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ON OPERATORS FROM f, TO {,& ¢, OR TO £, 1,

CHRISTIAN SAMUEL (Marseille)

Abstract. We show that every operator from ¢; to ¢, ® {4 is compact when 1 <

p,q < s and that every operator from £ to £, & £, is compact when 1/p+1/q > 1+ 1/s.

1. Introduction. We recall Pitt’s theorem: for 1 < p < s < o0, every
operator from ¢ to £, is compact [7], [8]. This result has been extended
to different settings. Among the more recent contributions we mention [I]
and [3]. The aim of this paper is to show that every operator from ¢4 to
4y ® {4 is compact when

(1.1) 1<pqg<s

and that every operator from £, to £, ® {4 is compact when
1 1 1

(1.2) —+->1+-.
P g S

A proof of the injective case, using 7,-convergence, is given in [I]. Here we
use a different method and the same technique in both cases. Let r = &’
be the conjugate exponent of s (i.e. 1/s +1/s’ = 1). We show that under
condition (|1.1f) (resp. ) the space [£, @ £y ® £, (vesp. [£, ® £y] & £,.) does
not contain a subspace isomorphic to c¢g. The conclusions will then follow
from [IT].

2. Notation. We shall make use of standard Banach space facts and
terminology as may be found in [6], [7].

The term operator means bounded linear operator. Subspace means closed
linear subspace.

Let E, F' be Banach spaces. We denote by:

e L(E,F) the space of operators from E to F.
e N(E,F) the space of nuclear operators from E to F, and by ||u|nuc
the nuclear norm of a nuclear operator wu.
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B(E, F) the space of continuous bilinear forms on F x F.

e ' ® F the completion of £ ® F endowed with the projective norm
i, 51

E®F the completion of E® F endowed with the injective norm [4], [5].
J(E, F) the space of bilinear integral forms on £ x F. We have J (E, F)

= [E ® F]*. The norm of an integral form ¢ is denoted by ||¢||n-
e (' the m-dimensional space £,({1,...,m}).

Let r be a real number > 1; we define
sl.(F) = {x = (p)p>1; foralln > 1, x, € E,

and for all z* € E*, Z |z* (zn)|" < oo}.
n=1

We recall that for x = (z,)n € sl.(E) we have

Jr
|z|| = sup [Z|x Tn) ] < 0.

lz*l<1%,

The space (sl.(E), || ||) is a Banach space. For every integer m, let Ry,
be the projection of sl.(E) defined, for every z = (x)g, by Rn(z) =
(Z1,...,%m,0,0,...). The subspace

F.(E)={xe€sl(F); x= lim R,(z)}

m—0o0

of sl,(E) is isometrically isomorphic to £, ® E (see [9]). We shall use this
isometric isomorphism without any reference.

3. Lemmas. Let 1 < p,q,r < co. We denote by (P,),, the natural
projections associated to the unit vector basis of £, and by (Q,)m the natural

projections associated to the umt vector basis of ly. We denote by Pm, Qm
the norm 1 projections of £, ® ) (&p ® 4,) or 4, ® (£, ® ¢,) which are defined
by B, = Iy, ® (P ®1;,) and Qm = Iy, ® (Iy, ® Q). For every x = (z)r €
(0, ®4,) or & = (xx)p € Fr(£y (?9 ¢,) we have

Po(x) = (Pm @ In,) (1), -, (P @ I, ) (1), - - ),
Qu(z) = (I, @ Qu)(@1), -, (I, ® Q) (1), - - )-

For all m,n we have ]BmoRn = Rnoﬁm, @moRn = Rno@m and ]Smoén =
Qn o P,

It is well known that, if (7, ), is a sequence of operators on a Banach
space E such that limy, oo mn(z) = = for every x € E, then for every
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Banach space F and for every u € E® F (resp. u € E ® F) we have
limy, 00 (T @ IF)(u) = u. This remark leads to the following lemma:

LEMMA 3.1. For every x € F,(£,®{,) and every x € F.({,®{,) we have

2= lim Ppn(z) = lim Qn(x).
LEMMA 3.2. For every integer m, ﬁm[Fr(ﬂp ® £,)] and ]Sm[FT(Ep @) 4y)]

are isomorphic to £, @ Ly

Proof. 1t is easy to show that
ﬁm[Frwp ® gq)] = F[(Pn ® ng)(ﬁp ® gq)]~

We have (P, ® Iy, ) (£, ® £4) isomorphic to e ® £, Tt is well known that
0 ® ¢, is isomorphic to the m-product [¢,]"™ of ¢, and so to ¢,. Hence,

~

F[(Pr®1,) (4 & ¢€,)] is isomorphic to £, ® £,. With the same argument we

o~

show that Py, [E (£, ® £,)] is isomorphic to £, & £,

In the following we shall consider sequences of block operators. A se-
quence (T},), of operators from ¢, to £y is called a sequence of block opera-
tors if there exist two strictly increasing sequences (i), and (jy, ), of integers
such that ig = jo = 0 and, for every integer n > 1, we have

TTL - (Qj;n - Q;n—l) o Tn o (P'Ln - Pinfl)'
We write as lemmas the results of Tong [10] that we will use below.

