity on Z. In this case, it follows that X = i(Y ) ⊕ r(Z), the latter
space being clearly isomorphic to Y ⊕ Z.

2.3. Corollary. Let Q : ℓ1(Γ ) → X
∗∗ be a surjective map. If either

of the following equivalent conditions is satisfied , then both X and Q−1(X)
have property (E):

(1) The pair (Q−1(X), ℓ1(Γ )) has the c0-EP.

(2) Every twisted sum of c0 with H(X) splits.

Proof. The equivalence of (1) and (2) follows from [8, Proposition 3.1].
On the other hand, if (1) holds, then clearly so does condition (h) of the
previous theorem, implying that X has property (E).

Thus, it is not true that (F, ℓ1(Γ )) has the c0-EP for every closed sub-
space F ⊆ ℓ1(Γ ); a knowledge of which pairs (F, ℓ1(Γ )) have the c0-EP may
help us to learn which spaces do have property (E). For example, with regard
to the following corollary, (F, ℓ1(Γ )) has the c0-EP whenever F or ℓ1(Γ )/F
is separable, by the fact that ℓ1(Γ ) has the SCP, and by [14, Theorem 1.1],
respectively.

2.4. Corollary. Let Q : ℓ1(Γ )→ X
∗∗ be a surjective map.

(a) If Q−1(X) is separable, or ℓ1(Γ )/Q
−1(X) is separable, then both X

and Q−1(X) have property (E).

(b) If X has the Phillips property , then the pair (Q−1(X), ℓ1(Γ )) fails
to have the c0-EP. In particular , Q

−1(X) is nonseparable.

We obtain the somewhat surprising fact that although there is a surjec-
tion of ℓ1 onto c0, if Q : ℓ1(Γ )→ ℓ∞ is a surjective map, then Q

−1(c0) 6= ℓ1,
and in fact, Q−1(c0) is not even separable, nor is it complemented in ℓ1(Γ ).
(The same is true of course if we take any predual of ℓ1 in place of c0.) In
fact, if Y is any complemented subspace of ℓ1(Γ ) such that Q

−1(c0) ⊆ Y ,
then the quotient space Y/Q−1(c0) is nonseparable. More generally, if A
is any C∗-algebra, and if Q : ℓ1(Γ ) → A

∗∗ is a surjective map, then nei-
ther Q−1(A) nor ℓ1(Γ )/Q

−1(A) is separable, for by Corollary 3.10 below,
a C∗-algebra A has property (E) if and only if it is a Grothendieck space,
and of course ℓ1(Γ )/Q

−1(A) is isomorphic to A∗∗/A.
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Now we consider a class of spaces which have the hereditary prop-
erty (E), the coseparable spaces. For the remainder of this section, F denotes
a subspace of X.

2.5. Definition. A space X is coseparable if H(X) = X∗∗/X is sepa-
rable.

Observe that if X is coseparable, then both F and X/F are coseparable;
to see this, we need only apply the exact functor H( · ) to the canonical short
exact sequence

0→ F → X → X/F → 0.

It follows immediately from this fact, together with the preceding results,
that if X is coseparable, then every quotient space of X has the heredi-
tary property (E). Here, we use a result of Valdivia [17] to give a simple
alternative proof.

2.6. Corollary. If X is coseparable, then X has the hereditary prop-
erty (E).

Proof. If X is coseparable, then X = R ⊕ S where R is reflexive and S
is separable [17]. Since separability is a three-space property, S∗∗ is sepa-
rable, so by the separable injectivity of c0, the space S, and hence X, has
property (E).

Observe that if X is coseparable, and also coreflexive, i.e., H(X) is both
separable and reflexive, then all dual spaces of X are coseparable, and so all
quotient spaces of all dual spaces of X have the hereditary property (E).
Of course, quotient spaces of spaces with property (E) need not have

property (E); every Banach space is a quotient of some ℓ1(Γ ). So, it is
certainly of interest to find conditions under which a quotient space of a
space with property (E) will also have property (E). We examine this next.
Then we prove a result which says that property (E) is “almost” a three-
space property. These and similar results can be proved using commutative
diagrams, though we do not do this explicitly here.

