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RANK α OPERATORS ON THE SPACE C(T,X)

BY

DUMITRU POPA (Constanţa)

Abstract. For 0 ≤ α < 1, an operator U ∈ L(X,Y ) is called a rank α operator if

xn
τα
→ x implies Uxn → Ux in norm. We give some results on rank α operators, including

an interpolation result and a characterization of rank α operators U : C(T,X)→ Y in
terms of their representing measures.

Let X be a Banach space and 0 ≤ α < 1; a sequence (xn)n∈N ⊂ X is

called τα-convergent to 0, written xn
τα→ 0, if there exists a constant c ≥ 0

such that ‖
∑
n∈B xn‖ ≤ c|B|

α for all finite subsets B ⊂ N, or equivalently,
‖
∑
n∈B λnxn‖ ≤ c|B|α for all finite subsets B ⊂ N and λn ∈ K = R or C

with |λn| ≤ 1 (the constant c may vary). Here |B| is the cardinality of B.

A sequence (xn)n∈N ⊂ X is called τα-convergent to x, written xn
τα→ x, if

xn − x
τα→ 0.

For 0 ≤ α < 1, an operator U ∈ L(X,Y ) is called a rank α operator if

xn
τα→ x implies Uxn → Ux in norm. We denote by Rα(X,Y ) the Banach

space of all rank α operators fromX to Y . A Banach space has rank α if each
τα-convergent sequence is norm convergent. The notions of τα-convergence
and rank α spaces have been first introduced by A. Pełczyński [8]. Observe
that rank 0 operators coincide with unconditionally converging operators.
In the following proposition we give some results concerning rank α opera-
tors.

Proposition 1. (a) Rα is an operator ideal in the sense of A. Pietsch
[9], for each 0 ≤ α < 1.

(b) If 0 ≤ α ≤ β < 1, then Rβ(X,Y ) ⊂ Rα(X,Y ).

(c) DP(X,Y ) ⊂ Rα(X,Y ) for each 0 ≤ α < 1, where DP denotes the
ideal of Dunford–Pettis operators.

(d) Rα is a closed ideal of operators for each 0 ≤ α < 1.
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Proof. (a) is clear; (b) follows from the fact that if α ≤ β, then τα-
convergence implies τβ-convergence; (c) follows from the fact that τα-conver-
gence implies weak convergence.
(d) If xn

τα→ 0 then there is a constant c > 0 such that supn∈N
‖xn‖ ≤ c.

If Uk ∈ Rα(X,Y ) for each k ∈ N and Uk → U in norm then for each ε > 0,
there exists k ∈ N such that ‖Uk − U‖ < ε/(2c). Since Uk ∈ Rα(X,Y ), we
have ‖Uk(xn)‖ → 0 as n→∞, so there exists nε ∈ N such that ‖Uk(xn)‖ <
ε/2 for each n ≥ nε; hence ‖U(xn)‖ < ε for each n ≥ nε, i.e. U ∈ Rα(X,Y ).

Now we indicate in what conditions a diagonal operator has rank α,
which shows in particular that the inclusions (b) and (c) from Proposition 1
are strict.

Example 2. Let 1 < p <∞, λ = (λn)n∈N ∈ l∞ and Dλ : lp → lp be the
diagonal operator associated to λ, i.e. Dλ(xn) = (λnxn). Then:

(a) For 1/p ≤ α < 1, Dλ ∈ Rα(lp, lp) if and only if λ ∈ c0.
(b) For 0 ≤ α < 1/p, Dλ ∈ Rα(lp, lp) if and only if λ ∈ l∞.

Proof. (a) If Dλ ∈ Rα(lp, lp), then since 1/p ≤ α, Proposition 1(b)

implies that Dλ ∈ R1/p(lp, lp). Since en
τ1/p
→ 0 (en is the canonical basis of

lp), we find that ‖Dλ(en)‖ → 0, i.e. λn → 0 and so λ ∈ c0. Conversely, if
λ ∈ c0, then the operator Dλ is compact, so Dλ has rank α.
(b) For 0 ≤ α < 1/p, the space lp has rank α (see [1], Proposition 2.3(2),

or [8]), so by the ideal property of rank α operators, Dλ ∈ Rα(lp, lp) for
each λ ∈ l∞.

It is also easy to prove the following:

Proposition 3. For each compact Hausdorff space T ,

W (C(T ), X) = DP(C(T ), X) = R0(C(T ), X) = Rα(C(T ), X)

for each 0 ≤ α < 1.

