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ORLICZ BOUNDEDNESS FOR CERTAIN CLASSICAL OPERATORS

BY

E. HARBOURE, O. SALINAS AND B. VIVIANI (Santa Fe)

Abstract. Let φ and ψ be functions defined on [0,∞) taking the value zero at zero
and with non-negative continuous derivative. Under very mild extra assumptions we find
necessary and sufficient conditions for the fractional maximal operator Mα

Ω , associated to

an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lφ(Ω), 0 ≤
α < n. For functions φ of finite upper type these results can be extended to the Hilbert
transform f̃ on the one-dimensional torus and to the fractional integral operator IαΩ ,
0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness
results near infinity, deriving in this way some generalized Trudinger type inequalities.

1. Introduction and preliminaries. Let Ω be an open bounded set
in R

n. For 0 ≤ α < n we consider the following centered maximal operators
associated to Ω:

Mα
Ωf(x) = sup

B(x,r)⊂Ω

1

|B(x, r)|1−α/n

\
B(x,r)

|f(y)| dy, x ∈ Ω,(1.1)

Mα
Ωf(x) = sup

r>0

1

|Ω ∩B(x, r)|1−α/n

\
B(x,r)

|f(y)| dy, x ∈ Ω,(1.2)

for f ∈ L1(Ω), where B(x, r) denotes the euclidean ball centered at x ∈ Ω
with radius r > 0 and, as usual, |E| is the Lebesgue measure of the set E.
When α = 0 we will drop the index α, writing onlyMΩ or MΩ .

Regarding these operators it may be useful to make some comments.

First, the main reason to consider these two maximal operators is that,
at least for good domains, they enclose in between other maximal functions.
In fact, if Mα denotes the classical centered fractional maximal function in
R
n (i.e. any of the above when Ω = R

n) and if we use a bar to indicate
the corresponding non-centered maximal operator, the following chain of
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inequalities holds for x ∈ Ω and f supported in Ω and measurable:

Mα
Ωf(x) ≤M

α
Ωf(x) ≤Mαf(x) ≃Mαf(x) ≤M

α
Ωf(x) ≤M

α
Ωf(x).

Moreover if Ω has the property that there exists a constant C such that
for any z ∈ Ω and r > 0,

|Ω ∩B(z, 2r)| ≤ C|Ω ∩B(z, r)|,

i.e. Ω with the euclidean metric and Lebesgue measure is a space of ho-
mogeneous type, the last two maximal functions above are equivalent and
actually they agree with the fractional maximal function usually defined on
this kind of spaces. Examples of such domains are cubes, balls or more
generally, any open convex set in R

n.
Secondly, no matter what the shape of Ω is, the centered maximal func-

tion Mα
Ω is of weak type (1, n/(n− α)), 0 ≤ α < n, as a consequence of

the Besicovitch covering lemma (see for example [G]). For the non-centered
version, this lemma cannot be applied. Instead, for n > 1, a Vitali covering
lemma is used, involving some kind of “doubling condition” on the measure
of balls.
Finally we make the obvious remark that all the operators above are of

strong type (n/α,∞) for 0 < α < n, and (∞,∞) when α = 0.
Related to the maximal operators above, we will work with the Hilbert

transform on the one-dimensional torus T and the fractional integral on a
bounded measurable subset Ω of Rn, that is,

(1.3) f̃(θ) =
1

π
lim
ε→0

\
π>|θ−t|>ε

f(t) cot

(
θ − t

2

)
dt, θ ∈ [−π, π],

where f is an integrable function defined on [−π, π] and extended periodi-
cally to R, and for 0 < α < n,

(1.4) IαΩf(x) =
\
Ω

f(y)

|x− y|n−α
dy, x ∈ Ω.

Now, we turn our attention to the relevant function spaces. We recall
that a growth function, that is, a non-negative increasing function φ defined
on [0,∞) with limt→0+ φ(t) = 0, is said to be of lower type p if there exists
a constant C such that

(1.5) φ(st) ≤ Cspφ(t) for s ∈ [0, 1] and t ≥ 0.

Similarly, φ is said to be of upper type q if there is a constant C such
that

(1.6) φ(st) ≤ Csqφ(t) for s ≥ 1 and t > 0.

Whenever there is a p > 0 satisfying (1.5) we shall say the φ is of positive
lower type, and in the case that there is a finite q for which (1.6) holds, φ will



ORLICZ BOUNDEDNESS 265

be said of finite upper type. The latter condition is known to be equivalent
to the so-called ∆2 condition, that is, φ(2t) ≤ Cφ(t) for some constant C
and any t > 0.

Frequently, only the behavior of φ away from the origin will matter; we
then say that φ is of finite upper type at infinity and so on.

For a non-negative increasing function φ defined on [0,∞) with
limt→0+ φ(t) = 0 we denote by L

φ(Ω) the class of all measurable functions
on Ω for which

T
Ω
φ(C|f |) <∞ for some positive constant C. It is clear that

for Ω of finite measure the space Lφ(Ω) will remain the same if we change
the values of φ in a neighborhood of the origin since for any λ > 0,\

Ω∩{x:|f |≤λ}

φ(C|f |) ≤ φ(Cλ)|Ω| <∞.