2.7. Theorem. Assume X has property (E). If the pair (H(F ), H(X))
has the c0-EP , then X/F has property (E).

Proof. To simplify the notation a little, if Y is a space and E ⊆ Y is a
subspace, let jE : E →֒ Y be the inclusion map, and let πE : Y → Y/E be
the canonical quotient map. Let T : X/F → c0. Then TπF : X → c0 extends
to S : X∗∗ → c0 such that Sj

∗∗
F : F

∗∗ → c0 satisfies Sj
∗∗
F ↾F = 0. Hence, we

obtain Q : H(F )→ c0 such that for every φ ∈ F
∗∗, Q(φ+F ) = Sj∗∗F (φ). By

hypothesis, Q extends to a map U : H(X)→ c0. The mapping S − UπX :
X∗∗ → c0 satisfies (S −UπX)(φ) = 0 for all φ ∈ F

⊥⊥. Hence, there exists a
mapW : X∗∗/F⊥⊥ → c0 such thatWπF⊥⊥ = S−UπX : X

∗∗ → c0. For any
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x ∈ X, we haveW (ιx+F⊥⊥) = (S−UπX)(ιx) = Sιx = TπF (x) = T (x+F ).
Thus, W defines an extension of T , proving that X/F has property (E).

It follows immediately that if X has property (E) and H(F ) is comple-
mented in H(X), then X/F has property (E). This occurs in particular if
F is reflexive, since then H(F ) is trivial. We can also see again that every
quotient space of a coseparable space has property (E), as remarked above.

2.8. Corollary. If R is a reflexive space, and Y fails to have prop-
erty (E), then every twisted sum of R with Y also fails to have property (E).

For example, any twisted sum of ℓ2 with c0, which need not split by [8],
fails to have property (E). On the other hand, if F ⊆ ℓ1 such that ℓ1/F = c0,
then F has property (E), and ℓ1 is a twisted sum of F with c0.
Now, we show that property (E) is at least almost a three-space property

using a technique similar to the proof of [7, Lemma 3.1].

2.9. Theorem. Assume both F and X/F have property (E). Suppose in
addition that the pair (F⊥⊥, X∗∗) has the c0-EP. Then X has property (E).

Proof. Let T : X → c0 be given; let j : F →֒ X be the inclusion map; and
let S : F ∗∗ → c0 be an extension of the map Tj : F → c0. By hypothesis,
there exists a map U : X∗∗ → c0 extending S. Set W = Uι − T : X → c0.
It is easy to check that Wj = 0, so we may define a map W̃ : X/F → c0 by

W̃ (x+ F ) = W (x). By hypothesis, there exists an extension V of W̃ , with
V : (X/F )∗∗ → c0. Let π : X

∗∗ → X∗∗/F⊥⊥ be the quotient map. The map
U −V π : X∗∗ → c0 is then an extension of T , since for every x ∈ X we have

Uιx− V πιx = Uιx− V (ιx+ F⊥⊥) = Uιx− W̃ (x+ F )

= Uιx−W (x) = Uιx− (Uιx− Tx) = Tx.

Hence, X has property (E), as desired.

2.10. Corollary. If F has property (E), and (X/F )∗∗ is separable,
then X has property (E).

Proof. The hypotheses clearly imply that X/F is coseparable, and
(F⊥⊥, X∗∗) has the c0-EP by [14, Theorem 1.1].

In particular, if F has property (E), and if X∗∗ = F ∗∗ ⊕ S, where S is
separable, then X has property (E). Of course, the space S is then a sepa-
rable bidual. Also, if Y has property (E), and R is any separable reflexive
space, then any twisted sum of Y with R has property (E). This is reminis-
cent of the fact that if Y is complemented in Y ∗∗, and R is reflexive, then
any twisted sum of Y with R is complemented in its bidual [2, Prop. 3.7.d].

