COLLOQUIUM MATHEMATICUM

ON OPERATORS FROM $\ell_{s} T O \ell_{p} \widehat{\otimes} \ell_{q} O R T O \ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ BY CHRISTIAN SAMUEL (Marseille)

Abstract. We show that every operator from ℓ_{s} to $\ell_{p} \widehat{\otimes} \ell_{q}$ is compact when $1 \leq$ $p, q<s$ and that every operator from ℓ_{s} to $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ is compact when $1 / p+1 / q>1+1 / s$.

1. Introduction. We recall Pitt's theorem: for $1 \leq p<s<\infty$, every operator from ℓ_{s} to ℓ_{p} is compact [7], [8]. This result has been extended to different settings. Among the more recent contributions we mention [1] and [3]. The aim of this paper is to show that every operator from ℓ_{s} to $\ell_{p} \widehat{\otimes} \ell_{q}$ is compact when

$$
\begin{equation*}
1 \leq p, q<s \tag{1.1}
\end{equation*}
$$

and that every operator from ℓ_{s} to $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ is compact when

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}>1+\frac{1}{s} \tag{1.2}
\end{equation*}
$$

A proof of the injective case, using τ_{α}-convergence, is given in [1]. Here we use a different method and the same technique in both cases. Let $r=s^{\prime}$ be the conjugate exponent of s (i.e. $1 / s+1 / s^{\prime}=1$). We show that under condition 1.1 (resp. 1.2) the space $\left[\ell_{p} \widehat{\otimes} \ell_{q}\right] \widehat{\widehat{\otimes}} \ell_{r}\left(\right.$ resp. $\left.\left[\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right] \widehat{\widehat{\otimes}} \ell_{r}\right)$ does not contain a subspace isomorphic to c_{0}. The conclusions will then follow from [11].
2. Notation. We shall make use of standard Banach space facts and terminology as may be found in [6], [7].

The term operator means bounded linear operator. Subspace means closed linear subspace.

Let E, F be Banach spaces. We denote by:

- $\mathcal{L}(E, F)$ the space of operators from E to F.
- $\mathcal{N}(E, F)$ the space of nuclear operators from E to F, and by $\|u\|_{\text {nuc }}$ the nuclear norm of a nuclear operator u.

[^0]- $\mathcal{B}(E, F)$ the space of continuous bilinear forms on $E \times F$.
- $E \widehat{\otimes} F$ the completion of $E \otimes F$ endowed with the projective norm [4], 5].
- $E \widehat{\otimes} F$ the completion of $E \otimes F$ endowed with the injective norm [4], [5].
- $\mathcal{J}(E, F)$ the space of bilinear integral forms on $E \times F$. We have $\mathcal{J}(E, F)$ $=[E \widehat{\widehat{\otimes}} F]^{*}$. The norm of an integral form φ is denoted by $\|\varphi\|_{\text {int }}$.
- ℓ_{p}^{m} the m-dimensional space $\ell_{p}(\{1, \ldots, m\})$.

Let r be a real number ≥ 1; we define
$\operatorname{sl}_{r}(E)=\left\{x=\left(x_{n}\right)_{n \geq 1} ;\right.$ for all $n \geq 1, x_{n} \in E$,

$$
\text { and for all } \left.x^{*} \in E^{*}, \sum_{n=1}^{\infty}\left|x^{*}\left(x_{n}\right)\right|^{r}<\infty\right\}
$$

We recall that for $x=\left(x_{n}\right)_{n} \in \operatorname{sl}_{r}(E)$ we have

$$
\|x\|=\sup _{\left\|x^{*}\right\| \leq 1}\left[\sum_{n=1}^{\infty}\left|x^{*}\left(x_{n}\right)\right|^{r}\right]^{1 / r}<\infty
$$