The Luxemburg norm is introduced as the quantity

‖f‖
L
φ
(Ω)
= inf

{
λ > 0 :

\
Ω

φ(|f |/λ) ≤ 1
}
,

That this quantity is finite for f ∈ Lφ(Ω) is a consequence of the
Lebesgue dominated convergence theorem. When φ is a convex growth func-
tion it gives a norm on Lφ(Ω) which makes Lφ(Ω) a Banach space. If we
just know that φ is of positive lower type, the quantity ‖ ‖Lφ defines a trans-
lation invariant quasi-metric, turning Lφ(Ω) into a metrizable topological
vector space. Moreover the metric can be chosen to be translation invariant.
We notice that when φ(t) = tp, p ≥ 1, we obtain the Lebesgue spaces. We
will keep the classical notation Lp(Ω) when we need to refer to these specific
cases.

Finally, notice that if T is an operator defined on integrable functions
and satisfying the sublinearity conditions

T (λf) = λT (f), λ > 0,(1.7)

T (f + g) ≤ T (f) + T (g),(1.8)

in the almost everywhere sense, an inequality of the type ‖T (f)‖Lφ ≤
C‖f‖Lψ implies L

ψ-Lφ continuity of T and conversely. Moreover if the op-
erator further satisfies a monotonicity condition of the type

(1.9) |f | ≤ g ⇒ T (f) ≤ T (g),

then Lψ-Lφ continuity and boundedness are each equivalent to the following
mapping property of the operator: f ∈ Lψ(Ω) ⇒ T (f) ∈ Lφ(Ω). We write
these remarks in the following proposition and outline part of the proof.

(1.10) Proposition. Let T be an operator defined on integrable func-
tions and satisfying (1.7)–(1.9). Let φ, ψ be two growth functions such that
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ψ is convex and φ has a positive lower type. Then the following statements
are equivalent :

(1.11) T is continuous from Lψ(Ω) into Lφ(Ω).

(1.12) ‖T (f)‖Lφ(Ω) ≤ C‖f‖Lψ(Ω).

(1.13) f ∈ Lψ(Ω)⇒ Tf ∈ Lφ(Ω).

Proof. To show (1.11)⇒(1.12), assume that (1.12) does not hold. Then
for any n ∈ N we can find functions fn ∈ L

ψ such that

(1.14) ‖T (fn)‖Lφ(Ω) ≥ n
3‖fn‖Lψ(Ω).

Because of (1.9) we have T (fn) ≤ T (|fn|) and, making use of (1.7) and (1.8),
we also get −T (fn) ≤ T (−fn) to conclude that |T (fn)| ≤ T (|fn|). So the
sequence {fn} can be assumed to be non-negative.

Also, by (1.14), taking gn = fn/‖fn‖Lψ(Ω) we get a sequence of non-

negative functions with Lψ norm 1 such that

‖T (gn/n
2)‖Lφ(Ω) ≥ n.

Now the series g =
∑
gn/n

2 defines an Lψ(Ω)-function since it is an
absolutely convergent series in a Banach space. Moreover the series also
converges almost everywhere to a non-negative function. Clearly gn/n

2 ≤ g
and hence (1.9) together with the last inequality gives

‖T (g)‖Lφ(Ω) ≥ n ∀n ∈ N,

so T (g) does not belong to Lφ(Ω).

The proof that (1.13) implies (1.12) is quite similar to the above. The
statement (1.11) follows easily from (1.12) and the inequality |Tf − Tg| ≤
T (|f − g|), which is inmediate from (1.8) and (1.9). Finally, it is obvious
that (1.13) follows from (1.12).

Finally, we remark that all the operators under consideration, except for
the Hilbert transform, satisfy the three conditions stated in the proposition.

2. Main theorems. Let a and b be positive continuous functions de-
fined on [0,∞). We also suppose that b is non-decreasing and b(s)→∞ as
s→∞. We define

(2.1) φ(t) =

t\
0

a(s) ds and ψ(t) =

t\
0

b(s) ds

for t ≥ 0. Assume, in addition, that φ is of positive lower type.

(2.2) Theorem. Under the above assumptions the following conditions
are equivalent :
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(2.3) There exists a constant C such that

t\
1

a(s)

s
ds ≤ Cb(Ct) for every t ≥ 1.

(2.4) There exists a constant C such that\
Ω

φ(MΩf(x)) dx ≤ C + C
\
Ω

ψ(C|f(x)|) dx for every f in L1(Ω).

(2.5) There exists a constant C such that

‖MΩf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f in L1(Ω).

(2.6) There exists a constant C such that\
φ(MΩf(x)) dx ≤ C + C

\
Ω

ψ(C|f(x)|) dx for every f in L1(Ω).

(2.7) There exists a constant C such that

‖MΩf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f in L1(Ω).

(2.8) Remark. The proof that (2.3) implies (2.4) follows the lines of the
similar result contained in Theorem 2.1 of [K] (moreover, this reasoning can
be applied to any operator of weak type (1, 1) and (∞,∞)). However, the
converse is proved by a direct and simpler argument.

The above theorem can be extended to the case of the fractional maximal
operators defined in (1.1) and (1.2) as follows:

(2.9)Theorem. Let φ and ψ be as in (2.1) and 0<α<n. If sn/α−1/b(s)
is increasing and tends to infinity as s→∞, then the following statements
are equivalent :

(2.10) There exist constants C1 and C2 such that

C1t
1−α/nb(t)−α/n\

1

a(s)

sn/(n−α)
ds ≤ C2b(C2t)

n/(n−α) for every t ≥ 1.

