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ON FINITELY GENERATED n-SG-PROJECTIVE MODULES

BY

DRISS BENNIS (Fez)

Abstract. We prove that finitely generated n-SG-projective modules are infinitely
presented.

1. Introduction. Throughout this paper, R denotes a non-trivial asso-
ciative ring with identity, and all modules are left R-modules, if not specified
otherwise.

In 1967–69, Auslander and Bridger [1, 2] introduced the so called G-
dimension for finitely generated modules over Noetherian rings. They proved
that the G-dimension of a finitely generated module M is less than or equal
to its projective dimension; and they coincide when the projective dimension
of M is finite. Several decades later, Enochs and Jenda [13, 14] extended the
ideas of Auslander and Bridger, and introduced the Gorenstein projective
dimension, which is defined in terms of resolutions by Gorenstein projective
modules: a module M is called Gorenstein projective (G-projective for short)
if there exists an exact sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·
such that M ∼= Im(P0 → P 0) and Hom(−, Q) leaves the sequence P exact
whenever Q is a projective module. This homological dimension has been
extensively studied by many authors (see [10, 11, 12, 15, 18]), who proved
that the Gorenstein projective dimension shares many nice properties of
the classical projective dimension. Now, a guiding principle in the study
of Gorenstein homological dimension has been formulated in the following
meta-theorem [17, p. V]: “Every result in classical homological algebra has
a counterpart in Gorenstein homological algebra.”

It is well known that every finitely generated projective module M is
infinitely presented; that is, M admits a free resolution

· · · → Fn → Fn−1 → · · · → F0 →M → 0

such that the free modules Fi are finitely generated. In this paper, we are
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concerned with the Gorenstein counterpart of this result. Namely, we inves-
tigate the following open question:

Is every finitely generated G-projective module infinitely presented?

In [19], rings which satisfy this property are called G1-rings. In [5, Propo-
sition 2.12], an affirmative answer is given for SG-projective modules which
are particular cases of G-projective modules: a module M is called strongly
Gorenstein projective (SG-projective for short) if there exists an exact se-
quence of projective modules of the form

P = · · · f−→ P
f−→ P

f−→ P
f−→ · · ·

such that M ∼= Im(f) and Hom(−, Q) leaves the sequence P exact whenever
Q is a projective module. In [6], an extension of the notion of SG-projective
module was introduced as follows: for an integer n > 0, a module M is called
n-strongly Gorenstein projective (n-SG-projective for short) if there exists
an exact sequence of modules

0→M → Pn → · · · → P1 →M → 0,

where each Pi is projective, such that Hom(−, Q) leaves the sequence exact
whenever Q is a projective module (equivalently, Exti(M,Q) = 0 for j +
1 ≤ i ≤ j + n for some positive integer j and for any projective module
Q [6, Theorem 2.8]). Then 1-SG-projective modules are just SG-projective
modules. In [6, Proposition 2.2], it is proved that an n-SG-projective module
is projective if and only if it has finite flat dimension.

The aim of this paper is to give an affirmative answer to the question
above for n-SG-projective modules (Theorem 2.6). As consequences, an ex-
tension of the characterization of finitely generated 1-SG-projective modules
[5, Proposition 2.12] to finitely generated n-SG-projective modules is given
(Corollary 2.7), and another relation between n-SG-projective and n-SG-flat
modules is established in Corollary 2.8.

2. Main result. To show that finitely generated n-SG-projective mod-
ules are infinitely presented, we need some preparatory results.

Lemma 2.1. If M is an n-SG-projective module for n ≥ 2, then there
exists an exact sequence of modules

0→M → Fn → · · · → F1 →M → 0,

where each Fi is free.

