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ON OPERATORS FROM `s TO `p ⊗̂ `q OR TO `p
̂̂⊗ `q

BY

CHRISTIAN SAMUEL (Marseille)

Abstract. We show that every operator from `s to `p b⊗ `q is compact when 1 ≤
p, q < s and that every operator from `s to `p

bb⊗ `q is compact when 1/p + 1/q > 1 + 1/s.

1. Introduction. We recall Pitt’s theorem: for 1 ≤ p < s < ∞, every
operator from `s to `p is compact [7], [8]. This result has been extended
to different settings. Among the more recent contributions we mention [1]
and [3]. The aim of this paper is to show that every operator from `s to
`p ⊗̂ `q is compact when

(1.1) 1 ≤ p, q < s

and that every operator from `s to `p ̂̂⊗ `q is compact when

(1.2)
1
p

+
1
q
> 1 +

1
s
.

A proof of the injective case, using τα-convergence, is given in [1]. Here we
use a different method and the same technique in both cases. Let r = s′

be the conjugate exponent of s (i.e. 1/s + 1/s′ = 1). We show that under
condition (1.1) (resp. (1.2)) the space [`p ⊗̂ `q] ̂̂⊗ `r (resp. [`p ̂̂⊗ `q] ̂̂⊗ `r) does
not contain a subspace isomorphic to c0. The conclusions will then follow
from [11].

2. Notation. We shall make use of standard Banach space facts and
terminology as may be found in [6], [7].

The term operator means bounded linear operator. Subspacemeans closed
linear subspace.

Let E,F be Banach spaces. We denote by:

• L(E,F ) the space of operators from E to F.
• N (E,F ) the space of nuclear operators from E to F, and by ‖u‖nuc

the nuclear norm of a nuclear operator u.
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• B(E,F ) the space of continuous bilinear forms on E × F.
• E ⊗̂ F the completion of E ⊗ F endowed with the projective norm

[4], [5].
• E ̂̂⊗F the completion of E⊗F endowed with the injective norm [4], [5].
• J (E,F ) the space of bilinear integral forms on E×F.We have J (E,F )

= [E ̂̂⊗ F ]∗. The norm of an integral form ϕ is denoted by ‖ϕ‖int.
• `mp the m-dimensional space `p({1, . . . ,m}).

Let r be a real number ≥ 1; we define

slr(E) =
{
x = (xn)n≥1 ; for all n ≥ 1, xn ∈ E,

and for all x∗ ∈ E∗,
∞∑
n=1

|x∗(xn)|r <∞
}
.

We recall that for x = (xn)n ∈ slr(E) we have

‖x‖ = sup
‖x∗‖≤1

[ ∞∑
n=1

|x∗(xn)|r
]1/r

<∞.

The space (slr(E), ‖ ‖) is a Banach space. For every integer m, let Rm
be the projection of slr(E) defined, for every x = (xk)k, by Rm(x) =
(x1, . . . , xm, 0, 0, . . .). The subspace

Fr(E) = {x ∈ slr(E) ; x = lim
m→∞

Rm(x)}

of slr(E) is isometrically isomorphic to `r ̂̂⊗ E (see [9]). We shall use this
isometric isomorphism without any reference.

3. Lemmas. Let 1 ≤ p, q, r < ∞. We denote by (Pm)m the natural
projections associated to the unit vector basis of `p and by (Qm)m the natural
projections associated to the unit vector basis of `q. We denote by P̃m, Q̃m
the norm 1 projections of `r ̂̂⊗ (`p ⊗̂ `q) or `r ̂̂⊗ (`p ̂̂⊗ `q) which are defined
by P̃m = I`r ⊗ (Pm⊗ I`q) and Q̃m = I`r ⊗ (I`p ⊗Qm). For every x = (xk)k ∈
Fr(`p ⊗̂ `q) or x = (xk)k ∈ Fr(`p ̂̂⊗ `q) we have

P̃m(x) = ((Pm ⊗ I`q)(x1), . . . , (Pm ⊗ I`q)(xk), . . .),

Q̃m(x) = ((I`p ⊗Qm)(x1), . . . , (I`p ⊗Qm)(xk), . . .).

For all m,n we have P̃m ◦Rn = Rn ◦ P̃m, Q̃m ◦Rn = Rn ◦ Q̃m and P̃m ◦ Q̃n =
Q̃n ◦ P̃m.