The space $\left(\operatorname{sl}_{r}(E),\| \|\right)$ is a Banach space. For every integer m, let R_{m} be the projection of $\operatorname{sl}_{r}(E)$ defined, for every $x=\left(x_{k}\right)_{k}$, by $R_{m}(x)=$ $\left(x_{1}, \ldots, x_{m}, 0,0, \ldots\right)$. The subspace

$$
F_{r}(E)=\left\{x \in \operatorname{sl}_{r}(E) ; x=\lim _{m \rightarrow \infty} R_{m}(x)\right\}
$$

of $\operatorname{sl}_{r}(E)$ is isometrically isomorphic to $\ell_{r} \widehat{\widehat{\otimes}} E$ (see [9]). We shall use this isometric isomorphism without any reference.
3. Lemmas. Let $1 \leq p, q, r<\infty$. We denote by $\left(P_{m}\right)_{m}$ the natural projections associated to the unit vector basis of ℓ_{p} and by $\left(Q_{m}\right)_{m}$ the natural projections associated to the unit vector basis of ℓ_{q}. We denote by $\widetilde{P}_{m}, \widetilde{Q}_{m}$ the norm 1 projections of $\ell_{r} \widehat{\widehat{\otimes}}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ or $\ell_{r} \widehat{\widehat{\otimes}}\left(\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right)$ which are defined by $\widetilde{P}_{m}=I_{\ell_{r}} \otimes\left(P_{m} \otimes I_{\ell_{q}}\right)$ and $\widetilde{Q}_{m}=I_{\ell_{r}} \otimes\left(I_{\ell_{p}} \otimes Q_{m}\right)$. For every $x=\left(x_{k}\right)_{k} \in$ $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ or $x=\left(x_{k}\right)_{k} \in F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ we have

$$
\begin{aligned}
\widetilde{P}_{m}(x) & =\left(\left(P_{m} \otimes I_{\ell_{q}}\right)\left(x_{1}\right), \ldots,\left(P_{m} \otimes I_{\ell_{q}}\right)\left(x_{k}\right), \ldots\right) \\
\widetilde{Q}_{m}(x) & =\left(\left(I_{\ell_{p}} \otimes Q_{m}\right)\left(x_{1}\right), \ldots,\left(I_{\ell_{p}} \otimes Q_{m}\right)\left(x_{k}\right), \ldots\right)
\end{aligned}
$$

For all m, n we have $\widetilde{P}_{m} \circ R_{n}=R_{n} \circ \widetilde{P}_{m}, \widetilde{Q}_{m} \circ R_{n}=R_{n} \circ \widetilde{Q}_{m}$ and $\widetilde{P}_{m} \circ \widetilde{Q}_{n}=$ $\widetilde{Q}_{n} \circ \widetilde{P}_{m}$.

It is well known that, if $\left(\pi_{m}\right)_{m}$ is a sequence of operators on a Banach space E such that $\lim _{m \rightarrow \infty} \pi_{m}(x)=x$ for every $x \in E$, then for every

Banach space F and for every $u \in E \widehat{\otimes} F$ (resp. $u \in E \widehat{\widehat{\otimes}} F$) we have $\lim _{m \rightarrow \infty}\left(\pi_{m} \otimes I_{F}\right)(u)=u$. This remark leads to the following lemma:

LEMMA 3.1. For every $x \in F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ and every $x \in F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ we have

$$
x=\lim _{m \rightarrow \infty} \widetilde{P}_{m}(x)=\lim _{m \rightarrow \infty} \widetilde{Q}_{m}(x)
$$

LEMMA 3.2. For every integer m, $\widetilde{P}_{m}\left[F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)\right]$ and $\widetilde{P}_{m}\left[F_{r}\left(\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right)\right]$ are isomorphic to $\ell_{r} \widehat{\widehat{\otimes}} \ell_{q}$.

Proof. It is easy to show that

$$
\widetilde{P}_{m}\left[F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)\right]=F_{r}\left[\left(P_{m} \otimes I_{\ell_{q}}\right)\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)\right]
$$

We have $\left(P_{m} \otimes I_{\ell_{q}}\right)\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ isomorphic to $\ell_{p}^{m} \widehat{\otimes} \ell_{q}$. It is well known that $\ell_{p}^{m} \widehat{\otimes} \ell_{q}$ is isomorphic to the m-product $\left[\ell_{q}\right]^{m}$ of ℓ_{q} and so to ℓ_{q}. Hence, $F_{r}\left[\left(P_{m} \otimes I_{\ell_{q}}\right)\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)\right]$ is isomorphic to $\ell_{r} \widehat{\widehat{\otimes}} \ell_{q}$. With the same argument we show that $\widetilde{P}_{m}\left[F_{r}\left(\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right)\right]$ is isomorphic to $\ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$.