Proof. Since M is n-SG-projective, there is, from the definition, an exact
sequence of modules

(∗) 0→M → Pn → · · · → P1 →M → 0,
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where all Pi are projective. By Eilenberg’s swindle [21, Exercise 3.13, p. 64],
there exists, for each i, a free module Qi such that Pi ⊕ Qi = Li is free.
Therefore, adding to (∗) the sequences 0→ Qi

=−→ Qi → 0 in degrees i and
i+1 for i = 1, . . . , n−2, and the sequence 0→ Qn−1⊕Qn

=−→ Qn−1⊕Qn → 0
to (∗) in degrees n− 1 and n, we get the desired exact sequence

0→M → Fn → · · · → F1 →M → 0,

where Fn = Pn⊕Qn⊕Qn−1, Fn−1 = Pn−1⊕Qn−1⊕Qn−2⊕Qn, F1 = P1⊕Q1,
and Fi = Pi ⊕Qi ⊕Qi−1 for i = 2, . . . , n− 2.

Remark 2.2. If M is 1-SG-projective, then, from [6, Proposition 2.5],
it is n-SG-projective for every n ≥ 2, and thus it admits an exact sequence
of modules 0→M → Fn → · · · → F1 →M → 0, where each Fi is free.

Lemma 2.3. Consider a commutative diagram of modules with exact
rows and an exact left column:

0
↓

0 → A1 → B1 → C1 → 0
↓ ↓ ↓

0 → A2 → B2 → C2 → 0

If A1, B1, B2, C2, and A3 = Coker(A1 → A2) are G-projective, then so
is C1.

Proof. Applying, for a projective module Q, the functor HomR(−, Q) to
the diagram, we get, by hypotheses and [18, Proposition 2.3], the following
commutative diagram with exact rows and an exact right column:

HomR(B2, Q) → HomR(A2, Q) → ExtR(C2, Q) = 0

↓ ↓
HomR(B1, Q) → HomR(A1, Q) → ExtR(C1, Q) → ExtR(B1, Q) = 0

↓
ExtR(A3, Q) = 0

Then the homomorphism HomR(B1, Q) → HomR(A1, Q) is surjective,
which implies that ExtR(C1, Q) = 0. Therefore, [18, Corollary 2.11] ap-
plied to the short exact sequence 0→ A1 → B1 → C1 → 0 shows that C1 is
G-projective.

Corollary 2.4. Consider a short exact sequence of G-projective mod-
ules 0 → A → B → C → 0. Then, for every G-projective submodule A′ of
A and every G-projective submodule B′ of B which contains A′, the module
C ′ = B′/A′ is also G-projective.
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Proof. By hypotheses, there exists a commutative diagram with exact
columns and rows:

0 0
↓ ↓

0 → A′ → B′ → C ′ → 0
↓ ↓ ↓

0 → A → B → C → 0

Therefore, from Lemma 2.3, the module C ′ = B′/A′ is G-projective.

For any positive integer n, a module M is said to be n-presented when-
ever there is an exact sequence of modules

Fn → Fn−1 → · · · → F0 →M → 0,

where each Fi is finitely generated and free. In particular, 0-presented and
1-presented modules are finitely generated and finitely presented modules
respectively. For a finitely generated module M , we denote

λ(M) = sup{n : M is ann-presented module}.

Clearly, λ(M) = 0 if and only if M is finitely generated, and λ(M) = 1 if and
only if M is finitely presented. If λ(M) =∞, equivalently if M is n-presented
for every positive integer n, we say that M is infinitely presented ; then M
admits a free resolution of modules

· · · → Fn → Fn−1 → · · · → F0 →M → 0

such that the free modules Fi are finitely generated. For example, every
finitely generated projective module is infinitely presented [9, Exercise 7(a),
p. 180].

Lemma 2.5 ([9, Exercise 6(c) and (d), p. 180]). For every short exact
sequence of modules 0→ A→ B → C → 0, we have

λ(C) ≥ inf{λ(B), λ(A) + 1} and λ(A) ≥ inf{λ(B), λ(C)− 1}.

In particular, if B is finitely generated and projective, then λ(C)=λ(A)+1.

Now, we are ready to prove our main result.

Main Theorem 2.6. Let n ≥ 1 be an integer. If M is a finitely generated
n-SG-projective module, then it is infinitely presented.