It is well known that, if (πm)m is a sequence of operators on a Banach
space E such that limm→∞ πm(x) = x for every x ∈ E, then for every
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Banach space F and for every u ∈ E ⊗̂ F (resp. u ∈ E ̂̂⊗ F ) we have
limm→∞(πm ⊗ IF )(u) = u. This remark leads to the following lemma:

Lemma 3.1. For every x ∈ Fr(`p ⊗̂`q) and every x ∈ Fr(`p ̂̂⊗`q) we have

x = lim
m→∞

P̃m(x) = lim
m→∞

Q̃m(x).

Lemma 3.2. For every integer m, P̃m[Fr(`p ⊗̂ `q)] and P̃m[Fr(`p ̂̂⊗ `q)]
are isomorphic to `r ̂̂⊗ `q.

Proof. It is easy to show that

P̃m[Fr(`p ⊗̂ `q)] = Fr[(Pm ⊗ I`q)(`p ⊗̂ `q)].

We have (Pm⊗ I`q)(`p ⊗̂ `q) isomorphic to `mp ⊗̂ `q. It is well known that
`mp ⊗̂ `q is isomorphic to the m-product [`q]m of `q and so to `q. Hence,

Fr[(Pm⊗ I`q)(`p ⊗̂ `q)] is isomorphic to `r ̂̂⊗ `q. With the same argument we

show that P̃m[Fr(`p ̂̂⊗ `q)] is isomorphic to `q ̂̂⊗ `r.
In the following we shall consider sequences of block operators. A se-

quence (Tn)n of operators from `p to `q′ is called a sequence of block opera-
tors if there exist two strictly increasing sequences (in)n and (jn)n of integers
such that i0 = j0 = 0 and, for every integer n ≥ 1, we have

Tn = (Q∗jn −Q
∗
jn−1

) ◦ Tn ◦ (Pin − Pin−1).

We write as lemmas the results of Tong [10] that we will use below.

Lemma 3.3. Let (Tn)n be a sequence of block operators from `p to `q′ .
Suppose that ‖Tn‖ = 1 for every n. Then, for every integer N and for every
finite sequence (αn)1≤n≤N of scalars, we have

∥∥∥ N∑
n=1

αnTn

∥∥∥ =



[ N∑
n=1

|αn|
pq′

p−q′
] p−q′

pq′ if 1 ≤ q′ < p <∞,

max
1≤n≤N

|αn| if 1 ≤ p ≤ q′ ≤ ∞,

[ N∑
n=1

|αn|q
′
]1/q′

if 1 ≤ q′ < p =∞.

Lemma 3.4. Let (Tn)n be a sequence of block operators from `p to `q′ .
Suppose that ‖Tn‖nuc = 1 for every n. Then, for every integer N and for
every finite sequence (αn)1≤n≤N of scalars, we have
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∥∥∥ N∑
n=1

αnTn

∥∥∥
nuc

=



[ N∑
n=1

|αn|
pq′

pq′+p−q′
] pq′+p−q′

pq′ if 1 ≤ p < q′ <∞,

max
1≤n≤N

|αn| if p = 1 and q′ =∞,

[ N∑
n=1

|αn|
p

p−1

] p−1
p if 1 < p < q′ =∞,

N∑
n=1

|αn| if 1 ≤ q′ ≤ p ≤ ∞.

The following lemma is a direct consequence of the proof of the theorem
of [9].

Lemma 3.5. Let X be an infinite-dimensional subspace of `p ̂̂⊗ `q. If
q′ > p, then X contains a subspace isomorphic to `σ where σ = p or σ = q

or σ = pq
p+q−pq = pq′

q′−p , and if q′ ≤ p, then X contains a subspace isomorphic
to c0.

4. Operators from `s into `p ⊗̂`q. For every b ∈ B(E,F ) we denote by
Tb ∈ L(E,F ∗) the operator defined by (Tb(x))(y) = b(x, y) for every x ∈ E
and y ∈ F. We recall that the operator b 7→ Tb is an isometric isomorphism
from B(E,F ) onto L(E,F ∗).

Theorem 4.1. Let 1 ≤ p, q, r be real numbers such that 1 ≤ r, 1 ≤ p < r′

and 1 ≤ q < r′. Then the space (`p ⊗̂ `q) ̂̂⊗ `r does not contain a subspace
isomorphic to c0.

Proof. By Grothendieck’s result [5] the space `p ⊗̂`q is the dual of `p′ ̂̂⊗`q′
(with c0 in place of `∞ when p or q = 1). Therefore the space `p ⊗̂ `q is a
separable dual, hence, by [2], it does not contain a subspace isomorphic to c0.