In the following we shall consider sequences of block operators. A sequence $\left(T_{n}\right)_{n}$ of operators from ℓ_{p} to $\ell_{q^{\prime}}$ is called a sequence of block operators if there exist two strictly increasing sequences $\left(i_{n}\right)_{n}$ and $\left(j_{n}\right)_{n}$ of integers such that $i_{0}=j_{0}=0$ and, for every integer $n \geq 1$, we have

$$
T_{n}=\left(Q_{j_{n}}^{*}-Q_{j_{n-1}}^{*}\right) \circ T_{n} \circ\left(P_{i_{n}}-P_{i_{n-1}}\right)
$$

We write as lemmas the results of Tong [10] that we will use below.
LEMMA 3.3. Let $\left(T_{n}\right)_{n}$ be a sequence of block operators from ℓ_{p} to $\ell_{q^{\prime}}$. Suppose that $\left\|T_{n}\right\|=1$ for every n. Then, for every integer N and for every finite sequence $\left(\alpha_{n}\right)_{1 \leq n \leq N}$ of scalars, we have

$$
\left\|\sum_{n=1}^{N} \alpha_{n} T_{n}\right\|= \begin{cases}{\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\frac{p q^{\prime}}{p-q^{\prime}}}\right]^{\frac{p-q^{\prime}}{p q^{\prime}}}} & \text { if } 1 \leq q^{\prime}<p<\infty \\ \max _{1 \leq n \leq N}\left|\alpha_{n}\right| & \text { if } 1 \leq p \leq q^{\prime} \leq \infty \\ {\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{q^{\prime}}\right]^{1 / q^{\prime}}} & \text { if } 1 \leq q^{\prime}<p=\infty\end{cases}
$$

Lemma 3.4. Let $\left(T_{n}\right)_{n}$ be a sequence of block operators from ℓ_{p} to $\ell_{q^{\prime}}$. Suppose that $\left\|T_{n}\right\|_{\text {nuc }}=1$ for every n. Then, for every integer N and for every finite sequence $\left(\alpha_{n}\right)_{1 \leq n \leq N}$ of scalars, we have

$$
\left\|\sum_{n=1}^{N} \alpha_{n} T_{n}\right\|_{\mathrm{nuc}}= \begin{cases}{\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\frac{p q^{\prime}}{p q^{\prime}+p-q^{\prime}}}\right]^{\frac{p q^{\prime}+p-q^{\prime}}{p q^{\prime}}}} & \text { if } 1 \leq p<q^{\prime}<\infty \\ \max _{1 \leq n \leq N}\left|\alpha_{n}\right| & \text { if } p=1 \text { and } q^{\prime}=\infty \\ {\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}}} & \text { if } 1<p<q^{\prime}=\infty \\ \sum_{n=1}^{N}\left|\alpha_{n}\right| & \text { if } 1 \leq q^{\prime} \leq p \leq \infty\end{cases}
$$

The following lemma is a direct consequence of the proof of the theorem of 9$]$.

Lemma 3.5. Let X be an infinite-dimensional subspace of $\ell_{p} \widehat{\hat{\otimes}} \ell_{q}$. If $q^{\prime}>p$, then X contains a subspace isomorphic to ℓ_{σ} where $\sigma=p$ or $\sigma=q$ or $\sigma=\frac{p q}{p+q-p q}=\frac{p q^{\prime}}{q^{\prime}-p}$, and if $q^{\prime} \leq p$, then X contains a subspace isomorphic to c_{0}.
4. Operators from ℓ_{s} into $\ell_{p} \widehat{\otimes} \ell_{q}$. For every $b \in \mathcal{B}(E, F)$ we denote by $T_{b} \in \mathcal{L}\left(E, F^{*}\right)$ the operator defined by $\left(T_{b}(x)\right)(y)=b(x, y)$ for every $x \in E$ and $y \in F$. We recall that the operator $b \mapsto T_{b}$ is an isometric isomorphism from $\mathcal{B}(E, F)$ onto $\mathcal{L}\left(E, F^{*}\right)$.

Theorem 4.1. Let $1 \leq p, q, r$ be real numbers such that $1 \leq r, 1 \leq p<r^{\prime}$ and $1 \leq q<r^{\prime}$. Then the space $\left(\ell_{p} \widehat{\otimes} \ell_{q}\right) \widehat{\otimes} \ell_{r}$ does not contain a subspace isomorphic to c_{0}.