Proof. The first two equalities are well known ([5], Theorem 15, pp. 159–
160), and Proposition 1(c)&(b) assures that DP(C(T ), X) ⊂ Rα(C(T ), X)
⊂ R0(C(T ), X).

Now we prove that a certain composition operator is a rank α operator.

Proposition 4. Let A ∈ Rdualα (X,Y ), B ∈ DP(Z, T ) and define h :
L(Y, Z)→ L(X,T ) by h(U) = BUA. Then h is a rank α operator.

Proof. Let Un
τα→ 0. For n ∈ N, let xn ∈ X with ‖xn‖ ≤ 1 be such that

(1) ‖h(Un)‖ − 1/n < ‖h(Un)(xn)‖ = ‖(BUnA)(xn)‖.

If z∗ ∈ Z∗, since Un
τα→ 0, we obtain z∗ ◦ Un

τα→ 0. Now A ∈ Rdualα (X,Y )
so A∗(z∗ ◦ Un) → 0 in norm, or z

∗ ◦ Un ◦ A → 0 in norm of X
∗. Hence
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(z∗ ◦ Un ◦A)(xn)→ 0, i.e. 〈(Un ◦A)(xn), z
∗〉 → 0 and since z∗ ∈ Z∗ is arbi-

trary, (Un ◦A)(xn)→ 0 weakly. As B ∈ DP(Z, T ) we have B((Un ◦ A)(xn))
→ 0 in norm of T , i.e. (B ◦ Un ◦ A)(xn)→ 0 in norm of T and the relation
(1) implies ‖h(Un)‖ → 0, i.e. h is a rank α operator.

Corollary 5. Let 0≤α<1, U ∈Rdualα (X,X1) and V ∈ DP
dual(Y, Y1).

Then the projective tensor product U ⊗̃π V is in R
dual
α (X ⊗̃π Y,X1 ⊗̃π Y1).

Proof. Since h = (U ⊗̃π V )
∗ : L(X1, Y

∗
1 ) → L(X,Y ∗) acts as h(ψ) =

V ∗ψU , it suffices to apply Proposition 4.

A natural question is: is the ideal of all dual rank α operators projective
tensor stable? The answer is no. For 2 ≤ p <∞, take the identity operator
i : lq → lq (1/p+1/q = 1), the dual of which has rank α for each 0 ≤ α < 1/p
(see [1], Proposition 2.3, or [8]). But the dual of i ⊗̃π i : lq ⊗̃π lq → lq ⊗̃π lq is
the identity operator on L(lq, lp), which, because 2 ≤ p <∞, q ≤ p, contains
a copy of c0 and hence has no rank.

For 0 ≤ α < 1,X a Banach space, let Eα(X) = {(xn)n∈N ⊂ X | xn
τα→ 0},

which is evidently a Banach space for the norm

‖ξ‖ = sup

{
‖
∑
n∈B xn‖

|B|α

∣∣∣∣B finite ⊂ N, B 6= ∅

}
,

where ξ = (xn)n∈N ∈ Eα(X). Observe that U ∈ L(X,Y ) is a rank α operator
if and only if for each sequence (xn)n∈N ∈ Eα(X), the sequence (Uxn)n∈N is
in c0(Y ). In addition the operator h : Eα(X)→ c0(Y ) given by h((xn)n∈N) =
(Uxn)n∈N is linear and continuous.
Now we prove an interpolation result for rank α operators. We recall that

given a Banach interpolation couple Y = (Y0, Y1) and 0 < θ < 1, [Y0, Y1]θ
is the interpolation space obtained by the complex method of Calderón (see
[12], 1.9.3, for details).

Proposition 6. Let 0 < θ < 1, X a Banach space, Y = (Y0, Y1) a
Banach interpolation couple and 0 ≤ α < 1. Then

[Rα(X,Y0), L(X,Y1)]θ ⊂ Rα(X, [Y0, Y1]θ).

Proof. For ξ = (xn)n∈N ∈ Eα(X) we define the operator

hξ : Rα(X,Y0) + L(X,Y1)→ l∞(Y0 + Y1), hξ(U) = (Uxn)n∈N.