(2.11) There exists a constant C such that

‖Mα
Ωf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f in L1(Ω).

(2.12) There exists a constant C such that

‖Mα
Ωf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f in L1(Ω).

(2.13) Remark. It is easy to see that (2.4) with MΩ replaced by a gen-
eral sublinear operator implies the corresponding version of (2.5). However,
the converse is not always true. Indeed, the above theorem proves that Mα

Ω
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is bounded from L1(log+L)(n−α)/n into Ln/(n−α), 0 < α < n, but inequality
(2.4) for Mα

Ω is clearly false, as can be seen by taking functions λg for some
fixed g in L1(log+ L)(n−α)/n and λ > 1, in place of f .

(2.14) Remark. Theorems (2.2) and (2.9) are even true under the
weaker assumptions that b(s) and sn/α−1/b(s) are quasi-increasing. We say
that a non-negative function ̺ is quasi-increasing if there exist constants
c1 > 0 and c2 > 0 such that

̺(t1) ≤ c1̺(c1t2) for all t2 ≥ t1 ≥ c2.

From Theorem (2.9) together with Remark (2.14) we can obtain the
following corollary.

(2.15) Corollary. Let 0<α<n and φ be as in (2.1). If φ(s)/sn/(n−α)

is non-decreasing and tends to infinity as s→∞, then the followings state-
ments are equivalent :

(2.16) There exists a constant C such that

t\
1

a(s)

sn/(n−α)
ds ≤ C

φ(Ct)

tn/(n−α)
for every t ≥ 1.

(2.17) There exists a constant C such that

‖Mα
Ωf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f ∈ L1(Ω),

where ψ−1(t) = tα/nφ−1(t).

The good-λ type inequalities relating the distribution functions of the
Hilbert transform to the Hardy–Littlewood maximal function, and the frac-
tional integral to the fractional maximal operator, together with Theorems
(2.2) and (2.9), allow us to obtain the following results for the Hilbert trans-
form and the fractional integral operator IαΩ defined in (1.3) and (1.4) re-
spectively.

(2.18) Theorem. Let φ and ψ be as in (2.1). Assume further that φ is
of finite upper type at infinity. Then the following statements are equivalent :

(2.19) There exists a constant C such that

t\
1

a(s)

s
ds ≤ Cb(Ct) for every t ≥ 1.

(2.20) There exists a constant C such that\
T

φ(|f̃(θ)|) dθ ≤ C + C
\
T

ψ(|f(θ)|) dθ for every f ∈ L1(T ).

(2.21) There exists a constant C such that

‖f̃‖Lφ(T ) ≤ C‖f‖Lψ(T ) for every f ∈ L1(T ).
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(2.22) Theorem. Let φ and ψ be as in (2.9) and 0 < α < n. Assume
further that φ is of finite upper type at infinity. Then the following state-
ments are equivalent :

(2.23) There exist constants C1 and C2 such that

C1t
1−α/nb(t)−α/n\

1

a(s)

sn/(n−α)
ds≤C2b(C2t)

n/(n−α) for every t≥1.

(2.24) There exists a constant C such that

‖IαΩf‖Lφ(Ω) ≤ C‖f‖Lψ(Ω) for every f in L1(Ω).

Recall that if a linear operator T is bounded from a Banach space X
into a Banach space Y , then its adjoint T ∗ is bounded from the dual space
Y ∗ into X∗. On the other hand, it is well known (see, for instance, [RR])

that, for every Young function φ of finite upper type, the Orlicz space Lφ̃

coincides with the dual space of Lφ (φ̃ denotes the complementary function

of φ, defined by φ̃(y) = sup{x|y| − φ(x) : x ≥ 0}). These facts allow us to
obtain the following corollaries of Theorems (2.18) and (2.22).

(2.25) Corollary of Theorem (2.18). Let φ and ψ be as in (2.1).
Assume that both are Young functions of finite upper type at infinity. If a
and b satisfy (2.19), then there exists a constant C such that

(2.26) ‖f̃‖
Lψ̃(T )

≤ C‖f‖
Lφ̃(T )

for every f ∈ L1(T ).

(2.27) Corollary of Theorem (2.22). Let φ and ψ be as in Theorem
(2.9). Assume further that both are Young functions of finite upper type at
infinity. If a and b satisfy (2.23), then there exists a constant C such that

(2.28) ‖IαΩf‖Lψ̃(Ω) ≤ C‖f‖Lφ̃(Ω) for every f ∈ L1(Ω).

(2.29) Remark. Note that when φ and ψ are as in (2.1) (respectively

as in Theorem (2.9)), and φ̃ and ψ̃ are Young functions with ψ, φ and φ̃ of
finite upper type, the duality argument can be applied to prove that (2.26)
(resp. (2.28)) is equivalent to (2.19) (respectively (2.23)).

Some examples. We present several pairs of functions ψ, φ to which
our theorems can be applied, and, in some cases, we relate them to some
previously known results appearing in the literature. In what follows we will
use the symbol “∼” to indicate that the functions involved behave in the
same way at infinity.