Proof. By Grothendieck's result 55 the space $\ell_{p} \widehat{\otimes} \ell_{q}$ is the dual of $\ell_{p^{\prime}} \widehat{\widehat{\otimes}} \ell_{q^{\prime}}$ (with c_{0} in place of ℓ_{∞} when p or $q=1$). Therefore the space $\ell_{p} \widehat{\otimes} \ell_{q}$ is a separable dual, hence, by [2, it does not contain a subspace isomorphic to c_{0}.

We assume that $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ contains a subspace isomorphic to c_{0}; we shall show that this leads to a contradiction. We shall construct a normalized basic sequence $\left(x_{n}\right)_{n}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0} and three strictly increasing sequences of integers $\left(i_{n}\right)_{n},\left(j_{n}\right)_{n},\left(k_{n}\right)_{n}$ such that $i_{0}=j_{0}=k_{0}=0$ and, for every integer $n \geq 1$,
(4.1) $\quad x_{n}=\left(R_{k_{n}}-R_{k_{n-1}}\right)\left(x_{n}\right)=\left(\widetilde{P}_{i_{n}}-\widetilde{P}_{i_{n-1}}\right)\left(x_{n}\right)=\left(\widetilde{Q}_{j_{n}}-\widetilde{Q}_{j_{n-1}}\right)\left(x_{n}\right)$.

This will be done in three stages. We begin with a normalized basic sequence $\left(u_{n}\right)_{n}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0}.

In the first stage we show that there exists a normalized basic sequence $\left(v_{n}\right)_{n}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0} and a strictly
increasing sequence $\left(m_{n}\right)_{n}$ of integers such that $m_{0}=0$ and, for every integer $n \geq 1$,

$$
\begin{equation*}
v_{n}=\left(R_{m_{n}}-R_{m_{n-1}}\right)\left(v_{n}\right) \tag{4.2}
\end{equation*}
$$

Let $\varepsilon>0$. For every integer $m \geq 1$, the subspace $\operatorname{Im} R_{m}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ is isomorphic to $\left[\ell_{p} \widehat{\otimes} \ell_{q}\right]^{m}$ so it does not contain a subspace isomorphic to c_{0}. Due to this remark it is easy to construct by induction a normalized block basic sequence $\left(u_{n}^{\prime}\right)_{n}$ of $\left(u_{n}\right)_{n}$ and a strictly increasing sequence $\left(m_{n}\right)_{n}$ of integers such that $\left\|R_{m_{1}}\left(u_{1}^{\prime}\right)-u_{1}^{\prime}\right\| \leq \varepsilon / 2$ and, for every integer $n \geq 2$, $\left\|R_{m_{n-1}}\left(u_{n}^{\prime}\right)\right\| \leq \varepsilon / 2^{n+1}$ and $\left\|R_{m_{n}}\left(u_{n}^{\prime}\right)-u_{n}^{\prime}\right\| \leq \varepsilon / 2^{n+1}$. For every integer n we have

$$
\left\|u_{n}^{\prime}-\left(R_{m_{n}}-R_{m_{n-1}}\right)\left(u_{n}^{\prime}\right)\right\| \leq \frac{\varepsilon}{2^{n}}
$$

so, for $\varepsilon>0$ small enough, the sequence $\left(\left(R_{m_{n}}-R_{m_{n-1}}\right)\left(u_{n}^{\prime}\right)\right)_{n}$ is seminormalized and equivalent to the unit vector basis of c_{0}. For every integer n we take

$$
v_{n}=\frac{\left(R_{m_{n}}-R_{m_{n-1}}\right)\left(u_{n}^{\prime}\right)}{\left\|\left(R_{m_{n}}-R_{m_{n-1}}\right)\left(u_{n}^{\prime}\right)\right\|}
$$

The sequence $\left(v_{n}\right)_{n}$ is a normalized basic sequence of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0} which satisfies condition 4.2).

In the second stage we show that there exists a normalized basic sequence $\left(w_{n}\right)_{n}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0} and two strictly increasing sequences of integers $\left(p_{n}\right)_{n}$ and $\left(r_{n}\right)_{n}$ such that $p_{0}=r_{0}=0$ and, for every integer $n \geq 1$,

$$
\begin{equation*}
w_{n}=\left(R_{r_{n}}-R_{r_{n-1}}\right)\left(w_{n}\right)=\left(\widetilde{P}_{p_{n}}-\widetilde{P}_{p_{n-1}}\right)\left(w_{n}\right) \tag{4.3}
\end{equation*}
$$