LEMMA 3.3. Let (T),)n be a sequence of block operators from €, to L.
Suppose that ||T,|| =1 for every n. Then, for every integer N and for every
finite sequence (om)1<n<n of scalars, we have

’

( N vy 12=4
[ZI%IW} "if1<q <p<oo,
N n=1
; /
> anTa| = 4 Jew if1<p<q <o
n=1
N
’ 1/‘1,
{Z!an!q} if1<q <p=oo.
n=1

LEMMA 3.4. Let (T,,)n be a sequence of block operators from €, to L.
Suppose that ||Ty|lnue = 1 for every n. Then, for every integer N and for
every finite sequence (an)i1<n<n of scalars, we have
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( N vd pq'+p/fq'
{Z \an\”q’“’*q’} " fl1<p<gq <oo,
n=1

max |o ifp=1and ¢ =0
1SnSNI nl fp q ,

= N p—1
| [l ] Fl<p<d—cc,

n=1

N
HZ anTh
n=1

N
n if1<q <p<oo.
> lawl f1<q <p

\ n=1

The following lemma is a direct consequence of the proof of the theorem
of [9].

LEMMA 3.5. Let X be an infinite-dimensional subspace of ¢, ® by If

q > p, then X contains a subspace isomorphic to {, where o = p or o = q

pqg  _ pq

or o = =
p+q—pq q'—p’

to cgp.

and if ¢ < p, then X contains a subspace isomorphic

4. Operators from /; into ¢,®¢,. For every b € B(E, F') we denote by
Ty, € L(E, F*) the operator defined by (T,(x))(y) = b(z,y) for every x € E
and y € F. We recall that the operator b — T}, is an isometric isomorphism

from B(E, F') onto L(E, F™).

THEOREM 4.1. Let 1 < p,q,r be real numbers such that1 <r, 1 <p <7’

and 1 < g < r'. Then the space (¢, ® ly) ® £, does not contain a subspace
1somorphic to cg.

Proof. By Grothendieck’s result [5] the space £,®¢, is the dual of £, &£,
(with ¢o in place of ¢o, when p or ¢ = 1). Therefore the space ¢, ® ly is a
separable dual, hence, by [2], it does not contain a subspace isomorphic to ¢g.

We assume that F,.(¢,®/,) contains a subspace isomorphic to cg; we shall
show that this leads to a contradiction. We shall construct a normalized basic
sequence (zn,), of F,.(¢, ® ¢,) equivalent to the unit vector basis of ¢y and
three strictly increasing sequences of integers (in)n, (Jn)n, (kn)n such that
i0 = jo = ko = 0 and, for every integer n > 1,

(4.1) @0 = (Bi, = Bi, ) (@) = (P, = Pyy) (@) = (@, — Qg ) ().

This will be done in three stages. We begin with a normalized basic sequence
(un)n of Fr(£, ® €,) equivalent to the unit vector basis of co.

In the first stage we show that there exists a normalized basic sequence
(vn)n of Fr(£, ® £;) equivalent to the unit vector basis of ¢y and a strictly



ON OPERATORS FROM (s TO £, &€, OR TO £, &, 29

increasing sequence (my,),, of integers such that mg = 0 and, for every integer
n>1,

(4.2) Un = (Rm,, — Rm,,_,)(vn).

Let € > 0. For every integer m > 1, the subspace Im R,,, of F,(¢, ® ly)
is isomorphic to [¢, ® £4|™ so it does not contain a subspace isomorphic
to cg. Due to this remark it is easy to construct by induction a normalized
block basic sequence (u), ), of (uy), and a strictly increasing sequence (my, )y,
of integers such that || Ry, (u}) — u}|| < /2 and, for every integer n > 2,
| Rn,_, (uh)]| < e/2" L and ||Ry,,, (u)) — ul]| < €/27FL. For every integer n
we have -

oy~ (B, — Bony )] < o
so, for £ > 0 small enough, the sequence ((Ry,,, — Rm,,_,)(u),))n is seminor-
malized and equivalent to the unit vector basis of ¢y. For every integer n we

take ,
_ (R, — Rm,,_,)(uy)

The sequence (v,), is a normalized basic sequence of F;.(¢, ® ¢,) equivalent
to the unit vector basis of ¢y which satisfies condition .