We assume that Fr(`p ⊗̂`q) contains a subspace isomorphic to c0; we shall
show that this leads to a contradiction. We shall construct a normalized basic
sequence (xn)n of Fr(`p ⊗̂ `q) equivalent to the unit vector basis of c0 and
three strictly increasing sequences of integers (in)n, (jn)n, (kn)n such that
i0 = j0 = k0 = 0 and, for every integer n ≥ 1,

(4.1) xn = (Rkn −Rkn−1)(xn) = (P̃in − P̃in−1)(xn) = (Q̃jn − Q̃jn−1)(xn).

This will be done in three stages. We begin with a normalized basic sequence
(un)n of Fr(`p ⊗̂ `q) equivalent to the unit vector basis of c0.

In the first stage we show that there exists a normalized basic sequence
(vn)n of Fr(`p ⊗̂ `q) equivalent to the unit vector basis of c0 and a strictly
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increasing sequence (mn)n of integers such thatm0 = 0 and, for every integer
n ≥ 1,

(4.2) vn = (Rmn −Rmn−1)(vn).

Let ε > 0. For every integer m ≥ 1, the subspace ImRm of Fr(`p ⊗̂ `q)
is isomorphic to [`p ⊗̂ `q]m so it does not contain a subspace isomorphic
to c0. Due to this remark it is easy to construct by induction a normalized
block basic sequence (u′n)n of (un)n and a strictly increasing sequence (mn)n
of integers such that ‖Rm1(u

′
1) − u′1‖ ≤ ε/2 and, for every integer n ≥ 2,

‖Rmn−1(u
′
n)‖ ≤ ε/2n+1 and ‖Rmn(u′n)− u′n‖ ≤ ε/2n+1. For every integer n

we have
‖u′n − (Rmn −Rmn−1)(u

′
n)‖ ≤

ε

2n

so, for ε > 0 small enough, the sequence ((Rmn −Rmn−1)(u
′
n))n is seminor-

malized and equivalent to the unit vector basis of c0. For every integer n we
take

vn =
(Rmn −Rmn−1)(u

′
n)

‖(Rmn −Rmn−1)(u′n)‖
.

The sequence (vn)n is a normalized basic sequence of Fr(`p ⊗̂ `q) equivalent
to the unit vector basis of c0 which satisfies condition (4.2).

In the second stage we show that there exists a normalized basic sequence
(wn)n of Fr(`p ⊗̂ `q) equivalent to the unit vector basis of c0 and two strictly
increasing sequences of integers (pn)n and (rn)n such that p0 = r0 = 0 and,
for every integer n ≥ 1,

(4.3) wn = (Rrn −Rrn−1)(wn) = (P̃pn − P̃pn−1)(wn) .

To do this, let ε1 > 0. By Lemma 3.2, for every integer p ≥ 1, the space
P̃p[Fr(`p ⊗̂ `q)] is isomorphic to `q ̂̂⊗ `r with q < r′. So, by Lemma 3.5, it
does not contain a subspace isomorphic to c0. It is then easy to construct
by induction a normalized block basic sequence (v′n)n of (vn)n and a strictly
increasing sequence (pn)n of integers such that ‖v′1 − P̃p1(v′1)‖ ≤ ε1/2 and,
for every integer n ≥ 2,

‖P̃pn−1(v
′
n)‖ ≤

ε1
2n+1

and ‖P̃pn(v′n)− v′n‖ ≤
ε1

2n+1
.

For ε1 > 0 small enough, the sequence ((P̃pn − P̃pn−1)(v
′
n))n is a seminor-

malized sequence equivalent to the unit vector basis of c0. For every integer
n ≥ 1 we take

wn =
(P̃pn − P̃pn−1)(v

′
n)

‖(P̃pn − P̃pn−1)(v′n)‖
.

It follows from condition (4.2) that there exists a strictly increasing sequence
(rn)n of integers with r0 = 0 such that wn = (Rrn − Rrn−1)(wn) for every
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integer n. The sequence (wn)n is a normalized basic sequence equivalent to
the unit vector basis of c0 which satisfies condition (4.3).

In the third stage we show that there exists a normalized basic sequence
(xn)n equivalent to the unit vector basis of c0 and three strictly increasing
sequences of integers (in)n, (jn)n and (kn)n such that i0 = j0 = k0 which
satisfy condition (4.1).

To do this, we begin with the sequence (wn)n satisfying condition (4.3)
and we use the same method as in the second stage.