Remark. The proof of [7, Lemma 3.1] implies that if both (F,X∗∗) and
(X/F,X∗∗/F ) have the c0-EP, then X has property (E).
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3. Property (G), property (L), and the Phillips properties. We
recall from [6] that a space X has the (weak) Phillips property if and only if
BX is a (Grothendieck) limited subset of X

∗∗. This motivates the following
definitions of what are, like property (E), in some sense, “anti-Phillips”
properties.

3.1. Definition. X has property (G) (resp. property (L)) if for every
bounded subset K ⊆ X, if K is a Grothendieck (resp. limited) subset of
X∗∗, then K is a Grothendieck (resp. limited) subset of X.

First, some basic observations.

(1) Like property (E), properties (G) and (L) pass to complemented
subspaces.
(2) X has the Phillips property and property (L) if and only if X is

finite-dimensional; X has the weak Phillips property and property (G) if
and only if X is a Grothendieck space.

We now show the simple fact that property (E) implies both properties
(L) and (G).

3.2. Lemma. If X has property (E), then X has both property (L) and
property (G).

Proof. Let K ⊆ X be a bounded subset which is limited (resp. Grothen-
dieck) in X∗∗. Let T : X → c0, and let S : X

∗∗ → c0 be an extension of T .
Then S(ιK) = T (K) is relatively (resp. weakly) compact in c0, and hence
K is limited (resp. Grothendieck) in X.

Next, we give some characterizations of properties (L) and (G) similar
to Theorem 2.2.

3.3. Theorem. The following are equivalent :

(a) X has property (L) (resp. property (G)).
(b) For every T : X → c0, there exists a space Y with property (L)

(resp. property (G)) such that T factors through Y .
(c) For every space Z and any T : X → Z, there exists a space Y with

property (L) (resp. property (G)) such that T factors through Y .
(d) There exists a space Y with property (L) (resp. property (G)) such

that X ⊆ Y and Y/X is separable.
(e) There exists a space Y with property (L) (resp. property (G)) such

that X ⊆ Y and (X,Y ) has the c0-EP.

Proof. We only prove the case of property (L), the proof for property
(G) being the same, mutatis mutandis.
The implications (a)⇒(c)⇒(b) are obvious. We show that (b)⇒(a). Let

K ⊆ X be a bounded subset which is limited in X∗∗, and let T : X → c0.
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Let Y be a space with property (L) such that T factors through Y , and let
R : X → Y and S : Y → c0 be such that T = SR. Since K is limited in
X∗∗, the subset R∗∗(ιK) is limited in Y ∗∗, and hence R(K) is limited in Y .
It follows that T (K) = S(R(K)) is limited in c0, hence T (K) is relatively
compact. Hence, K is limited in X, proving the equivalence of (a)–(c).

Now, the implication (a)⇒(d) is obvious, and (d)⇒(e) holds by [14, Theo-
rem 1.1], so we need only show that (e)⇒(a). SupposeK is a bounded subset
of X which is limited in X∗∗. Let X ⊆ Y where Y has property (L), and
(X,Y ) has the c0-EP. Since X

∗∗ = X⊥⊥ ⊆ Y ∗∗, it follows that K is limited
in Y ∗∗, and hence, K is limited in Y . Since (X,Y ) has the c0-EP, K is
limited in X, proving that X has property (L).

Thus, if X has property (G) or (L), and (F,X) has the c0-EP, then F
has property (G) or (L), respectively, as is the case for property (E).

We now consider some equivalent necessary conditions for X to have
property (G) or (L), and hence for X to have property (E).

3.4. Theorem. Any space X with property (G) or (L) satisfies the fol-
lowing equivalent conditions:

(a) X contains no complemented copy of c0.