Then using the definition of rank α operators (see the above discussion),
we obtain two continuous linear operators: hξ : Rα(X,Y0) → c0(Y0) and
hξ : L(X,Y1)→ l∞(Y1), with

‖hξ : Rα(X,Y0)→ c0(Y0)‖ ≤ ‖ξ‖, ‖hξ : L(X,Y1)→ l∞(Y1)‖ ≤ ‖ξ‖,

hence by interpolation,

hξ : [Rα(X,Y0), L(X,Y1)]θ → [c0(Y0), l∞(Y1)]θ
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is also a continuous linear operator and

‖hξ : [Rα(X,Y0), L(X,Y1)]θ → [c0(Y0), l∞(Y1)]θ‖

≤ ‖hξ : Rα(X,Y0)→ c0(Y0)‖
1−θ‖hξ : L(X,Y1)→ l∞(Y1)‖

θ ≤ ‖ξ‖.

But [c0(Y0), l∞(Y1)]θ = c0([Y0, Y1]θ) (see [12], 1.18, Observation 3), thus

hξ : [Rα(X,Y0), L(X,Y1)]θ → c0([Y0, Y1)]θ)

is also a continuous linear operator, i.e. for each U ∈ [Rα(X,Y0), L(X,Y1)]θ
and each ξ = (xn)n∈N ∈ Eα(X), hξ(U) = (Uxn)n∈N ∈ c0([Y0, Y1)]θ) and

‖hξ(U)‖ = ‖(Uxn)‖c0([Y0,Y1)]θ) ≤ ‖ξ‖ · ‖U‖[Rα(X,Y0),L(X,Y1)]θ .

Thus U ∈ Rα(X, [Y0, Y1]θ) and ‖U‖Rα(X,[Y0,Y1]θ) ≤ ‖U‖[Rα(X,Y0),L(X,Y1)]θ .

For Banach spaces X and Y we denote by X ⊗̃ε Y the injective tensor
product ofX and Y , i.e. the completion of the algebraic tensor productX⊗Y
with respect to the injective cross-norm ε(u) = sup{|〈x∗⊗y∗, u〉| | ‖x∗‖ ≤ 1,
‖y∗‖ ≤ 1} for u ∈X⊗Y (see [5], Chapter VIII). If U ∈ L(Z⊗̃εX,Y ), for each
z ∈ Z we consider the operator U#z : X → Y given by (U#z)(x) = U(z⊗x)
for x ∈ X; evidently, U# : Z → L(X,Y ) is linear and continuous.

Proposition 7. If U ∈ Rα(Z ⊗̃ε X,Y ), then U
# ∈ Rα(Z,Rα(X,Y )).

Proof. For z ∈ Z, define Vz : X → Z ⊗̃ε X by Vz(x) = z ⊗ x. Then by
the hypothesis and the ideal property of the rank α operators it follows that
U#z = UVz is a rank α operator. Let zn

τα→ 0. For n ∈ N, let ‖xn‖ ≤ 1 be
such that

‖U#zn‖ − 1/n < ‖(U
#zn)(xn)‖ = ‖U(zn ⊗ xn)‖.

For every finite subset B ⊂ N we have

ε
(∑

n∈B

zn ⊗ xn
)
= sup
‖x∗‖≤1

∥∥∥
∑

n∈B

znx
∗(xn)

∥∥∥ ≤ c|B|α,

since |x∗(xn)| ≤ 1, hence zn ⊗ xn
τα→ 0. As U is a rank α operator, we have

‖U(zn ⊗ xn)‖ → 0, so ‖U
#zn‖ → 0 and hence U

# ∈ Rα(Z,Rα(X,Y )).

If T is a compact Hausdorff space and X is a Banach space we denote by
C(T,X) the Banach space of all continuousX-valued functions defined on T ,
equipped with the supremum norm. Also if T is a compact space, we denote
by Σ the σ-field of Borel subsets of T , and if X is Banach space, B(Σ,X) is
the Banach space of totally measurable X-valued functions equipped with
the supremum norm. It is well known that every continuous linear operator
U : C(T,X) → Y has a representing measure G : Σ → L(X,Y ∗∗) such

that U(f) =
T
T
f dG for f ∈ C(T,X) and there is a canonical extension Û :

B(Σ,X)→ Y ∗∗ of U to the space B(Σ,X) given by Û(f) =
T
T
fdG for f ∈

B(Σ,X) (see [3], Representation Theorem 2.2, or [6], Theorem 9, p. 398).
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Also we denote by ‖G‖(E) = sup{|Gy∗(E)| | ‖y
∗‖ ≤ 1} the semivariation

of the representing measure G, for E ∈ Σ, where Gy∗(E) = 〈y
∗, G(E)x〉;

we say that the semivariation ‖G‖ is continuous at ∅ if ‖G‖(Ek) → 0 for
Ek ց ∅, Ek ∈ Σ. As is well known, ‖G‖ is continuous at ∅ if and only if
there exists a Borel measure α ≥ 0 on Σ such that limα(E)→0 ‖G(E)‖ = 0.