Now we show that the existence of a normalized basic sequence (xn)n of
Fr(`p ⊗̂ `q) equivalent to the unit vector basis of c0 satisfying condition (4.1)
leads to a contradiction.

For every integer n we have xn = (Rkn − Rkn−1)(xn) so there exists a
sequence (ul)l in `p ⊗̂ `q such that x1 = (u1, . . . , uk1 , 0, 0, . . .) and, for every
integer n ≥ 2, xn = (0, . . . , 0, ukn−1+1, . . . , ukn , 0, 0, . . .).

Let us recall that [`p ⊗̂ `q]∗ is isometrically isomorphic to the space
B(`p, `q) ([4], [5]). So, for every integer n, there exists bn ∈ B(`p, `q) such
that ‖bn‖ = 1 and

1 =
[ kn∑
l=kn−1+1

|bn(ul)|r
]1/r

.

It follows from condition (4.1) that for each integer l ∈ {kn−1 + 1, . . . , kn}
we have

(4.4) bn(ul) = bn([(Pin − Pin−1)⊗ (Qjn −Qjn−1)](ul)).

Condition (4.4) implies that we may suppose that

Tbn = (Q∗jn −Q
∗
jn−1

) ◦ Tbn ◦ (Pin − Pin−1),

so (Tbn)n is a sequence of block operators. This last assumption implies that
for n 6= m and l ∈ { km−1 + 1, . . . , km }, we have bn(ul) = 0.

Let N be an integer, α1, . . . , αN be scalars and let b = α1b1+ · · ·+αNbN .
We have [ kN∑

n=1

|b(un)|r
]1/r

= [|α1|r + · · ·+ |αN |r]1/r,

so

‖x1 + · · ·+ xN‖ ≥ Λ(N)

= sup{[|α1|r + · · ·+ |αN |r]1/r ; ‖α1b1 + · · ·+ αNbN‖ ≤ 1}.
Now we compute Λ(N).

In the case p ≤ q′ we have, by Lemma 3.3,

‖α1b1 + · · ·+ αNbN‖ = ‖α1Tb1 + · · ·+ αNTbN ‖ = max
1≤n≤N

|αn|,

so Λ(N) = N1/r.
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In the case p > q′, let σ = pq′/(p− q′). We also have, by Lemma 3.3,

‖α1b1 + · · ·+ αNbN‖ = ‖α1Tb1 + · · ·+ αNTbN ‖ =
[ N∑
n=1

|αn|σ
]1/σ

.

We have
1
r
− 1
σ

=
1
r
− 1
q′

+
1
p

and r < q′, so σ > r. Therefore, Λ(N) = Nσr/(σ−r).
In both cases, limN→∞ ‖x1 + · · · + xN‖ = ∞ so (xn)n is not equivalent

to the unit vector basis of c0, in contradiction with our construction.

Theorem 4.2. Let 1 ≤ p, q, s be real numbers such that 1 ≤ p < s and
1 ≤ q < s. Then every operator from `s into `p ⊗̂ `q is compact. The same is
true for every operator from c0 into `p ⊗̂ `q.

Proof. The conclusions follow directly from Corollary 14 of [11].

5. Operators from `s into `p
̂̂⊗ `q. We recall that if E∗ or F ∗ has the

Radon–Nikodym property and one of E∗ or F ∗ has the approximation prop-
erty then, for every b ∈ J (E,F ), we have Tb ∈ N (E,F ∗) and the operator
b 7→ Tb is an isometric isomorphism from J (E,F ) onto N (E,F ∗) [5].

Theorem 5.1. Let 1 ≤ p, q, r < ∞. The space `p ̂̂⊗ `q ̂̂⊗ `r contains a
subspace isomorphic to c0 if, and only if, 1/p+ 1/q + 1/r ≤ 2.

Proof. Suppose there is no subspace isomorphic to c0 in `p
̂̂⊗ `q

̂̂⊗ `r.

Therefore there is no subspace isomorphic to c0 in `p
̂̂⊗ `q, hence we have

1/p+ 1/q > 1. The space `p ̂̂⊗ `q contains a subspace isomorphic to `σ with
1/σ = 1/p+1/q−1. The space `σ ̂̂⊗`r does not contain a subspace isomorphic
to c0 so we have

1
σ

+
1
r

=
1
p

+
1
q

+
1
r
− 1 > 1.