1) The following pairs of functions satisfy the condition (2.3) (they were
taken from [K]):

ψ(t) = φ(t) =
1

p
tp for 1 < p <∞,(2.30)
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ψ(t) ∼ t(log t)δ,

φ(t) ∼
t

(log t)1−δ
,
for 0 < δ ≤ 1,(2.31)





ψ(t) ∼ tLn(t),

φ(t) ∼
t

L1(t) . . . Ln(t)
,
for n ≥ 2,(2.32)

where L1(t) = log t and Ln(t) = logLn−1(t).

Thus, each of these pairs can be used to obtain (2.4) or, equivalently,
(2.5) for the Hardy–Littlewood maximal operator. Since φ is of finite upper
type in each case, the same pairs allow us to get (2.20) or (2.21) for the

conjugate function f̃ . In particular, the case δ = 1 of (2.31) gives the well
known result about boundedness between L logL and L1 of the Hardy–
Littlewood maximal operator acting on functions with compact support.
Corollary (2.25), applied to the same pair, yields another well known result,
namely \

T

eC|f̃(θ)|/‖f‖∞ dθ ≤ 1,

where T denotes the one-dimensional torus.

2) The pairs of functions given by

(2.33)

{
ψ(t) ∼ t(log t)(δ+1)(n−α)/n(log log t)ξ(n−α)/n,

φ(t) ∼ tn/(n−α)(log t)δ(log log t)ξ,

and

(2.34)





ψ(t) ∼ t(log log t)(δ+1)(n−α)/n,

φ(t) ∼ tn/(n−α)
(log log t)δ

log t
,

with 0 ≤ α < n, δ > −1 and ξ ∈ R, satisfy (2.3) for α = 0 and (2.10) for
0 < α < n. Then, for α = 0, Theorems (2.2) and (2.18) give us boundedness

results forM and f̃ respectively. Similarly, for the case 0 < α < n, Theorem
(2.9) gives us inequalities (2.11) for Mα

Ω and (2.12) forM
α
Ω , while Theorem

(2.22) insures that the inequality (2.24) holds for the fractional integral
operator.

3) The function

(2.35) φ(t) ∼ exp(t1/β), β > 0,

satisfies (2.16) since it is convex (see [S], p. 515). Then, according to Corol-
lary (2.15), we get (2.17) for Mα

Ω with ψ(t) ∼ t
n/α(log t)−βn/α.
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4) It is not too difficult to show that the complementary functions for
the pairs given in (2.33) and (2.34) with 0 < α < n satisfy

(2.36)

{
ψ̃(t) ∼ exp(tn/((δ+1)(n−α))(log t)−ξ(δ+1)),

φ̃(t) ∼ tn/α(log t)−δ(n−α)/α(log log t)−ξ(n−α)/α,

and

(2.37)

{
ψ̃(t) ∼ exp(exp(tn/((n−α)(δ+1)))),

φ̃(t) ∼ tn/α(log t)(n−α)/α(log log t)−δ(n−α)/α,

respectively. Furthermore all the functions in (2.33) and (2.34) are of fi-
nite upper type. Thus, we can apply Corollary (2.27) to these pairs, re-
covering results obtained by different methods in [MS], [EK], [EGO1] and
[EGO2]. Note, however, a difference in presentation: those authors do not
state boundedness results in a direct way. In fact, they are interested in
integrability results and prove that, for the pairs (ψ, φ) mentioned above,
there exists a constant C such that\

Ω

φ(C|Iαf(x)|) dx <∞

for every f in Lψ. However, according to Proposition (1.10), this statement
is equivalent to IαΩ being bounded from Lψ into Lφ. In particular all of these
results can be considered as extensions of the Trudinger inequality for IαΩ
(see [GT]): \

Ω

exp

(
IαΩf

C1‖f‖n/(n−α)

)n/(n−α)
≤ C2|Ω|.

In fact, this inequality is a direct consequence of (2.28) applied to the pair
(2.36) when δ = ξ = 0.

5) For α = 0, the functions in (2.33) with δ > 0 and ξ ∈ R give us the

boundedness of f̃ for the pair

(2.38)

{
ψ̃(t) ∼ exp(t1/(δ+1)/(log t)ξ/(δ+1)),

φ̃(t) ∼ exp(t1/δ/(log t)ξ/δ),

and when δ = 0 and ξ > 0 for the pair

(2.39)

{
ψ̃(t) ∼ exp(t/(log t)ξ),

φ̃(t) ∼ exp(exp t1/ξ).

3. Proofs. For simplicity, we will use the same letter, C, to indicate
constants, perhaps different, when there is no possibility of confusion.
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In the proofs we are going to use the following property of the function
ψ defined in (2.1):

(3.1)
1

2
b

(
t

2

)
≤
ψ(t)

t
≤ b(t).

It follows easily from the definition and the fact that b is non-decreasing.

Proof of Theorem (2.2). First we prove that (2.3) implies (2.4). Given
λ > 0, we can write

f = hλ + gλ,

where hλ = fχ{|f |≤λ}. Then, since

MΩf ≤MΩ(hλ) +MΩ(gλ),

the (∞,∞) boundedness of MΩ allows us to obtain

(3.2) |{x ∈ Ω :MΩf(x) > 2λ}| ≤ |{x ∈ Ω :MΩgλ(x) > λ}|.