(b) Every operator from X into any separable space is unconditionally
converging.

(c) Every operator from X into c0 is unconditionally converging.

(d) Every relatively weak∗-sequentially compact subset of X∗ is a (V)-
set.

Proof. If X has property (G) or (L), then condition (a) is satisfied, so
we need only show the equivalence of (a)–(d).

(a)⇒(b). Arguing by contradiction, suppose that there exists a separable
space Y and an operator T : X → Y which is not unconditionally converg-
ing. By [3, p. 54], T fixes a copy of c0, that is, there exists a subspace F of
X, which is isomorphic to c0, such that if i : F →֒ X is the inclusion map,
then Ti : F → Y is an isomorphism of F into Y . Since Ti(F ) is isomorphic
to c0 and Y is separable, there exists a projection Q : Y → Ti(F ). Set
R = i(Ti)−1QT . It is easy to see that R is a projection from X into X,
with R(X) = F , implying that X contains a complemented copy of c0, a
contradiction.

(b)⇒(c). Trivial.

(c)⇒(d). It is clearly enough to show that if (fj) is any weak
∗-null se-

quence in X∗, then the set {fj : j ≥ 1} is a (V)-set. So, let
∑
xn be a wuC

series in X, and let (fj) be a weak
∗-null sequence in X∗. Let T : X → c0

be the mapping which sends x ∈ X to the sequence (〈x, fn〉). Since T is
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unconditionally converging by hypothesis, the series
∞∑

n=1

Txn =
∞∑

n=1

(〈xn, fj〉)
∞
j=1

is unconditionally converging. In particular,

‖(〈xn, fj〉)
∞
j=1‖ → 0,

i.e., limn supj |〈xn, fj〉| = 0. Thus, the set {fj : j ≥ 1} is a (V)-set.
(d)⇒(a). Suppose X = c0 ⊕ F for some subspace F ⊆ X, and let (en)

denote the canonical basis of c0. It is easy to see that
∑
en is wuC in X.

Letting (fn) denote the canonical basis of c
∗
0 = ℓ1, it is also easy to see that

(fn) is weak
∗-null in X∗, but is not a (V)-set, since 〈en, fn〉 = 1 for all n.

This contradiction shows that (a) must hold, and completes the proof.

3.5. Corollary. Assume BX∗ is weak
∗-sequentially compact. If X has

property (G) or (L), then c0 6⊆ X. Hence, for all 1 < p <∞, K(ℓp) is not
complemented in any dual space.

Proof. If X has property (G) or (L), we may apply part (d) of the
previous theorem to deduce that BX∗ is a (V)-set. Hence, if

∑
xn is any

wuC series in X, then

lim
n
‖xn‖ = lim

n
sup
f∈BX∗

|〈xn, f〉| = 0.

It follows that
∑
xn is unconditionally converging, and hence X contains

no isomorphic copy of c0 [3, p. 45].
Since K(ℓp) is separable and contains a copy of c0, K(ℓp) has neither

property (G), nor property (L), and so in particular is not complemented
in any dual space.

Since properties (E), (G), and (L) are designed to be “anti-Phillips”
properties, it is not surprising that it is unusual or even impossible for a
(infinite-dimensional) space to have both one of the Phillips properties and
one of the properties (E), (G), or (L), as partially noted above.

3.6. Theorem. For a space X, the following are equivalent :

(a) X has property (E) and the weak Phillips property.
(b) X has property (G) and the weak Phillips property.
(c) X has property (E) and property (V1).
(d) X has property (G) and property (V1).
(e) X has property (L) and property (V1).
(f) X is a Grothendieck space.

Proof. The equivalence of (a), (b), and (f) is clear. Clearly, (f)⇒(c), and
(c) implies both (d) and (e) by Lemma 3.2. On the other hand, both (d)
and (e) separately imply (f), for if (d) or (e) holds, then by Theorem 3.4
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above, every operator from X into c0 is unconditionally converging. Since
X has property (V1), every operator from X into c0 is weakly compact,
completing the proof.

