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ON PAWLAK’S PROBLEM CONCERNING ENTROPY OF
ALMOST CONTINUOUS FUNCTIONS

BY

TOMASZ NATKANIEC and PIOTR SZUCA (Gdańsk)

Abstract. We prove that if f : I → I is Darboux and has a point of prime period
different from 2i, i = 0, 1, . . . , then the entropy of f is positive. On the other hand, for
every set A ⊂ N with 1 ∈ A there is an almost continuous (in the sense of Stallings)
function f : I → I with positive entropy for which the set Per(f) of prime periods of all
periodic points is equal to A.

A classical result of Misiurewicz says that for a continuous function f :
I → I, where I = [0, 1], f has positive entropy iff it has a periodic point
of period different from 2n, n = 0, 1, . . . (see e.g. [1]). M. Čiklová proved
an analogous result for all functions whose graph is a connected Gδ set [3].
R. Pawlak asked recently whether or not an analogous theorem holds for
almost continuous functions [8].

In this note we consider both implications contained in Pawlak’s problem.
In Theorem 3, for a given set A ⊂ N with 1 ∈ A we construct an almost
continuous function f : I→ I such that:

(i) f maps non-degenerate intervals J ⊂ I onto the whole I;
(ii) f has only periodic points of periods from A.

This generalizes an old result of Kellum [5]. (Recall that every almost con-
tinuous function f : I→ I has fixed points.)

Let A = {1}. Then (i) implies that f has positive entropy and, by (ii),
f has no periodic points of period different from 1, so the implication “⇒”
in Pawlak’s problem does not hold. In Theorem 2 we prove that if f : I→ I
is Darboux and has a point of prime period different from 2i, i = 0, 1, . . . ,
then the entropy of f is positive. This generalizes Theorem 4.8 of [3] and
shows that the implication “⇐” in Pawlak’s problem is true. The proof of
Theorem 2 is based on Lemma 1, in which we employ some ideas which are
abstracted from the proof of Sharkovskĭı’s theorem due to Block, Gucken-
heimer, Misiurewicz and Young (see [4]). These ideas were originally used
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for continuous functions, but it was observed in [10] (see Appendix there;
see also proof of the first part of Lemma 4.2 in [11]) that they work also for
Darboux functions with the property I. We prove that, in fact, some parts
of those proofs work for all Darboux functions.

We will use standard notions and terminology concerning dynamical sys-
tems and real functions, following [8] and [3]. A function f : I→ I is Darboux
(f ∈ D) if f maps intervals onto intervals. f is almost continuous in the sense
of Stallings (f ∈ ACS) if every open set U ⊂ I× I containing f contains also
a continuous function g : I→ I. (We identify a function with its graph.) Re-
call that ACS ⊂ D ([9]; see also [7]). Moreover, if f : I→ I meets each closed
set K ⊂ I2 with |dom(K)| = c (where dom(K) denotes the x-projection of
K, and |X| denotes the cardinality of X), then f ∈ ACS ([6]; see also [7]).

For a function f : I→ I, Per(f) denotes the set of all prime periods of f ,
i.e., n ∈ Per(f) iff there is a periodic point x ∈ I such that n is the prime
period of x.

Let I, J ⊂ I be closed intervals. We say that I f -covers J if J ⊂ f(I).
We denote this fact by I →f J (or I → J , if f is clear from context). We
say that a map f : I → I is turbulent if there are compact non-overlapping
intervals I, J ⊂ I such that I ∪ J ⊂ f(I) ∩ f(J).

Fix a function f : I→ I. For ε > 0 and a positive integer n, we say that
a set M ⊂ I is (n, ε)-separated if for any different points x, y ∈ M there is
i < n with |f i(x) − f i(y)| > ε. Let S(n, ε) denote the maximal cardinality
of an (n, ε)-separated set. The topological entropy of a map f is defined by

h(f) = lim
ε→0

(lim sup
n→∞

logS(n, ε)).