To do this, let $\varepsilon_{1}>0$. By Lemma 3.2 , for every integer $p \geq 1$, the space $\widetilde{P}_{p}\left[F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)\right]$ is isomorphic to $\ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ with $q<r^{\prime}$. So, by Lemma 3.5, it does not contain a subspace isomorphic to c_{0}. It is then easy to construct by induction a normalized block basic sequence $\left(v_{n}^{\prime}\right)_{n}$ of $\left(v_{n}\right)_{n}$ and a strictly increasing sequence $\left(p_{n}\right)_{n}$ of integers such that $\left\|v_{1}^{\prime}-\widetilde{P}_{p_{1}}\left(v_{1}^{\prime}\right)\right\| \leq \varepsilon_{1} / 2$ and, for every integer $n \geq 2$,

$$
\left\|\widetilde{P}_{p_{n-1}}\left(v_{n}^{\prime}\right)\right\| \leq \frac{\varepsilon_{1}}{2^{n+1}} \quad \text { and } \quad\left\|\widetilde{P}_{p_{n}}\left(v_{n}^{\prime}\right)-v_{n}^{\prime}\right\| \leq \frac{\varepsilon_{1}}{2^{n+1}}
$$

For $\varepsilon_{1}>0$ small enough, the sequence $\left(\left(\widetilde{P}_{p_{n}}-\widetilde{P}_{p_{n-1}}\right)\left(v_{n}^{\prime}\right)\right)_{n}$ is a seminormalized sequence equivalent to the unit vector basis of c_{0}. For every integer $n \geq 1$ we take

$$
w_{n}=\frac{\left(\widetilde{P}_{p_{n}}-\widetilde{P}_{p_{n-1}}\right)\left(v_{n}^{\prime}\right)}{\left\|\left(\widetilde{P}_{p_{n}}-\widetilde{P}_{p_{n-1}}\right)\left(v_{n}^{\prime}\right)\right\|}
$$

It follows from condition (4.2) that there exists a strictly increasing sequence $\left(r_{n}\right)_{n}$ of integers with $r_{0}=0$ such that $w_{n}=\left(R_{r_{n}}-R_{r_{n-1}}\right)\left(w_{n}\right)$ for every
integer n. The sequence $\left(w_{n}\right)_{n}$ is a normalized basic sequence equivalent to the unit vector basis of c_{0} which satisfies condition 4.3).

In the third stage we show that there exists a normalized basic sequence $\left(x_{n}\right)_{n}$ equivalent to the unit vector basis of c_{0} and three strictly increasing sequences of integers $\left(i_{n}\right)_{n},\left(j_{n}\right)_{n}$ and $\left(k_{n}\right)_{n}$ such that $i_{0}=j_{0}=k_{0}$ which satisfy condition (4.1).

To do this, we begin with the sequence $\left(w_{n}\right)_{n}$ satisfying condition 4.3) and we use the same method as in the second stage.

Now we show that the existence of a normalized basic sequence $\left(x_{n}\right)_{n}$ of $F_{r}\left(\ell_{p} \widehat{\otimes} \ell_{q}\right)$ equivalent to the unit vector basis of c_{0} satisfying condition 4.1) leads to a contradiction.

For every integer n we have $x_{n}=\left(R_{k_{n}}-R_{k_{n-1}}\right)\left(x_{n}\right)$ so there exists a sequence $\left(u_{l}\right)_{l}$ in $\ell_{p} \widehat{\otimes} \ell_{q}$ such that $x_{1}=\left(u_{1}, \ldots, u_{k_{1}}, 0,0, \ldots\right)$ and, for every integer $n \geq 2, x_{n}=\left(0, \ldots, 0, u_{k_{n-1}+1}, \ldots, u_{k_{n}}, 0,0, \ldots\right)$.

Let us recall that $\left[\ell_{p} \widehat{\otimes} \ell_{q}\right]^{*}$ is isometrically isomorphic to the space $\mathcal{B}\left(\ell_{p}, \ell_{q}\right)$ (4], [5]). So, for every integer n, there exists $b_{n} \in \mathcal{B}\left(\ell_{p}, \ell_{q}\right)$ such that $\left\|b_{n}\right\|=1$ and

$$
1=\left[\sum_{l=k_{n-1}+1}^{k_{n}}\left|b_{n}\left(u_{l}\right)\right|^{r}\right]^{1 / r} .
$$