3.7. Theorem. X has both the Phillips property and property (L) or
property (G), if and only if X is finite-dimensional.

Proof. Assume that X has the Phillips property. Then X∗ has the Schur
property, BX is limited in X

∗∗, and X has the weak Phillips property [6].
But if X has property (G), then X is a Grothendieck space by the pre-
vious theorem, while if X has property (L), then BX is limited in X. In
either case, X is finite-dimensional by the Josefson–Nissenzweig theorem
[3, Chapter 12].

Remarks. (a) As easy corollaries, we obtain:

(1) [6, Theorem 2.13] A Banach space with the Phillips property is
not complemented in any dual space.

(2) The well known result that no separable C∗-algebra is comple-
mented in its second dual.

(3) A dual space has the weak Phillips property if and only if it is a
Grothendieck space.

(b) It is unknown if every space with property (L) and the weak Phillips
property is a Grothendieck space.

Since L1-spaces have the SCP, every separable L1-space has property (E).
On the other hand, if X is an L∞-space, then X

∗∗ is complemented in an
L∞-space, and hence, X∗∗ is a Grothendieck space. Hence, X has property
(E) if and only if X is a Grothendieck space. It follows that every separable
L∞-space fails to have property (E).

3.8. Corollary. Every separable L1-space has property (E). Every sep-
arable L∞-space fails to have property (E).

The converse of Theorem 3.4 holds for C∗-algebras and for subspaces of
K(H) as seen below. However, the following example shows that the converse
of the theorem (and of Corollary 3.5) is false in general.

3.9. Example (A separable space which is somewhat reflexive, and in
particular, contains no copy of c0, yet has neither property (L) nor prop-
erty (G)). If Y is the space constructed in [1], then Y ∗ = ℓ1, and so Y has
the Phillips property, although Y contains no copy of c0. By Theorem 3.7
above, Y has neither property (L) nor property (G).

3.10. Corollary. Let X be a C∗-algebra or a subspace of K(H). Then
the following are equivalent :
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(a) X has property (E).
(b) X has property (G).
(c) X has property (L).
(d) X is a Grothendieck space.
(e) X contains no complemented copy of c0.

If X is a subspace of K(H), then (a)–(e) are equivalent to

(f) X is reflexive.

Hence, no C∗-subalgebra of K(H) has property (E).

Proof. In both cases, X has property (V) by [13] and [6]. Hence, X
has the weak Phillips property, so by Theorem 3.6, (a), (b), and (d) are
equivalent. Now, (a)⇒(c)⇒(e) by Lemma 3.2 and Theorem 3.4, and since
X has property (V), condition (e) implies that X is a Grothendieck space.
This proves the equivalence of (a)–(e). If X is a subspace of K(H), then
since ℓ1 6⊆ X, if X is a Grothendieck space, then X must be reflexive [4].

By [13], the predual of any von Neumann algebra has property (V*) since
its dual space has property (V). The following result then implies that the
predual of any von Neumann algebra has the hereditary property (G). In
particular, any abstract L-space has the hereditary property (G). The result
will also allow us to obtain a partial converse to Theorem 3.4 for subspaces of
spaces with unconditional bases. We remind the reader that property (V*)
is hereditary, and remark that spaces with the hereditary property (V) have
the hereditary weak Phillips property [6].

3.11. Theorem. If X has property (V*), then X has the hereditary
property (G).

Proof. Since property (V*) is hereditary, it is enough to show that if X
has property (V*), then X has property (G). Let K ⊆ X be a bounded
subset of X which is a Grothendieck subset of X∗∗. Let τ : X → ℓ1, and
let q : ℓ∗∞ → ℓ1 be the canonical projection. Then qτ

∗∗ : X∗∗ → ℓ1, and
since K is a Grothendieck subset of X∗∗, the image qτ∗∗(ιK) = τ(K) is a
Grothendieck subset of ℓ1, and hence is relatively compact. Hence, K is a
(V*)-set, so K is rwc, and is therefore a Grothendieck subset of X. Hence,
X has property (G).