In the second stage we show that there exists a normalized basic sequence
(wn)n of (£, ®£,) equivalent to the unit vector basis of ¢y and two strictly
increasing sequences of integers (p, )y, and (ry,), such that pg = ro = 0 and,
for every integer n > 1,

Un

(4.3) wn = (R, = Ry, ;) (wn) = (Pp, — By, )(wn) .

To do this, let &1 > 0. By Lemma [3.2} for every integer p > 1, the space
P,[F,(£, ® £,)] is isomorphic to £, ® £, with ¢ < ’. So, by Lemma , it
does not contain a subspace isomorphic to cg. It is then easy to construct
by induction a normalized block basic sequence (v],),, of (vy,), and a strictly
increasing sequence (pp,)n of integers such that |[v] — Pp, (v})|| < €1/2 and,
for every integer n > 2,

€1
INCATE=

2n+1'

and || Py, (vp) — vyl <

For e > 0 small enough, the sequence ((P,, — By, ,)(v},))n is a seminor-
malized sequence equivalent to the unit vector basis of cy. For every integer
n > 1 we take

N (Pp, — P/pnq)(vﬁ)
Wy = ——= = .
1Py = o) (w7l
It follows from condition (4.2) that there exists a strictly increasing sequence
(rn)n of integers with rg = 0 such that w, = (R,, — R,,_,)(wy,) for every
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integer n. The sequence (wy,), is a normalized basic sequence equivalent to
the unit vector basis of ¢y which satisfies condition (4.3)).

In the third stage we show that there exists a normalized basic sequence
(zn)n equivalent to the unit vector basis of ¢y and three strictly increasing
sequences of integers (in)n, (jn)n and (k,), such that ig = jo = ko which
satisfy condition .

To do this, we begin with the sequence (wy,), satisfying condition
and we use the same method as in the second stage.

Now we show that the existence of a normalized basic sequence (z,,), of
F,.(¢,®¢,) equivalent to the unit vector basis of ¢y satisfying condition
leads to a contradiction.

For every integer n we have x,, = (Rg, — Ry, ,)(xn) so there exists a
sequence (u;); in £, ® {4 such that 1 = (u1,...,uk,0,0,...) and, for every
integer n > 2, z, = (0,...,0,ug, ,41,--.,uk,,0,0,...).

Let us recall that [¢, ® l]* is isometrically isomorphic to the space

B(£p,£q) (J4], [5]). So, for every integer n, there exists b, € B(¢p,{,) such

that ||b,|| = 1 and
kn

1= Y Iba(w)]

l:kn—1+1
It follows from condition (4.1) that for each integer I € {kp—1 4+ 1,...,kn}
we have
(4.4) b (w) = bn([(Pi, — Pi, 1) © (Qj,, — Qj,—y)) ().
Condition (4.4) implies that we may suppose that
Tbn = (Q;kn - Q;nfl) © Tbn © (P’Ln - P’in—l)?
so (Tp,, )n is a sequence of block operators. This last assumption implies that
forn #mandl € {kp_1+1,...,kny}, we have b,(u;) = 0.

1/r

Let N be an integer, o, ..., an be scalars and let b = a1b1 +- - -+ anby.
We have
kn
r 1 r rl/r
D) = el -+ an| T
n=1

SO
1+ -+ + x| = AN)
= sup{[Jar|" + -~ + Jan["TV75 Jarby + - + anby| < 1}.

Now we compute A(N).
In the case p < ¢’ we have, by Lemma

Ha1b1 + 4 aNbNH = HalTbl -+ OKNTbN” = 1£na<xN ]an|

so A(N) = N/,
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In the case p > ¢, let 0 = pq’/(p — ¢'). We also have, by Lemma

N - 1/o
||a1b1 4+t OéNbNH = ||a1Tb1 e aNTbN|| _ [Z |Oén| } ‘
n=1
We have
11 1 1 1
roo v ¢ p
and r < ¢, so o > r. Therefore, A(N) = No"/(7=7),

In both cases, imy_o0 ||21 + -+ + 2N]| = 00 s0 (zp)n is nOt equivalent
to the unit vector basis of ¢y, in contradiction with our construction.

THEOREM 4.2. Let 1 < p,q, s be real numbers such that 1 < p < s and
1 < g < s. Then every operator from £, into £, ® £y is compact. The same is
true for every operator from co into £, @ £g.