Proof. The case n = 1 is proved in [5, Proposition 2.12], so we assume
that n ≥ 2. It is sufficient to construct a family of short exact sequences of
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finitely generated modules

αn : 0 → M → Ln → Hn → 0
αi−1 : 0 → Hi → Li−1 → Hi−1 → 0 for i = n, . . . , 3,
α1 : 0 → H2 → P1 → M → 0

where each Li is free and P1 is projective. Indeed, applying successively
Lemma 2.5 to these sequences αi, we get

λ(M) = λ(H2) + 1 = λ(H3) + 2 = · · · = λ(M) + n.

Therefore, λ(M) =∞.
Thus, it remains to prove the existence of the short exact sequences αi.

Since M is n-SG-projective, there exists, by Lemma 2.1, an exact sequence

0→M → Fn → · · · → F1 →M → 0,

where each Fi is free. Then we get a family of short exact sequences

βn : 0 → M → Fn → Gn → 0
βi−1 : 0 → Gi → Fi−1 → Gi−1 → 0 for i = n, . . . , 3,
β1 : 0 → G2 → F1 → M → 0

Since M is finitely generated and it embeds in the free module Fn, it embeds
in a finitely generated free submodule Ln of Fn such that Fn = Ln ⊕ En

where En is also a free module. Thus, we obtain the short exact sequence αn

which is the bottom exact sequence of the following commutative diagram
with exact columns and rows:

(Γn)

0 0
↓ ↓

0 → En → Kn → 0
↓ ↓ ↓

0 → M → Fn → Gn → 0
‖ ↓ ↓

0 → M → Ln → Hn → 0
↓ ↓ ↓
0 0 0

where Fn = Ln ⊕ En → Ln is the canonical surjection, and the homomor-
phisms Gn → Hn and En → Kn follow from [21, Exercise 2.7, p. 27].

Now, we construct the short exact sequence αn−1. Using the right vertical
sequence in the diagram (Γn) and the short exact sequence βn−1, we get the
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following pullback diagram:

(Ωn)

0 0
↓ ↓
Kn == Kn

↓ ↓
0 → Gn → Fn−1 → Gn−1 → 0

↓ ↓ ‖
0 → Hn → Pn−1 → Gn−1 → 0

↓ ↓ ↓
0 0 0

From the diagram (Γn), Kn
∼= En is free; and from Corollary 2.4, Hn is G-

projective. Then, by the bottom and middle exact sequences of the diagram
(Ωn) and [18, Theorem 2.5], the module Pn−1 is G-projective with finite
projective dimension. Then Pn−1 is projective by [18, Proposition 2.27].
Hence there exists, from Eilenberg’s swindle [21, Exercise 3.13, p. 64], a free
module Qn−1 such that Pn−1⊕Qn−1 = On−1 is free. Thus, adding the short
exact sequence

0→ 0→ Qn−1
=−→ Qn−1 → 0

to the bottom exact sequence of the diagram (Ωn), we get the exact sequence

0→ Hn → On−1 → Nn−1 → 0,

where Nn−1 = Gn−1 ⊕ Qn−1. Since Hn embeds in the free module On−1,
and since Hn is finitely generated (by the bottom exact sequence of the
diagram (Γn)), it embeds in a finitely generated free submodule Ln−1 of
On−1 such that On−1 = Ln−1 ⊕ En−1 where En−1 is also a free module.
Then, similarly to the diagram (Γn), we get a diagram (Γn−1) in which the
bottom exact sequence is the desired short exact sequence αn−1:

(Γn−1)

0 0
↓ ↓

0 → En−1 → Kn−1 → 0
↓ ↓ ↓

0 → Hn → On−1 → Nn−1 → 0
‖ ↓ ↓

0 → Hn → Ln−1 → Hn−1 → 0
↓ ↓ ↓
0 0 0
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The short exact sequence αn−2 is obtained as follows. Adding the short exact
sequence

0→ Qn−1
=−→ Qn−1 → 0→ 0

to the short exact sequence βn−2, we get the exact sequence

0→ Nn−1 → F ′n−2 → Gn−2 → 0,

where F ′n−2 = Fn−2 ⊕ Qn−1. Using this short exact sequence and the right
vertical sequence in the diagram (Γn−1), we get the pullback diagram

