VOL. 121

2010

NO. 1

ON PAWLAK'S PROBLEM CONCERNING ENTROPY OF ALMOST CONTINUOUS FUNCTIONS

BҮ

TOMASZ NATKANIEC and PIOTR SZUCA (Gdańsk)

Abstract. We prove that if $f : \mathbb{I} \to \mathbb{I}$ is Darboux and has a point of prime period different from 2^i , $i = 0, 1, \ldots$, then the entropy of f is positive. On the other hand, for every set $A \subset \mathbb{N}$ with $1 \in A$ there is an almost continuous (in the sense of Stallings) function $f : \mathbb{I} \to \mathbb{I}$ with positive entropy for which the set $\operatorname{Per}(f)$ of prime periods of all periodic points is equal to A.

A classical result of Misiurewicz says that for a continuous function $f : \mathbb{I} \to \mathbb{I}$, where $\mathbb{I} = [0,1]$, f has positive entropy iff it has a periodic point of period different from 2^n , $n = 0, 1, \ldots$ (see e.g. [1]). M. Čiklová proved an analogous result for all functions whose graph is a connected G_{δ} set [3]. R. Pawlak asked recently whether or not an analogous theorem holds for almost continuous functions [8].

In this note we consider both implications contained in Pawlak's problem. In Theorem 3, for a given set $A \subset \mathbb{N}$ with $1 \in A$ we construct an almost continuous function $f : \mathbb{I} \to \mathbb{I}$ such that:

- (i) f maps non-degenerate intervals $J \subset \mathbb{I}$ onto the whole \mathbb{I} ;
- (ii) f has only periodic points of periods from A.

This generalizes an old result of Kellum [5]. (Recall that every almost continuous function $f : \mathbb{I} \to \mathbb{I}$ has fixed points.)

Let $A = \{1\}$. Then (i) implies that f has positive entropy and, by (ii), f has no periodic points of period different from 1, so the implication " \Rightarrow " in Pawlak's problem does not hold. In Theorem 2 we prove that if $f : \mathbb{I} \to \mathbb{I}$ is Darboux and has a point of prime period different from 2^i , $i = 0, 1, \ldots$, then the entropy of f is positive. This generalizes Theorem 4.8 of [3] and shows that the implication " \Leftarrow " in Pawlak's problem is true. The proof of Theorem 2 is based on Lemma 1, in which we employ some ideas which are abstracted from the proof of Sharkovskii's theorem due to Block, Guckenheimer, Misiurewicz and Young (see [4]). These ideas were originally used

²⁰¹⁰ Mathematics Subject Classification: Primary 26A18; Secondary 37B40, 37E05, 26A15. Key words and phrases: topological entropy, Darboux function, almost continuity, periodic point, turbulent function.

for continuous functions, but it was observed in [10] (see Appendix there; see also proof of the first part of Lemma 4.2 in [11]) that they work also for Darboux functions with the property \mathcal{I} . We prove that, in fact, some parts of those proofs work for all Darboux functions.

We will use standard notions and terminology concerning dynamical systems and real functions, following [8] and [3]. A function $f : \mathbb{I} \to \mathbb{I}$ is *Darboux* $(f \in D)$ if f maps intervals onto intervals. f is almost continuous in the sense of Stallings ($f \in ACS$) if every open set $U \subset \mathbb{I} \times \mathbb{I}$ containing f contains also a continuous function $g : \mathbb{I} \to \mathbb{I}$. (We identify a function with its graph.) Recall that $ACS \subset D$ ([9]; see also [7]). Moreover, if $f : \mathbb{I} \to \mathbb{I}$ meets each closed set $K \subset \mathbb{I}^2$ with $|\text{dom}(K)| = \mathfrak{c}$ (where dom(K) denotes the x-projection of K, and |X| denotes the cardinality of X), then $f \in ACS$ ([6]; see also [7]).

For a function $f : \mathbb{I} \to \mathbb{I}$, Per(f) denotes the set of all prime periods of f, i.e., $n \in Per(f)$ iff there is a periodic point $x \in \mathbb{I}$ such that n is the prime period of x.

Let $I, J \subset \mathbb{I}$ be closed intervals. We say that I f-covers J if $J \subset f(I)$. We denote this fact by $I \to_f J$ (or $I \to J$, if f is clear from context). We say that a map $f : \mathbb{I} \to \mathbb{I}$ is turbulent if there are compact non-overlapping intervals $I, J \subset \mathbb{I}$ such that $I \cup J \subset f(I) \cap f(J)$.