Since C(T,X) = C(T ) ⊗̃ε X, from Proposition 7 we have:

Corollary 8. If U ∈ Rα(C(T,X), Y ), then G(E) ∈ Rα(X,Y ) for each
E ∈ Σ and the semivariation ‖G‖ is continuous at ∅.

Proof. Using Propositions 7 and 3 we infer that

U# ∈ Rα(C(T ), Rα(X,Y )) =W (C(T ), Rα(X,Y )),

hence the representing measure F of U# is countably additive ([5], Theo-
rem 5 (Bartle–Dunford–Schwartz), p. 153), so F has the semivariation con-
tinuous at ∅. But the representing measure F of U# under our hypothesis
coincides with that of U ([3], Theorem 4.4), hence G takes its values in
Rα(X,Y ) and the semivariation ‖G‖ is continuous at ∅.

With the help of Corollary 8 the proof of the following proposition is
analogous to that of Theorem 3 from [2], so we omit it.

Proposition 9. Let X, Y be Banach spaces, T a compact Hausdorff

space, U : C(T,X)→ Y a continuous linear operator , and Û : B(Σ,X) →
Y ∗∗ the canonical extension of U . Then U ∈ Rα(C(T,X), Y ) if and only if

Û takes its values in Y and Û ∈ Rα(B(Σ,X), Y ).

Now for a given closed operator ideal A we indicate a way to construct
a continuous linear operator on C(T,X) with representing measure having
natural properties. Compare this result with that of [10], Proposition 1.

Proposition 10. Let A be a closed operator ideal , and (Un)n∈N ⊂
A(X,Y ) a sequence such that

∑∞
n=1 ‖y

∗Un‖ <∞ for each y
∗ ∈ Y ∗. If T is

a compact space on which there exists a purely non-atomic regular probabil-

ity Borel measure λ, and (rn)n∈N is an orthonormal sequence in L2(λ) with
supn∈N supt∈T |rn(t)| < ∞, then the operator U : C(T,X) → Y given by
U(f) =

∑∞
n=1 Un(

T
T
frn dλ) is linear and continuous and its representing

measure G has the properties: G(E) ∈ A(X,Y ) for each Borel subset E and
‖G‖ is continuous at ∅.

Proof. First observe that the hypothesis and the closed graph theorem
imply that

sup
‖y∗‖≤1

∞∑

n=1

‖y∗Un‖ =M <∞.
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For f ⊗ x ∈ C(T )⊗X, we have

U(f ⊗ x) =
∞∑

n=1

Un(x)
\
T

frn dλ.

Using the orthonormality of the sequence (rn)n∈N it follows that for each
E ∈ Σ,

T
E
rn dλ→ 0. Since

∞∑

n=1

|y∗(Unx)| ≤M‖y
∗‖ · ‖x‖ <∞

for each y∗ ∈ Y ∗, x ∈ X, the series
∑∞
n=1 Un(x)

T
T
frn dλ is norm convergent

(see [4], Theorem 6, p. 44). Also for f ∈ C(T,X) and n ∈ N we have

∥∥∥
n∑

k=1

Uk

(\
T

frk dλ
)∥∥∥ ≤ L‖f‖ sup

‖y∗‖≤1

n∑

k=1

‖y∗Uk‖ ≤ LM‖f‖,

where L = supn∈N
supt∈T |rn(t)|. Now the Banach–Steinhaus theorem as-

sures that the series
∑∞
n=1 Un(

T
T
frn dλ) is norm convergent for each f ∈

C(T,X) and the operator U is linear and continuous.