It follows from condition (4.1) that for each integer $l \in\left\{k_{n-1}+1, \ldots, k_{n}\right\}$ we have

$$
\begin{equation*}
b_{n}\left(u_{l}\right)=b_{n}\left(\left[\left(P_{i_{n}}-P_{i_{n-1}}\right) \otimes\left(Q_{j_{n}}-Q_{j_{n-1}}\right)\right]\left(u_{l}\right)\right) . \tag{4.4}
\end{equation*}
$$

Condition (4.4) implies that we may suppose that

$$
T_{b_{n}}=\left(Q_{j_{n}}^{*}-Q_{j_{n-1}}^{*}\right) \circ T_{b_{n}} \circ\left(P_{i_{n}}-P_{i_{n-1}}\right),
$$

so $\left(T_{b_{n}}\right)_{n}$ is a sequence of block operators. This last assumption implies that for $n \neq m$ and $l \in\left\{k_{m-1}+1, \ldots, k_{m}\right\}$, we have $b_{n}\left(u_{l}\right)=0$.

Let N be an integer, $\alpha_{1}, \ldots, \alpha_{N}$ be scalars and let $b=\alpha_{1} b_{1}+\cdots+\alpha_{N} b_{N}$. We have

$$
\left[\sum_{n=1}^{k_{N}}\left|b\left(u_{n}\right)\right|^{r}\right]^{1 / r}=\left[\left|\alpha_{1}\right|^{r}+\cdots+\left|\alpha_{N}\right|^{r}\right]^{1 / r}
$$

so

$$
\begin{aligned}
\left\|x_{1}+\cdots+x_{N}\right\| & \geq \Lambda(N) \\
& =\sup \left\{\left[\left|\alpha_{1}\right|^{r}+\cdots+\left|\alpha_{N}\right|^{r}\right]^{1 / r} ;\left\|\alpha_{1} b_{1}+\cdots+\alpha_{N} b_{N}\right\| \leq 1\right\} .
\end{aligned}
$$

Now we compute $\Lambda(N)$.
In the case $p \leq q^{\prime}$ we have, by Lemma 3.3.

$$
\left\|\alpha_{1} b_{1}+\cdots+\alpha_{N} b_{N}\right\|=\left\|\alpha_{1} T_{b_{1}}+\cdots+\alpha_{N} T_{b_{N}}\right\|=\max _{1 \leq n \leq N}\left|\alpha_{n}\right|,
$$

so $\Lambda(N)=N^{1 / r}$.

In the case $p>q^{\prime}$, let $\sigma=p q^{\prime} /\left(p-q^{\prime}\right)$. We also have, by Lemma 3.3.

$$
\left\|\alpha_{1} b_{1}+\cdots+\alpha_{N} b_{N}\right\|=\left\|\alpha_{1} T_{b_{1}}+\cdots+\alpha_{N} T_{b_{N}}\right\|=\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\sigma}\right]^{1 / \sigma}
$$

We have

$$
\frac{1}{r}-\frac{1}{\sigma}=\frac{1}{r}-\frac{1}{q^{\prime}}+\frac{1}{p}
$$

and $r<q^{\prime}$, so $\sigma>r$. Therefore, $\Lambda(N)=N^{\sigma r /(\sigma-r)}$.
In both cases, $\lim _{N \rightarrow \infty}\left\|x_{1}+\cdots+x_{N}\right\|=\infty$ so $\left(x_{n}\right)_{n}$ is not equivalent to the unit vector basis of c_{0}, in contradiction with our construction.

ThEOREM 4.2. Let $1 \leq p, q$, s be real numbers such that $1 \leq p<s$ and $1 \leq q<s$. Then every operator from ℓ_{s} into $\ell_{p} \widehat{\otimes} \ell_{q}$ is compact. The same is true for every operator from c_{0} into $\ell_{p} \widehat{\otimes} \ell_{q}$.

Proof. The conclusions follow directly from Corollary 14 of [11].
5. Operators from ℓ_{s} into $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$. We recall that if E^{*} or F^{*} has the Radon-Nikodym property and one of E^{*} or F^{*} has the approximation property then, for every $b \in \mathcal{J}(E, F)$, we have $T_{b} \in \mathcal{N}\left(E, F^{*}\right)$ and the operator $b \mapsto T_{b}$ is an isometric isomorphism from $\mathcal{J}(E, F)$ onto $\mathcal{N}\left(E, F^{*}\right)$ [5].