With this estimate, the weak type (1, 1) of MΩ, (2.3) and (3.1), we have\
Ω

φ
(
1
2MΩf(x)

)
dx ≤

∞\
0

a(λ)|{x ∈ Ω :MΩgλ(x) > λ}| dλ

≤ C + C

∞\
1

a(λ)

λ

( \
Ω

|gλ(x)| dx
)
dλ

≤ C + C
\
Ω

|f(x)|

( |f(x)|\
1

a(λ)

λ
dλ

)
dx

≤ C + C
\
Ω

|f(x)|b(C|f(x)|) dx ≤ C + C
\
Ω

ψ(C|f(x)|) dx,

proving (2.4). If we take f/(C‖f‖Lψ(Ω)) instead of f in (2.4) then, using the
lower type of φ, we obtain\

Ω

φ

(
MΩf(x)

C‖f‖Lψ(Ω)

)
dx ≤ 1

for an appropriate constant C, and that is (2.5). Moreover, from the fact
that

MΩf ≤MΩf,

it is clear that (2.4) implies (2.6). It is easy to see that (2.5) and (2.6) each
imply (2.7).

Finally, we show that (2.3) follows from (2.7). Without loss of generality,
we can assume that Ω contains the unit ball B0 = {x ∈ R

n : |x| ≤ 1}. For
δ > 0, take fδ(x) = w

−1
n δ−nχB0(x/δ), where wn = |B0|. Now, given δ < 1/8
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and λ ∈ (2nw−1n , w−1n δ−n2−n−1), we have

|{x :MΩfδ(x) > λ}| ≥
∣∣∣
{
x : δ < |x| < 1/4

and |B(x, 2|x|)|−1
\

B(x,2|x|)

fδ(y) dy > λ
}∣∣∣

= |{x : δ < |x| < 1/4 and 2−n|x|−n/wn > λ}|

= |{x : δ < |x| < 1/4 and |x| < 1/(2w1/nn λ1/n)}|

= C

(
1

2nλwn
− δn
)
≥
C

λ
.

From this inequality and (2.7), using the notation ‖ ‖ψ instead of ‖ ‖Lψ(Ω),
we get

1 ≥
\
Ω

φ

(
MΩfδ(x)

C‖fδ‖ψ

)
dx

=

∞\
0

a(λ)|{x ∈ Ω :MΩfδ(x) > C‖fδ‖ψλ}| dλ

=

∞\
0

a

(
λ

C‖fδ‖ψ

)
|{x ∈ Ω :MΩfδ(x) > λ}|

dλ

C‖fδ‖ψ

≥ C

w−1n δ−n2−n−1\
w−1n 2n

a

(
λ

C‖fδ‖ψ

)
dλ

λ‖fδ‖ψ

= C

C2δ
−n/‖fδ‖ψ\

C1/‖fδ‖ψ

a(λ)
dλ

λ‖fδ‖ψ
.

Therefore, since ‖fδ‖ψ = w
−1
n δ−n/ψ−1(δ−nw−1n ), it follows that

C′2ψ
−1(δ−nw−1n )\

C′1δ
nψ−1(δ−nw−1n )

a(λ)

λ
dλ ≤ C

δ−n

ψ−1(δ−nw−1n )
.

Taking t = C ′2ψ
−1(δ−nw−1n ), we obtain

t\
C′1t/(C

′

2ψ(t/C
′

2)wn)

a(λ)

λ
dλ ≤ Cb(Ct).

Since t/ψ(t) ≤ 2/b(t/2)→ 0 as t→∞ by hypothesis, there exists t0 > 0
such that C ′1t/(C

′
2ψ(t/C

′
2)wn) ≤ 1 for every t ≥ t0, so the above inequality
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allows us to write
t\
1

a(λ)

λ
dλ ≤ Cb(Ct) for t ≥ t0.

From the fact that a(λ) is a continuous function and b is non-decreasing
we conclude that the last inequality holds for t ≥ 1 (perhaps with a different
constant), which is (2.3).

Proof of Theorem (2.9). To show that (2.10) implies (2.11), we shall
apply a similar reasoning to that used in the proof of (2.3)⇒(2.4) of Theorem
(2.2).

First, suppose that ‖f‖Lψ(Ω) = 1. Taking f̃ = f/(2C2), where C2 is
the constant appearing in (2.10), for λ > 0 given, we wish to estimate the
measure of the set

{x ∈ Ω :Mα
Ω f̃(x) > 2λ}.

For this purpose we decompose f̃ as

f̃ = hs + gs,

where hs = f̃χ{|f̃ |≤s} and s is to be fixed later as a function of λ. Clearly,

Mα
Ω f̃ ≤M

α
Ω(hs) +M

α
Ω(gs).

Since Mα
Ω maps L

n/α(Ω) into L∞(Ω) continuously and sn/α−1/b(s) is in-
creasing, we can write

(Mα
Ω(hs)(x))

n/α ≤ ‖hs‖
n/α
n/α ≤

∞\
0

λn/α−1|{x ∈ Ω : |hs(x)| > λ}| dλ(3.3)

≤

s\
0

λn/α−1

b(λ)
b(λ)|{x ∈ Ω : |f̃(x)| > λ}| dλ

≤
sn/α−1

b(s)

\
Ω

ψ(|f̃(x)|) dx ≤
sn/α−1

b(s)

\
Ω

ψ(|f(x)|) dx

=
sn/α−1

b(s)
,

where the last inequality follows upon assuming C2 > 1 (which is always
possible) since ψ is increasing. Now, we want to choose s such that