Proof. The conclusions follow directly from Corollary 14 of [11].

5. Operators from /¢, into ¢, ® £y. We recall that if E* or F™* has the
Radon—Nikodym property and one of E* or F* has the approximation prop-
erty then, for every b € J(FE, F), we have T, € N(E, F*) and the operator
b — T is an isometric isomorphism from J(E, F') onto N (E, F*) [5].

THEOREM 5.1. Let 1 < p,q,r < oo. The space £y, ® I ® L, contains a
subspace isomorphic to cq if, and only if, 1/p+1/q+ 1/r < 2.

Proof. Suppose there is no subspace isomorphic to ¢y in £, ® I R 4.
Therefore there is no subspace isomorphic to ¢y in ¢, R {4, hence we have
1/p+1/q > 1. The space £, ® ¢, contains a subspace isomorphic to ¢, with

1/o = 1/p+1/q—1. The space £, &/, does not contain a subspace isomorphic

to ¢g so we have

1.1 1 1 1
—+-=-4+-+--1>1
g r p q r

Conversely we suppose that 1/p+1/q+1/r > 2 and that £, 20, @4, contains

a subspace isomorphic to ¢y. We con51der Ly ®€ ®€ as the space F).(¢p ®€ q)-

We observe that none of the spaces ¢ ®€q, Ly ®€ or €q®E contain a subspace
isomorphic to ¢g. Proceeding as in the proof of Theorem [£.I], we can find a

normalized basic sequence (x,), of £, @EQ ®4, equivalent to the unit basis of
cp and three strictly increasing sequences of integers (in)n, (jn)n and (kn)n
such that ig = jo = ko and satisfying, for n = 1,2, ..., condition .

Now we show that the existence of these sequences leads to a contra-
diction. We proceed as in the ¢, ) ¢, case. For every integer n we have
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zn, = (Rg, — Ri,_,) () so there exists a sequence (v;); in £, ® £, such that
Tn = (0, ce 7O7ukn—1+1’ ce ,ukn,0,0, .o )

For every integer n, there exists by, € [(,&@£,]* = J (£, £4) such that ||, || =1

and
kn

1/r
el = > Butwr]” =1
l=kn_1+1
Forn=1,2,...and k,_1 + 1 <1 < k,, we have
(5.1) bn(ur) = bu([(Pi,, — Fiyy 1) @ (Qj — Qj, )] (w))-
It follows from condition 1} that we may suppose Tp, = ( .~ ;fn_l) o
Ty, o (P, — P;, ). This last assumption implies that for n # m and [ €

{km—1+1,...,kn}, we have b,(u;) = 0.
Let N bekan integer, a1, ...,ay be scalars and let b = a1by+- - -+ anby.
r1l/r N r11/r
We have [ [b(uw)["]M" = [3,2; lan|V7, so

N
|1+ +an] > O(N —Sup{[2|an| ] z:lanbn img 1}.
n—=
~ The integral forms by,...,by may be considered as integral forms on
OGN x g~ . In this case, J (6N, £g"Y) = N(E;,N,%N) s0 (Tp, )1<n<n is a finite

sequence of nuclear block operators from E;N to éf]J,V .
The assumption 1/p+1/g+1/r > 2 implies 1/p+1/q > 1, hence ¢’ > p.

In the cases ¢’ < 0o or ¢ = 0o and 1 < p we let
/

# ifq/<oo7

o= { Pa +p—q
. ifl<p<q =o0.
p—1

We observe that always o>, By Lemma [3.4] we have

(o = [ = (]

and by Lemma 3 we have

N 1r &Y 1/o -
O(N) = sup{ [S " laal] "5 [S Janl] T < 1} = Wl

nuc

We deduce that ||z; + --- 4+ zn|| > N7/ in contradiction with (z,)n,
being equivalent to the unit vector basis of cy.
In the case p =1 and q = oo, we have

=[S ], = [ i,

nuc - 1£nna<XN ’an|
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In this case, by Lemma , |z1 4+ -+ xn]| > N7 so the sequence (),
is not equivalent to the unit vector basis of c¢y.

The assumptions that 1/p+1/q+1/r > 2 and that £, ® £, ® ¢, contains
a subspace isomorphic to ¢y lead to a contradiction. The theorem is proved.

Corollary 14 of [I1] implies:
THEOREM 5.2. Let 1 < p,q,s be real numbers such that 1/p + 1/q >
1+ 1/s. Then every operator from L into £, ® 4y is compact. The same is

true for every operator from co into £, ® Ly
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