THEOREM 5.1. Let $1 \leq p, q, r<\infty$. The space $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ contains a subspace isomorphic to c_{0} if, and only if, $1 / p+1 / q+1 / r \leq 2$.

Proof. Suppose there is no subspace isomorphic to c_{0} in $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$. Therefore there is no subspace isomorphic to c_{0} in $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$, hence we have $1 / p+1 / q>1$. The space $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ contains a subspace isomorphic to ℓ_{σ} with $1 / \sigma=1 / p+1 / q-1$. The space $\ell_{\sigma} \widehat{\widehat{\otimes}} \ell_{r}$ does not contain a subspace isomorphic to c_{0} so we have

$$
\frac{1}{\sigma}+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1>1
$$

Conversely we suppose that $1 / p+1 / q+1 / r>2$ and that $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ contains a subspace isomorphic to c_{0}. We consider $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ as the space $F_{r}\left(\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right)$. We observe that none of the spaces $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}, \ell_{p} \widehat{\widehat{\otimes}} \ell_{r}$ or $\ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ contain a subspace isomorphic to c_{0}. Proceeding as in the proof of Theorem 4.1, we can find a normalized basic sequence $\left(x_{n}\right)_{n}$ of $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ equivalent to the unit basis of c_{0} and three strictly increasing sequences of integers $\left(i_{n}\right)_{n},\left(j_{n}\right)_{n}$ and $\left(k_{n}\right)_{n}$ such that $i_{0}=j_{0}=k_{0}$ and satisfying, for $n=1,2, \ldots$, condition (4.1).

Now we show that the existence of these sequences leads to a contradiction. We proceed as in the $\ell_{p} \widehat{\otimes} \ell_{q}$ case. For every integer n we have
$x_{n}=\left(R_{k_{n}}-R_{k_{n-1}}\right)\left(x_{n}\right)$ so there exists a sequence $\left(u_{l}\right)_{l}$ in $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ such that

$$
x_{n}=\left(0, \ldots, 0, u_{k_{n-1}+1}, \ldots, u_{k_{n}}, 0,0, \ldots\right)
$$

For every integer n, there exists $b_{n} \in\left[\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}\right]^{*}=\mathcal{J}\left(\ell_{p}, \ell_{q}\right)$ such that $\left\|b_{n}\right\|_{\text {int }}=1$ and

$$
\left\|x_{n}\right\|=\left[\sum_{l=k_{n-1}+1}^{k_{n}}\left|b_{n}\left(u_{l}\right)\right|^{r}\right]^{1 / r}=1
$$

For $n=1,2, \ldots$ and $k_{n-1}+1 \leq l \leq k_{n}$ we have

$$
\begin{equation*}
b_{n}\left(u_{l}\right)=b_{n}\left(\left[\left(P_{i_{n}}-P_{i_{n-1}}\right) \otimes\left(Q_{j_{n}}-Q_{j_{n-1}}\right)\right]\left(u_{l}\right)\right) \tag{5.1}
\end{equation*}
$$

It follows from condition 5.1 that we may suppose $T_{b_{n}}=\left(Q_{j_{n}}^{*}-Q_{j_{n-1}}^{*}\right) \circ$ $T_{b_{n}} \circ\left(P_{i_{n}}-P_{i_{n-1}}\right)$. This last assumption implies that for $n \neq m$ and $l \in$ $\left\{k_{m-1}+1, \ldots, k_{m}\right\}$, we have $b_{n}\left(u_{l}\right)=0$.

Let N be an integer, $\alpha_{1}, \ldots, \alpha_{N}$ be scalars and let $b=\alpha_{1} b_{1}+\cdots+\alpha_{N} b_{N}$. We have $\left[\sum_{l=1}^{k_{N}}\left|b\left(u_{l}\right)\right|^{r}\right]^{1 / r}=\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{r}\right]^{1 / r}$, so

$$
\left\|x_{1}+\cdots+x_{N}\right\| \geq \Theta(N)=\sup \left\{\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{r}\right]^{1 / r} ;\left\|\sum_{n=1}^{N} \alpha_{n} b_{n}\right\|_{\mathrm{int}} \leq 1\right\}
$$

The integral forms b_{1}, \ldots, b_{N} may be considered as integral forms on $\ell_{p}^{i_{N}} \times \ell_{q}^{j_{N}}$. In this case, $\mathcal{J}\left(\ell_{p}^{i_{N}}, \ell_{q}^{j_{N}}\right)=\mathcal{N}\left(\ell_{p}^{i_{N}}, \ell_{q^{\prime}}^{j_{N}}\right)$, so $\left(T_{b_{n}}\right)_{1 \leq n \leq N}$ is a finite sequence of nuclear block operators from $\ell_{p}^{i_{N}}$ to $\ell_{q^{\prime}}^{j_{N}}$.