Mα
Ωhs(x) ≤

λ

C1
∀x ∈ Ω,

where C1 is the constant appearing in (2.10). From (3.3), it is enough to
choose s satisfying

(3.4) C1s
1−α/nb(s)−α/n = λ.
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Notice that this choice is possible for λ greater than a constant λ0 > 1,
since the function sn/α−1/b(s) is continuous for s > 0 and tends to infinity
as s → ∞ by hypothesis. Moreover since it is also increasing there is only
one such s. Therefore

(3.5) |{x ∈ Ω :Mα
Ωf(x) > 2λ/C1}| ≤ |{x ∈ Ω :M

α
Ωgs(x) > λ/C1}|

for every λ > λ0 and s = s(λ) defined by (3.4). From this estimate and the
weak type (1, n/(n− α)) of Mα

Ω , we get\
Ω

φ

(
C1
2
Mα
Ω f̃(x)

)
dx =

( λ0\
0

+

∞\
λ0

)
a(λ)|{x ∈ Ω :Mα

Ω f̃(x) > 2λ/C1}| dλ

≤ C +

∞\
1

a(λ)|{x ∈ Ω :Mα
Ωgs(x) > λ/C1}| dλ

≤ C + C

∞\
1

a(λ)

λn/(n−α)

( \
Ω

|gs(x)| dx
)n/(n−α)

dλ,

= C + C

∞\
1

( \
Ω

|gs(x)|a(λ)
(n−α)/n

λ
dx

)n/(n−α)
dλ

where C1 is the constant appearing in (2.10). Applying Minkowski’s integral
inequality and (2.10), we have\
Ω

φ

(
C1
2
Mα
Ω f̃(x)

)
dx

≤ C + C

( \
Ω

(∞\
1

|gs(x)|
n/(n−α) a(λ)

λn/(n−α)
dλ

)(n−α)/n
dx

)n/(n−α)

≤ C + C

( \
Ω

|f̃(x)|

( s−1(|f̃(x)|)\
1

a(λ)

λn/(n−α)
dλ

)(n−α)/n
dx

)n/(n−α)

= C+C

( \
Ω

|f̃(x)|

(C1|f̃(x)|1−α/nb−α/n(|f̃(x)|)\
1

a(λ)

λn/(n−α)
dλ

)(n−α)/n
dx

)n/(n−α)

≤ C + CC2
\
Ω

|f̃(x)|b(C2|f̃(x)|) dx

≤ C + C
\
Ω

ψ(2C2|f̃(x)|) dx = C + C
\
Ω

ψ(|f(x)|) dx.
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From the above inequality and the fact that φ is of positive lower type, it is
easy to see that there exists a constant C such that\

Ω

φ(CMα
Ωf(x)) dx ≤ 1

for every f with ‖f‖Lψ(Ω) = 1. Finally, it is clear that the last assumption
on f can be removed by taking f/‖f‖Lψ(Ω) instead of f . This completes the
proof of (2.11).

Since

Mα
Ωf(x) ≤M

α
Ωf(x) for a.e. x ∈ Ω,

it follows that (2.11) implies (2.12).

In order to prove that (2.12) implies (2.10), we assume, without loss of
generality, that Ω contains the unit ball B0. For δ > 0, we define

fδ(x) = wnδ
−nb(δ−n)−α/nχB0(x/δ),

where wn = |B0|. Given δ small enough, and λ belonging to the interval

Jδ = (d0b(δ
−n)−α/n, d1b(δ

−n)−α/nδ−n+α)

where d0 = 2
n−αwα/n−1 and d1 = 2

−(1+1/n)(n−α)w
α/n−1
n , we have

|{x :Mα
Ωfδ(x) > λ}| ≥

∣∣∣
{
x : δ < |x| < 1/4

and |B(x, 2|x|)|−1+α/n
\

B(x,2|x|)

fδ(y) dy > λ
}∣∣∣

= |{x : δ < |x| < 1/4 and (2|x|)α−nwα/n−1n b(δ−n)−α/n > λ}|

=

∣∣∣∣
{
x : δ < |x| <

1

2
w−1/nn

(
b(δ−n)−α/n

λ

)1/(n−α)}∣∣∣∣

= C

(
1

2n
w−1n

(
b(δ−n)−α/n

λ

)n/(n−α)
− δn
)

≥ C

(
b(δ−n)−α/n

λ

)n/(n−α)
.

From (2.12) and this estimate, we obtain

1 ≥
\
Ω

φ

(
Mα

Ωfδ(x)

C‖fδ‖Lψ(Ω)

)
dx

=

∞\
0

a(λ)|{x ∈ Ω :Mα
Ωfδ(x) > λC‖fδ‖Lψ(Ω)}| dλ



ORLICZ BOUNDEDNESS 277

=

∞\
0

a

(
s

C‖fδ‖Lψ(Ω)

)
|{x ∈ Ω :Mα

Ωfδ(x) > s}|
ds

C‖fδ‖Lψ(Ω)

≥
Cb(δ−n)−α/(n−α)

‖fδ‖Lψ(Ω)

d1b(δ
−n)−α/nδα−n\

d0b(δ−n)−α/n

a

(
s

C‖fδ‖Lψ(Ω)

)
ds

sn/(n−α)

=
Cb(δ−n)−α/(n−α)

‖fδ‖
n/(n−α)

Lψ(Ω)

d̃1b(δ
−n)−α/nδα−n/‖fδ‖Lψ(Ω)\

d̃0b(δ−n)−α/n/‖fδ‖Lψ(Ω)

a(s)

sn/(n−α)
ds.