(Ωn−1)

0 0
↓ ↓

Kn−1 == Kn−1

↓ ↓
0 → Nn−1 → F ′n−2 → Gn−2 → 0

↓ ↓ ‖
0 → Hn−1 → Pn−2 → Gn−2 → 0

↓ ↓ ↓
0 0 0

Then, similarly to (Γn−1), we get a diagram (Γn−2) in which the bottom
exact sequence is the desired short exact sequence αn−2:

(Γn−2)

0 0
↓ ↓

0 → En−2 → Kn−2 → 0
↓ ↓ ↓

0 → Hn−1 → On−2 → Nn−2 → 0
‖ ↓ ↓

0 → Hn−1 → Ln−2 → Hn−2 → 0
↓ ↓ ↓
0 0 0

So, similarly to the previous arguments, the short exact sequences αi−1 for
i = n, . . . , 3 are constructed recursively. In the nth step, we obtain the
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pullback diagram (Ω2):

(Ω2)

0 0
↓ ↓
K2 == K2

↓ ↓
0 → N2 → F ′1 → M → 0

↓ ↓ ‖
0 → H2 → P1 → M → 0

↓ ↓ ↓
0 0 0

Since H2 and M are finitely generated modules, the projective module P1 is
also finitely generated. Therefore, the bottom sequence in the diagram (Ω2)
is the last desired short exact sequence α1.

Theorem 2.6 allows us to extend the characterization of finitely generated
1-SG-projective modules [5, Proposition 2.12] to finitely generated n-SG-
projective modules.

Corollary 2.7. For an integer n ≥ 1 and a finitely generated mod-
ule M , the following are equivalent:

(1) M is n-SG-projective,
(2) There exists an exact sequence of finitely generated modules

0→M → Fn → · · · → F2 → P1 →M → 0,

where each Fi is free and P1 is projective, such that Exti(M,R) = 0
for every i > 0,

(3) There exists an exact sequence of finitely generated modules

0→M → Fn → · · · → F2 → P1 →M → 0,

where each Fi is free and P1 is projective, such that Exti(M,F ) = 0
for every i > 0 and every flat R-module F ,

(4) There exists an exact sequence of finitely generated modules

0→M → Fn → · · · → F2 → P1 →M → 0,

where each Fi is free and P1 is projective, such that Exti(M,F ′) = 0
for every i > 0 and every R-module F ′ with finite flat dimension.

Proof. Use Theorem 2.6 and [4, proof of Lemma 3.4] (see also [4, proof
of Corollary 3.5]).

To complete the analogy with the classical homological dimension,
Enochs, Jenda, and Torrecillas [16] introduced the Gorenstein flat modules
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as follows: a module M is called Gorenstein flat (G-flat for short) if there
exists an exact sequence of flat modules

F = · · · → F1 → F0 → F 0 → F 1 → · · ·
such that M ∼= Im(F0 → F 0) and I⊗R− leaves the sequence F exact when-
ever I is an injective right module. The G-flat modules were investigated
by Holm [18] over coherent rings, and, recently, in a more general context
in [3]. The relationships between G-projective and G-flat modules were in-
vestigated in many works (see, for instance, [5, Proposition 1.3 and 3.9], [4,
Theorem 3.3], [18, Proposition 3.4], and [12, Corollary 4.2]). The following
establishes another relation between n-SG-projective and n-SG-flat mod-
ules: for an integer n > 0, a module M is called n-strongly Gorenstein flat
(n-SG-flat for short) if there exists an exact sequence of modules

0→M → Fn → · · · → F1 →M → 0,

where each Fi is flat, such that I ⊗R − leaves the sequence exact whenever
I is an injective right module (see the note at the end of [6]).

Corollary 2.8. Every finitely generated n-SG-projective module is n-
SG-flat.

Proof. Use Theorem 2.6 and [4, Theorem 3.3].

The problems we investigate in the paper are related to some problems
on periodic resolutions of flat modules studied by Benson and Goodearl [7],
Simson [20], and recently generalized by Bouchiba and Khaloui [8].
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