Fix a function $f : \mathbb{I} \to \mathbb{I}$. For $\varepsilon > 0$ and a positive integer n, we say that a set $M \subset \mathbb{I}$ is (n, ε) -separated if for any different points $x, y \in M$ there is i < n with $|f^i(x) - f^i(y)| > \varepsilon$. Let $S(n, \varepsilon)$ denote the maximal cardinality of an (n, ε) -separated set. The topological entropy of a map f is defined by

$$h(f) = \lim_{\varepsilon \to 0} (\limsup_{n \to \infty} \log S(n, \varepsilon)).$$

See e.g. [2]; compare [8] or [3]. In our considerations it will only be important that every turbulent Darboux map has a positive entropy [8, Proposition 2.4].

LEMMA 1. Assume $g : \mathbb{I} \to \mathbb{I}$ is Darboux. If g has a periodic point x with odd period k > 1, then g^n is turbulent for some $n \in \mathbb{N}$.

Proof. We may assume that k is the minimal odd number in $Per(g) \setminus \{1\}$. Let $\{x_1, \ldots, x_k\}$ be the orbit of x with $x_1 < \cdots < x_k$, and let $J = [x_1, x_k]$. Note that g permutes the orbit. Clearly, $g(x_i) \neq x_i$ for each i, thus $g(x_1) > x_1$ and $g(x_k) < x_k$. So, we can choose the largest i for which $g(x_i) > x_i$. Set $I_1 = [x_i, x_{i+1}]$. Since $g(x_{i+1}) < x_{i+1}$, it follows that $g(x_{i+1}) \leq x_i$, and consequently $I_1 \rightarrow_q I_1$.

In what follows, by a *basic interval* we will understand any interval of the form $[x_j, x_{j+1}]$. Let \mathcal{J} denote the family of all basic intervals. Set $\mathcal{O}_1 = \{I_1\}$ and for j > 1 let \mathcal{O}_j be the family of all $J \in \mathcal{J}$ which are g-covered by some $I \in \mathcal{O}_{j-1}$.

CLAIM 1. $I_1 \in \mathcal{O}_2, \mathcal{O}_2 \neq \{I_1\}$ and $I_1 \to I_2$ for every $I_2 \in \mathcal{O}_2$. Moreover, $\bigcup \mathcal{O}_2$ is an interval.

In fact, since x has period k > 2, either $g(x_{i+1}) \neq x_i$ or $g(x_i) \neq x_{i+1}$. Thus $g(I_1)$ includes at least one basic interval $I_2 \neq I_1$, and for every such interval we have $I_1 \rightarrow I_2$. Finally, since g is Darboux, $\bigcup \mathcal{O}_2$ is an interval.

CLAIM 2. The sequence $\{\mathcal{O}_l\}_{l\in\mathbb{N}}$ is increasing and $\bigcup \mathcal{O}_l$ is connected for each $l\in\mathbb{N}$.

Indeed, by Claim 1, $\mathcal{O}_1 \subset \mathcal{O}_2$ and $\bigcup \mathcal{O}_2$ is an interval. Thus $\mathcal{O}_2 \subset \mathcal{O}_3$. We will show that $\bigcup \mathcal{O}_3$ is an interval. Suppose $\bigcup \mathcal{O}_3$ is not connected. Then there exist $a, b \in \mathbb{N}$ with $1 \leq a < b \leq k$ and $[x_a, x_b] \cap \bigcup \mathcal{O}_3 = \{x_a, x_b\}$. By the Darboux property of g, for every basic interval $[x_j, x_{j+1}] \in \mathcal{O}_2, g(x_j)$ and $g(x_{j+1})$ are on the same side of $[x_a, x_b]$. But $\bigcup \mathcal{O}_2$ is connected and so all images of points x_j from $\bigcup \mathcal{O}_2$ lie on the same side of $[x_a, x_b]$. This is impossible because there exist $x'_a, x'_b \in \bigcup \mathcal{O}_2$ such that $f(x'_a) = x_a$ and $f(x'_b) = x_b$.

Proceeding inductively, we verify that $\mathcal{O}_l \subset \mathcal{O}_{l+1}$ and $\bigcup \mathcal{O}_{l+1}$ is connected for each $l \in \mathbb{N}$.

CLAIM 3. For every interval $I_{l+1} \in \mathcal{O}_{l+1}$ there is a chain of intervals I_2, \ldots, I_l , with $I_j \in \mathcal{O}_j$ for each j, which satisfy $I_1 \to I_2 \to \cdots \to I_l \to I_{l+1}$.