Then, since ‖fδ‖Lψ(Ω) = b(δ
−n)−α/nδ−nw−1n /ψ−1(δ−nw−1n ), we get

d̃1wnδ
αψ−1(δ−nw−1n )\

d̃0wnδnψ−1(δ−nw
−1
n )

a(s)

sn/(n−α)
ds ≤ C

(
δ−n

ψ−1(δ−nw−1n )

)n/(n−α)
.

Taking t = ψ−1(δ−nw−1n ) and applying (3.1), we have

d̃1w
1−α/n
n b(t)−α/nt1−α/n\

d̃02/b(t/2)

a(s)

sn/(n−α)
ds ≤

d̃1w
1−α/n
n ψ(t)−α/nt\
d̃0t/ψ(t)

a(s)

sn/(n−α)
ds

≤ C

(
ψ(t)

t

)n/(n−α)
≤ Cb(t)n/(n−α).

But, since b(t)→∞ as t→∞, there exists t0 > 0 such that

C1b(t)
−α/nt1−α/n\
1

a(s)

sn/(n−α)
ds ≤ C2b(C2t)

n/(n−α) for every t ≥ t0.

Finally, using the fact that the functions sn/α−1/b(s) and b(s) are non-
decreasing, we clearly deduce the above inequality for t ≥ 1, which completes
the proof of the theorem.

Proof of Corollary (2.15). Assume (2.16). First we observe that from
the definition of φ in (2.17), we have

(3.6) ψ(t) = φ(tψ(t)−α/n).

Then, taking b(t) = ψ′(t) and using (3.1), for β a constant to be deter-
mined later, we have

βb(t)−α/nt1−α/n\
1

a(s)

sn/(n−α)
ds ≤ C

φ(Cβb(t)−α/nt1−α/n)

(βb(t)−α/nt1−α/n)n/(n−α)

≤ C
φ(Cβtψ(t)−α/n)

(βb(t)−α/nt1−α/n)n/(n−α)
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for t large enough. Now, choosing β = 1/C, from (3.1) and (3.6) we obtain

(1/C)b(t)−α/nt1−α/n\
1

a(s)

sn/(n−α)
ds ≤ C1+n/(n−α)

ψ(t)

tb(t)−α/(n−α)
(3.7)

≤ C1+n/(n−α)b(t)n/(n−α).

If we can prove that b(s) and sn/α−1/b(s) are quasi-increasing and tend
to infinity as s→∞, then from Remark (2.14) and Theorem (2.9) we shall
obtain (2.17). In order to see this, first notice that since φ(t)/tn/(n−α) →∞
as t → ∞, it follows that φ(t) → ∞ as t → ∞. Consequently, we have
s/(φ−1(s))n/(n−α) → ∞ as s → ∞. So, from the definition of ψ we have
ψ(s)/s → ∞ as s → ∞, and moreover, ψ(s)/s is non-decreasing. These
facts together with (3.1) allow us to conclude that b(s) is quasi-increasing
and tends to infinity as s → ∞. On the other hand, using again (3.1) and
suitable changes of variables, it is easy to see that sn/α−1/b(s) is equivalent
to ψ−1(t)n/α/t, which is (φ−1(t))n/α. Thus sn/α−1/b(s) is quasi-increasing
and tends to infinity as s→∞.

Let us now prove that (2.17) implies (2.16). As before, we can prove that
b(s) and sn/α−1/b(s) are quasi-increasing and tend to infinity as s → ∞;
then, from Remark (2.14) and Theorem (2.9), we have

C1t
1−α/nb(t)−α/n\

1

a(s)

sn/(n−α)
ds ≤ C2b(C2t)

n/(n−α) for every t ≥ 1.

By a reverse reasoning to that used to prove (3.7), we obtain (2.16).

To prove Theorems (2.18) and (2.22) we shall need the following result.

(3.8) Lemma. Let φ be as in (2.1) and assume that φ is of finite up-
per type at infinity. Let h and g be two non-negative measurable functions
defined on (A, µ), a measure space with µ(A) <∞, and such that :

(3.9) (Good-λ inequality) There exist positive constants C and δ such
that

µ({x ∈ A : h(x) > 2λ and g(x)≤βλ})≤Cβδµ({x ∈ A : h(x) > λ})

for all λ > 0 and 0 < β < 1.

Then there exists a constant C such that\
A

φ(h(x)) dx ≤ Cµ(A) + C
\
A

φ(Cg(x)) dx.

Proof. First notice that we may assume that inequality (1.6) is satisfied
for some finite q with s = 2 and any t ≥ 1, i.e., φ(2t) ≤ Cφ(t) for all t ≥ 1.
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Using now (3.9), for M > 0 we have

M\
0

a(λ)µ({x ∈ A : h(x) > λ}) dλ

= 2

M/2\
0

a(2λ)µ({x ∈ A : h(x) > 2λ}) dλ

= 2

M/2\
0

a(2λ)µ({x ∈ A : h(x) > 2λ and g(x) ≤ βλ}) dλ

+ 2

M/2\
0

a(2λ)µ({x ∈ A : h(x) > 2λ and g(x) > βλ}) dλ

≤ 2Cβδ
M\
0

a(2λ)µ({x ∈ A : h(x) > λ}) dλ

+
2

β

∞\
0

a

(
2

β
λ

)
µ({x ∈ A : g(x) > λ}) dλ.