Conversely we suppose that 1/p+1/q+1/r > 2 and that `p ̂̂⊗`q ̂̂⊗`r contains
a subspace isomorphic to c0.We consider `p ̂̂⊗`q ̂̂⊗`r as the space Fr(`p ̂̂⊗`q).
We observe that none of the spaces `p ̂̂⊗`q, `p ̂̂⊗`r or `q ̂̂⊗`r contain a subspace
isomorphic to c0. Proceeding as in the proof of Theorem 4.1, we can find a
normalized basic sequence (xn)n of `p ̂̂⊗`q ̂̂⊗`r equivalent to the unit basis of
c0 and three strictly increasing sequences of integers (in)n, (jn)n and (kn)n
such that i0 = j0 = k0 and satisfying, for n = 1, 2, . . . , condition (4.1).

Now we show that the existence of these sequences leads to a contra-
diction. We proceed as in the `p ⊗̂ `q case. For every integer n we have
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xn = (Rkn −Rkn−1)(xn) so there exists a sequence (ul)l in `p ̂̂⊗ `q such that
xn = (0, . . . , 0, ukn−1+1, . . . , ukn , 0, 0, . . .).

For every integer n, there exists bn∈ [`p ̂̂⊗`q]∗ = J (`p, `q) such that ‖bn‖int =1
and

‖xn‖ =
[ kn∑
l=kn−1+1

|bn(ul)|r
]1/r

= 1.

For n = 1, 2, . . . and kn−1 + 1 ≤ l ≤ kn we have
(5.1) bn(ul) = bn([(Pin − Pin−1)⊗ (Qjn −Qjn−1)](ul)).

It follows from condition (5.1) that we may suppose Tbn = (Q∗jn −Q
∗
jn−1

) ◦
Tbn ◦ (Pin − Pin−1). This last assumption implies that for n 6= m and l ∈
{km−1 + 1, . . . , km}, we have bn(ul) = 0.

Let N be an integer, α1, . . . , αN be scalars and let b = α1b1+ · · ·+αNbN .
We have [

∑kN
l=1 |b(ul)|

r]1/r = [
∑N

n=1 |αn|r]1/r, so

‖x1 + · · ·+ xN‖ ≥ Θ(N) = sup
{[ N∑

n=1

|αn|r
]1/r

;
∥∥∥ N∑
n=1

αnbn

∥∥∥
int
≤ 1
}
.

The integral forms b1, . . . , bN may be considered as integral forms on
`iNp × `

jN
q . In this case, J (`iNp , `jNq ) = N (`iNp , `jNq′ ), so (Tbn)1≤n≤N is a finite

sequence of nuclear block operators from `iNp to `jNq′ .
The assumption 1/p+1/q+1/r > 2 implies 1/p+1/q > 1, hence q′ > p.

In the cases q′ <∞ or q′ =∞ and 1 < p we let

σ =


pq′

pq′ + p− q′
if q′ <∞,

p

p− 1
if 1 < p < q′ =∞.

We observe that always σ > r. By Lemma 3.4 we have∥∥∥ N∑
n=1

αnbn

∥∥∥
int

=
∥∥∥ N∑
n=1

αnTbn

∥∥∥
nuc

=
[ N∑
n=1

|αn|σ
]1/σ

and by Lemma 3.3 we have

Θ(N) = sup
{[ N∑

n=1

|αn|r
]1/r

;
[ N∑
n=1

|αn|σ
]1/σ

≤ 1
}

= N (σ−r)/σr.

We deduce that ‖x1 + · · · + xN‖ ≥ N (σ−r)/σr, in contradiction with (xn)n
being equivalent to the unit vector basis of c0.

In the case p = 1 and q′ =∞, we have

Θ(N) =
∥∥∥ N∑
n=1

αnbn

∥∥∥
int

=
∥∥∥ N∑
n=1

αnTbn

∥∥∥
nuc

= max
1≤n≤N

|αn|.
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In this case, by Lemma 3.3, ‖x1 + · · · + xN‖ ≥ N1/r so the sequence (xn)n
is not equivalent to the unit vector basis of c0.

The assumptions that 1/p+ 1/q+ 1/r > 2 and that `p ̂̂⊗ `q ̂̂⊗ `r contains
a subspace isomorphic to c0 lead to a contradiction. The theorem is proved.

Corollary 14 of [11] implies:
Theorem 5.2. Let 1 ≤ p, q, s be real numbers such that 1/p + 1/q >

1 + 1/s. Then every operator from `s into `p ̂̂⊗ `q is compact. The same is
true for every operator from c0 into `p ̂̂⊗ `q.
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