CLAIM 4. $\mathcal{O}_{l+1} = \mathcal{O}_l$ for some $l \leq k-1$. For such l the set \mathcal{O}_l contains all basic intervals, and therefore $I_1 \rightarrow_{q^l} J$.

Such an $l \leq k-1$ exists because all \mathcal{O}_l are included in \mathcal{J} , the sequence $\{\mathcal{O}_l\}_l$ is increasing and \mathcal{J} has only k-1 elements. Now, since $x_1 = f^a(x_i)$ and $x_k = f^b(x_i)$ for some $a, b \in \mathbb{N}$, we see that \mathcal{O}_l contains the basic intervals $[x_1, x_2]$ and $[x_{k-1}, x_k]$. By Claim 2, $\bigcup \mathcal{O}_l$ is connected, thus \mathcal{O}_l contains all basic intervals.

CLAIM 5. There is at least one basic interval I different from I_1 which g-covers I_1 .

In fact, since k is odd, more of the points x_j lie on one side of I_1 , say on the left, than on the other. Hence there is a $j \leq i$ such that $g(x_j) \leq x_i$. Let j be the least integer with this property. Since $g(x_i) > x_i$, we have j < i and $g(x_{j+1}) \geq x_{j+1}$. Set $I = [x_j, x_{j+1}]$. Then $I_1 \neq I$, and the Darboux property of g yields $I \to I_1$.

Finally, let n = l + 1. Since J is g^l -covered by I_1 , it is g^n -covered by I. Thus I_1 and I are non-overlapping, $I_1 \cup I \subset J$ and $I_1 \cup I \subset J \subset g^n(I_1) \cap g^n(I)$.

THEOREM 2. Assume $f : \mathbb{I} \to \mathbb{I}$ is Darboux. If f has a periodic point x with prime period $2^n k$, where k > 1 is odd and $n \ge 0$, then h(f) > 0.

Proof. Set $g = f^{2^n}$; then g has a cycle of prime period k. By Lemma 1, g^m is turbulent for some m, so $h(g^m) > 0$. By [3, Proposition 3.6], $h(g^m) = mh(g)$, so h(g) > 0, and consequently h(f) > 0.

THEOREM 3. For every set A of positive integers with $1 \in A$ there exists an almost continuous function $f : \mathbb{I} \to \mathbb{I}$ such that $f(J) = \mathbb{I}$ for each nondegenerate interval $J \subset \mathbb{I}$, and $\operatorname{Per}(f) = A$.

Proof. Let $\{K_{\alpha} : \alpha < \mathfrak{c}\}$ be a well-ordering of the family of all closed subsets $K \subset \mathbb{I}^2$ with $|\operatorname{dom}(K)| = \mathfrak{c}$. First, choose a family $\{B_n : n \in A\}$ of pairwise disjoint subsets of \mathbb{I} with $|B_n| = n$ for each $n \in A$. Let $B = \bigcup_{n \in A} B_n$. Note that B is countable.

For $n \in A$ set $B_n = \{b_0^n, b_1^n, \dots, b_{n-1}^n\}$ and define $f_n : B_n \to B_n$ by the formula $f_n(b_i^n) = b_{i+1}^n$ for i < n-1, and $f_n(b_{n-1}^n) = b_0^n$. Let $f' = \bigcup_{n \in A} f_n$. Then f' is a function which permutes the set B. We will extend f' to an almost continuous function $f : \mathbb{I} \to \mathbb{I}$. For every $\alpha < \mathfrak{c}$ choose (by transfinite induction) an $x_{\alpha} \in \mathbb{I}$ and define $f(x_{\alpha})$ such that:

(1) $x_{\alpha} \in \operatorname{dom}(K_{\alpha}) \setminus [\bigcup_{\beta < \alpha} \{x_{\beta}, f(x_{\beta})\} \cup B];$

(2)
$$(x_{\alpha}, f(x_{\alpha})) \in K_{\alpha}$$
.

Let $C = \mathbb{I} \setminus [\{x_{\alpha} : \alpha < \mathfrak{c}\} \cup B]$. Define $f'' : C \to C$ to be the identity function on C.