Take hM = hχ{h≤M} +Mχ{h>M}; then from the above inequality and the
fact that φ is of finite upper type at infinity, we get

M\
0

a(λ)|{x ∈ A : h(x) > λ}|

≤ 2Cβδ
∞\
0

a(2λ)|{x ∈ A : hM (x) > λ}| dλ+
\
A

φ

(
2

β
g(x)

)
dµ(x)

≤ Cβδµ(A) + Cβδ
\

{x∈A:hM (x)>1}

φ(2hM (x)) dµ(x) +
\
A

φ

(
2

β
g(x)

)
dµ(x)

≤ Cµ(A) + Cβδ
\
A

φ(hM (x)) dµ(x) +
\
A

φ

(
2

β
g(x)

)
dµ(x)

≤ Cµ(A) + Cβδ
M\
0

a(λ)µ({x ∈ A : h(x) > λ}) dλ+
\
A

φ

(
2

β
g(x)

)
dµ(x).

Taking β small enough and M tending to infinity, we clearly arrive at the
desired conclusion.

Proof of Theorem (2.18). First we assume (2.19). It is well known that
the one-dimensional torus is a space of homogeneous type. In this context,



280 E. HARBOURE ET AL.

it was proved in [A] that a good-λ inequality of the type (3.4) holds between
Mf , the Hardy–Littlewood maximal function, and T ∗f , the maximal oper-

ator associated to a singular integral. Since f̃ is in fact a singular integral
for this particular space, we may apply Lemma (3.8) to get\

T

φ(|f̃∗(θ)|) dθ ≤ C + C
\
T

φ(CMf(θ)) dθ.

Now, on the one hand we have |f̃(θ)| ≤ |f̃∗(θ)| a.e. and on the other hand
it is easy to see that the Hardy–Littlewood maximal function associated
to that space is equivalent to the maximal function M(−π,π) appearing in
Theorem (2.2). Therefore, using that theorem we conclude that (2.20) holds.
Clearly, from the fact that φ is of positive lower type, (2.20) implies (2.21).

Let us see that (2.19) follows from (2.21). Taking fδ(θ) = δ
−1χ[−δ,δ](θ),

it is easy to check that

f̃δ(θ) =
1

δ
log

∣∣∣∣
sin θ−δ2
sin θ+δ2

∣∣∣∣.

Now, for each θ in (0, π/2), we take Fθ(δ) = f̃δ(θ). Then, using linear
approximation, we get

(3.10) Fθ(δ) = −
sin θ

2 sin2
θ

2

−
1

2

sin θ sin δ0
(cos δ0 − cos θ)2

δ

for 0 < δ0 < δ. Since 2θ/π ≤ sin θ ≤ θ for θ ∈ (0, π/2), we have

4

πθ
≤
sin θ

2 sin2( θ2 )
≤
π2

2θ
.

Then, from (3.10), we get

(3.11)
4

πθ
− |E(δ0, θ)|δ ≤ |Fθ(δ)| ≤

π2

2θ
+ |E(δ0, θ)|δ,

where |E(δ0, θ)| = sin θ sin δ0/(2(cos δ0 − cos θ)
2). But from the fact that

|E(δ0, θ)| =
1

8

sin θ sin δ0(
sin
(
θ+δ0
2

)
sin
(
θ−δ0
2

))2 ,

and assuming δ < 4θ/π5, it is not difficult to see that

δ|E(δ0, θ)| <
2

πθ
.

So, from (3.11) we have

(3.12)
C1
θ
=
2

πθ
≤ |f̃δ(θ)| ≤

1

θ

(
π2

2
+
2

π

)
=
C2
θ
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for δ < 4θ/π5. Therefore for λ ∈ (4/π4, 4/(π6δ)) and δ small enough, we
obtain

|{θ ∈ [−π, π] : |f̃δ(θ)| > λ}| ≥

∣∣∣∣
{
π5

4
δ < θ <

π

2
and |f̃δ(θ)| > λ

}∣∣∣∣

≥

∣∣∣∣
{
π5

4
δ < θ <

π

2
and

2

πθ
> λ

}∣∣∣∣

=

∣∣∣∣
{
π5

4
δ < θ <

2

πλ

}∣∣∣∣

=
2

πλ
−
π5

4
δ >

1

πλ
.

Finally, proceeding as in the proof of (2.7)⇒(2.3) in Theorem (2.2), we get
(2.19).

Proof of Theorem (2.22). We first prove that (2.23) implies (2.24). The
good-λ inequality for h(x) = IαΩf(x) and g(x) = Mα

Ωf(x) follows in the
same way as in [MW] for Ω = R

n. Then, by Lemma (3.8), we have\
Ω

φ(|IαΩf(x)|) dx ≤ C + C
\
Ω

φ(CMα
Ωf(x)) dx,

which, by Theorem (2.9), implies (2.24). Conversely, easy estimates show
that

Mα
Ωf(x) ≤ I

α
Ωf(x) for every x ∈ Ω.

Therefore inequality (2.24) allows us to obtain (2.17). Finally, applying The-
orem (2.9) again, we get (2.23).
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