3.12. Corollary. Assume X has property (V*) and the Schur property.
Then X has the hereditary properties (G) and (L).

Proof. LetK ⊆ X be limited inX∗∗. ThenK is certainly a Grothendieck
subset of X∗∗, and so by the proof of the theorem,K is a (V*)-set, and hence
is rwc. But since X has the Schur property, K is relatively compact, and
thus is limited in X. Since both the Schur property and property (V*) are
hereditary, we are done.
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Remarks. (a) The converse of Theorem 3.11 is false: The predual B of
the James Tree space has the hereditary properties (G) and (L) by Theo-
rem 3.14 below. Nevertheless, B is not weakly sequentially complete, and so
fails to have property (V*).
(b) It is unknown whether property (V*) implies property (E) or prop-

erty (L).
(c) There is a separable L∞-space with the Schur property [1], which by

Corollary 3.8 above has neither property (G) nor property (L).
(d) It can be shown that for spaces with the SCP, properties (G) and

(L) are determined separably.

Now, if X is a subspace of a space with an unconditional basis, and if
c0 6⊆ X, then X has property (V*) by [11, Theorem 1.c.13] and [12]. If
X itself has an unconditional basis, then X is isomorphic to a dual space
[3, p. 53]. Combining these facts with Lemma 3.2 and Theorems 3.11 and 3.4,
we obtain the following corollary.

3.13. Corollary. Assume X is a subspace of a space with an uncondi-
tional basis. The following are equivalent :

(a) X has property (V*).
(b) X has property (G).
(c) c0 6⊆ X.

If X itself has an unconditional basis, then (a)–(c) are equivalent to

(d) X has property (E).

Recall that a space X has the (weak) Gelfand–Phillips property if ev-
ery (Grothendieck) limited subset of X is relatively (weakly) compact. We
abbreviate these as GPP and WGP below. See [9] for details on the WGP.
Since the GPP and the WGP are both hereditary [5], [9], it follows that if
X∗∗ has both the GPP and the WGP, then X has the hereditary properties
(G) and (L). We use this fact to prove the final result.

3.14. Theorem. Suppose that

(1) X is an L1-space, or
(2) ℓ1 6⊆ X

∗, or
(3) BX∗ is weak

∗-sequentially compact and there exists no surjection of

X onto c0.

Then X has the hereditary properties (G) and (L). In particular , core-
flexive spaces have the hereditary properties (G) and (L).

Proof. If X is an L1-space, then X
∗∗ is complemented in an L1-space,

so X∗∗ has both the GPP and the WGP, since L1-spaces have both these
properties.
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If condition (2) or (3) holds, then BX∗∗∗ has a weak
∗-dense, weak∗-CSC

subset, namely BX∗ , from which it again follows that X
∗∗ has both the GPP

and the WGP by [5] and [9].

If X is coreflexive, then X∗ is coreflexive, and hence every subspace of
X∗ is coreflexive. Hence condition (b) is satisfied.

Thus, in particular, the predual of the James Tree space has the heredi-
tary properties (G) and (L).

We end the paper with what seem to be the most interesting open prob-
lems.

Open problems.

(1) Are properties (E), (G), and (L) three-space properties?

(2) If X has both property (L) and property (G), then X has prop-
erty (E).

(3) Coreflexive spaces have property (E).

(4) If every separable subspace of X has property (E), then X has prop-
erty (E).

(5) If X is any subspace of a space with an unconditional basis, then
(a)–(d) of Corollary 3.14 are all equivalent.

(6) If X has property (V*), then X has property (E).

(7) If X∗ is weakly sequentially complete, then X∗ has the hereditary
property (G).
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