If G is the representing measure of U then

G(E)(x) =
∞∑

n=1

( \
E

rn dλ
)
Un(x),

i.e. G(E) =
∑∞
n=1 αn(E)Un, where αn(E) =

T
E
rn dλ. Also for E ∈ Σ and

x ∈ X with ‖x‖ ≤ 1 we have

∥∥∥G(E)x−
n∑

k=1

αk(E)Un(x)
∥∥∥ ≤ (sup

k≥n
|αk(E)|) sup

‖y∗‖≤1

∞∑

n=1

‖y∗Un‖

=M sup
k≥n
|αk(E)|,

i.e. ‖G(E) −
∑n
k=1 αk(E)Uk‖ ≤ M supk≥n |αk(E)| → 0. Since the ideal A

is closed it follows that G(E) ∈ A(X,Y ). Also, the well known Nikodym
convergence theorem implies that G : Σ → L(X,Y ) is countably additive
and so ‖G‖ is continuous at ∅.

Remark 11. Let (xn)n⊂X
∗ be a bounded sequence, and let (yn)n∈N⊂Y

with
∑∞
n=1 |y

∗(yn)| < ∞ for each y
∗ ∈ Y ∗. Then taking Un = x∗n ⊗ yn, we

have
∞∑

n=1

‖y∗Un‖ ≤ (sup
n∈N

‖x∗n‖)
∞∑

n=1

|y∗(yn)| <∞

for each y∗ ∈ Y ∗, so we can apply Proposition 10.
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Proposition 12. The following assertions about a Banach space X are
equivalent :

(i) X has rank α.
(ii) For any compact Hausdorff space T and any Banach space Y , a

continuous linear operator U : C(T,X) → Y has rank α if and only if
its representing measure G has the properties: G(E) ∈ Rα(X,Y ) for each
E ∈ Σ and ‖G‖ is continuous at ∅.

Proof. (i)⇒(ii). Using Corollary 8 we have to prove that if X has rank
α and U : C(T,X)→ Y is linear and continuous with G(E) ∈ Rα(X,Y ) for
each E ∈ Σ and with ‖G‖ continuous at ∅, then U is a rank α operator. Let

(fn)n∈N ⊂ C(T,X) with fn
τα→ 0. Then for each t ∈ T and a finite subset

B ⊂ N we have ∥∥∥
∑

n∈B

fn(t)
∥∥∥ ≤
∥∥∥
∑

n∈B

fn

∥∥∥ ≤ c|B|α,

fn(t)
τα→ 0 and since X has rank α, fn(t)→ 0 in norm for each t ∈ T .
Now the proof is similar to that of Theorem 2.1 of [11], and uses the

fact that if the semivariation ‖G‖ is continuous at ∅, then G has a positive
control measure; we omit the details.
(ii)⇒(i). Let xn

τα→ 0. Then there exist x∗n ∈ X∗ with ‖x∗n‖ ≤ 1 and
x∗n(xn) = ‖xn‖. Let T be a non-dispersed compact Hausdorff space. Then
there is a purely non-atomic regular probability Borel measure λ on T (see
[7], Theorem 2.8.10). Now we can construct a Haar system {Ani | 1 ≤ i ≤ 2

n,
n ≥ 0} in Σ (that is, A01 = T ; for each n, {Ani | 1 ≤ i ≤ 2n} is a partition
of T ; Ani = A

n+1
2i ∪A

n+1
2i+1 and λ(A

n
i ) = 1/2

n for 1 ≤ i ≤ 2n and n ≥ 0). Let

rn =
∑2n
i=1(−1)

iχAni . Clearly (rn)n∈N is an orthonormal sequence in L2(λ).
Now by Remark 11 we can construct a U : C(T,X) → c0 associated to
(x∗n)n∈N ⊂ X

∗ and (en)n∈N ⊂ c0, i.e.

U(f) =
(\
T

x∗nfrn dλ
)

n∈N

, f ∈ C(T,X).

By (ii), U is a rank α operator, hence by Proposition 9, the canonical ex-

tension Û : B(Σ,X) → c0 of U is also a rank α operator. But Û(f) =

(
T
T
x∗nfrn dλ)n∈N for f ∈ B(Σ,X) and obviously rn ⊗ xn

τα→ 0, hence

‖Û(rn ⊗ xn)‖ → 0. Now by the orthonormality of the sequence (rn)n∈N

we have Û(rn ⊗ xn) = ‖xn‖en, hence ‖xn‖ → 0, i.e. X has rank α.

Observation 13. In Proposition 12, we can replace the non-dispersed
compact Hausdorff space T by the Cantor group ∆ = {−1, 1}N and let λ
be the Haar measure on ∆ and rn ∈ C(∆) the nth Rademacher function on
∆, i.e. rn(δ) = δn for each δ ∈ ∆. In this case, it is not necessary to use the
space B(Σ,X) to prove the result.
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