Clearly, the relation $f = f' \cup f'' \cup \{(x_{\alpha}, f(x_{\alpha})) : \alpha < \mathfrak{c}\}$ is a function which maps \mathbb{I} into \mathbb{I} . By (1) and (2), $f \in ACS$, and $f(J) = \mathbb{I}$ for each non-degenerate interval $J \subset \mathbb{I}$ (observe that for each closed non-degenerate interval J and every $y \in \mathbb{I}$ the set $J \times \{y\}$ belongs to the family $\{K_{\alpha} : \alpha < \mathfrak{c}\}$). Since $f' \subset f$, $A \subset \operatorname{Per}(f)$. We will verify that $\operatorname{Per}(f) \subset A$. It is enough to prove that $f \upharpoonright (\mathbb{I} \setminus (B \cup C))$ has no periodic points with period k > 1. So, suppose that $a \in \mathbb{I} \setminus B$ is a periodic point of f with period k > 1. Let $a_0 = a$ and $a_i = f^i(a)$ for $i = 1, \ldots, k - 1$, and let $\alpha_i < \mathfrak{c}$ be the ordinal such that $a_i = x_{\alpha_i}$. Observe that $\alpha_0 > \alpha_1 > \cdots > \alpha_{k-1}$, so $\alpha_0 > \alpha_{k-1}$. But $f(a_{k-1}) =$ $a_0 = x_{\alpha_0} \in \{x_\beta : \beta < \alpha_{k-1}\} \subset \{x_\beta : \beta < \alpha_0\}$, in contradiction with (1).

Obviously, if $f : \mathbb{I} \to \mathbb{I}$ maps every non-degenerate interval $J \subset \mathbb{I}$ onto \mathbb{I} , then it is turbulent, hence h(f) > 0. Thus f constructed above for $A = \{1\}$ solves Pawlak's problem in the negative.

REMARK. Note that for the function f constructed in the proof of Theorem 3 each point $x \in \mathbb{I}$ is *eventually periodic*, i.e., for each x there exists $n \in \mathbb{N}$ such that $f^n(x)$ is a periodic point for f. (See [4].)

Indeed, clearly each $x \in B \cup C$ is a periodic point of f. Now, fix $\alpha < \mathfrak{c}$ and assume that $f(x_{\alpha}) \neq x_{\alpha}$. We will show that $f^n(x_{\alpha}) \in B \cup C$ for some $n < \omega$. Suppose otherwise: $f^n(x_{\alpha}) \in \mathbb{I} \setminus (B \cup C) = \{x_{\beta} : \beta < \mathfrak{c}\}$ for all n. For each nlet α_n be the ordinal such that $f^n(x_{\alpha}) = x_{\alpha_n}$. Then $f(x_{\alpha_n}) = x_{\alpha_{n+1}}$ and (1) yields $\alpha_{n+1} < \alpha_n$, thus we obtain an infinite strictly decreasing sequence of ordinals, a contradiction.

Finally, note that the function constructed in the proof of Theorem 3 can be both Lebesgue and Baire measurable. (In fact, it is enough to choose

points x_{α} from some meager and null set which is *c*-dense in I.) However, such a construction does not work in the case of Borel measurability. Hence we pose the following question.

PROBLEM 4. Does there exist, for every set $A \subset \mathbb{N}$ with $1 \in A$, a Borel measurable function $f : \mathbb{I} \to \mathbb{I}$ which satisfies all conditions of Theorem 3 (i.e., $f \in ACS$, h(f) > 0, and Per(f) = A)?

Acknowledgments. We would like to thank Prof. R. Pawlak for drawing our attention to the problem.

The work of the second author is supported by UG grant BW/5100-5-0157-9.

REFERENCES

- [1] L. S. Block and W. A. Coppel, *Dynamics in One Dimension*, Springer, Berlin, 1992.
- R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414; Erratum, ibid. 181 (1973), 509–510.
- [3] M. Čiklová, Dynamical systems generated by functions with connected G_{δ} graphs, Real Anal. Exchange 30 (2004/05), 617–637.
- R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986.
- [5] K. R. Kellum, Iterates of almost continuous functions and Sharkovskii's theorem, Real Anal. Exchange 14 (1988/89), 420–422.
- [6] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181–184.
- [7] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991/92), 462–520.
- [8] R. J. Pawlak, On the entropy of Darboux functions, Colloq. Math. 116 (2009), 227– 241.
- J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.
- [10] P. Szuca, Sharkovskii's theorem holds for some discontinuous functions, ibid. 179 (2003), 27–41.
- [11] —, Fixed points of Darboux maps, Ph.D. thesis, Gdańsk, 2003 (in Polish).

Tomasz Natkaniec, Piotr Szuca Institute of Mathematics Gdańsk University Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: mattn@mat.ug.edu.pl pszuca@radix.com.pl

> Received 20 October 2009; revised 20 February 2010

(5290)