The assumption $1 / p+1 / q+1 / r>2$ implies $1 / p+1 / q>1$, hence $q^{\prime}>p$. In the cases $q^{\prime}<\infty$ or $q^{\prime}=\infty$ and $1<p$ we let

$$
\sigma= \begin{cases}\frac{p q^{\prime}}{p q^{\prime}+p-q^{\prime}} & \text { if } q^{\prime}<\infty \\ \frac{p}{p-1} & \text { if } 1<p<q^{\prime}=\infty\end{cases}
$$

We observe that always $\sigma>r$. By Lemma 3.4 we have

$$
\left\|\sum_{n=1}^{N} \alpha_{n} b_{n}\right\|_{\mathrm{int}}=\left\|\sum_{n=1}^{N} \alpha_{n} T_{b_{n}}\right\|_{\mathrm{nuc}}=\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\sigma}\right]^{1 / \sigma}
$$

and by Lemma 3.3 we have

$$
\Theta(N)=\sup \left\{\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{r}\right]^{1 / r} ;\left[\sum_{n=1}^{N}\left|\alpha_{n}\right|^{\sigma}\right]^{1 / \sigma} \leq 1\right\}=N^{(\sigma-r) / \sigma r}
$$

We deduce that $\left\|x_{1}+\cdots+x_{N}\right\| \geq N^{(\sigma-r) / \sigma r}$, in contradiction with $\left(x_{n}\right)_{n}$ being equivalent to the unit vector basis of c_{0}.

In the case $p=1$ and $q^{\prime}=\infty$, we have

$$
\Theta(N)=\left\|\sum_{n=1}^{N} \alpha_{n} b_{n}\right\|_{\text {int }}=\left\|\sum_{n=1}^{N} \alpha_{n} T_{b_{n}}\right\|_{\text {nuc }}=\max _{1 \leq n \leq N}\left|\alpha_{n}\right| .
$$

In this case, by Lemma 3.3. $\left\|x_{1}+\cdots+x_{N}\right\| \geq N^{1 / r}$ so the sequence $\left(x_{n}\right)_{n}$ is not equivalent to the unit vector basis of c_{0}.

The assumptions that $1 / p+1 / q+1 / r>2$ and that $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q} \widehat{\widehat{\otimes}} \ell_{r}$ contains a subspace isomorphic to c_{0} lead to a contradiction. The theorem is proved.

Corollary 14 of [11] implies:
THEOREM 5.2. Let $1 \leq p, q, s$ be real numbers such that $1 / p+1 / q>$ $1+1 / s$. Then every operator from ℓ_{s} into $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$ is compact. The same is true for every operator from c_{0} into $\ell_{p} \widehat{\widehat{\otimes}} \ell_{q}$.

REFERENCES

[1] R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math. Anal. Appl. 206 (1997), 532-546.
[2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[3] A. Defant, J. A. López Molina and M. J. Rivera, On Pitt's theorem for operators between scalar and vector-valued quasi-Banach sequence spaces, Monatsh. Math. 130 (2000), 7-18.
[4] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1975.
[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1965).
[6] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, 1-84.
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
[8] H. R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), 174-180.
[9] C. Samuel, Sur la reproductibilité des espaces ℓ_{p}, Math. Scand. 45 (1979), 103-117.
[10] A. Tong, Diagonal nuclear operators on ℓ_{p} spaces, Trans. Amer. Math. Soc. 143 (1969), 235-247.
[11] X. P. Xue, Y. J. Li and Q. Y. Bu, Some properties of the injective tensor product of Banach spaces, Acta Math. Sin. (Engl. Ser.) 23 (2007), 1697-1706.

Christian Samuel
LATP Laboratoire Analyse, Topologie, Probabilités
Faculté des Sciences et Techniques
Université Aix-Marseille 3
13397 Marseille Cedex 20, France
E-mail: christian.samuel@univ-cezanne.fr

[^0]: 2010 Mathematics Subject Classification: Primary 46B28; Secondary 47L20.
 Key words and phrases: projective tensor product, injective tensor product, compact operator.