See e.g. [2]; compare [8] or [3]. In our considerations it will only be important
that every turbulent Darboux map has a positive entropy [8, Proposition 2.4].

Lemma 1. Assume g : I→ I is Darboux. If g has a periodic point x with
odd period k > 1, then gn is turbulent for some n ∈ N.

Proof. We may assume that k is the minimal odd number in Per(g)\{1}.
Let {x1, . . . , xk} be the orbit of x with x1 < · · · < xk, and let J = [x1, xk].
Note that g permutes the orbit. Clearly, g(xi) 6= xi for each i, thus g(x1) > x1

and g(xk) < xk. So, we can choose the largest i for which g(xi) > xi. Set
I1 = [xi, xi+1]. Since g(xi+1) < xi+1, it follows that g(xi+1) ≤ xi, and
consequently I1 →g I1.

In what follows, by a basic interval we will understand any interval of the
form [xj , xj+1]. Let J denote the family of all basic intervals. Set O1 = {I1}
and for j > 1 let Oj be the family of all J ∈ J which are g-covered by some
I ∈ Oj−1.

Claim 1. I1 ∈ O2, O2 6= {I1} and I1 → I2 for every I2 ∈ O2. Moreover,⋃
O2 is an interval.



PAWLAK’S PROBLEM CONCERNING ENTROPY 109

In fact, since x has period k > 2, either g(xi+1) 6= xi or g(xi) 6= xi+1.
Thus g(I1) includes at least one basic interval I2 6= I1, and for every such
interval we have I1 → I2. Finally, since g is Darboux,

⋃
O2 is an interval.

Claim 2. The sequence {Ol}l∈N is increasing and
⋃
Ol is connected for

each l ∈ N.

Indeed, by Claim 1, O1 ⊂ O2 and
⋃
O2 is an interval. Thus O2 ⊂ O3.

We will show that
⋃
O3 is an interval. Suppose

⋃
O3 is not connected. Then

there exist a, b ∈ N with 1 ≤ a < b ≤ k and [xa, xb] ∩
⋃
O3 = {xa, xb}. By

the Darboux property of g, for every basic interval [xj , xj+1] ∈ O2, g(xj)
and g(xj+1) are on the same side of [xa, xb]. But

⋃
O2 is connected and

so all images of points xj from
⋃
O2 lie on the same side of [xa, xb]. This

is impossible because there exist x′a, x′b ∈
⋃
O2 such that f(x′a) = xa and

f(x′b) = xb.
Proceeding inductively, we verify thatOl ⊂ Ol+1 and

⋃
Ol+1 is connected

for each l ∈ N.

Claim 3. For every interval Il+1 ∈ Ol+1 there is a chain of intervals
I2, . . . , Il, with Ij ∈ Oj for each j, which satisfy I1 → I2 → · · · → Il → Il+1.

Claim 4. Ol+1 = Ol for some l ≤ k − 1. For such l the set Ol contains
all basic intervals, and therefore I1 →gl J .

Such an l ≤ k − 1 exists because all Ol are included in J , the sequence
{Ol}l is increasing and J has only k − 1 elements. Now, since x1 = fa(xi)
and xk = f b(xi) for some a, b ∈ N, we see that Ol contains the basic intervals
[x1, x2] and [xk−1, xk]. By Claim 2,

⋃
Ol is connected, thus Ol contains all

basic intervals.

Claim 5. There is at least one basic interval I different from I1 which
g-covers I1.

In fact, since k is odd, more of the points xj lie on one side of I1, say on
the left, than on the other. Hence there is a j ≤ i such that g(xj) ≤ xi. Let
j be the least integer with this property. Since g(xi) > xi, we have j < i and
g(xj+1) ≥ xj+1. Set I = [xj , xj+1]. Then I1 6= I, and the Darboux property
of g yields I → I1.

Finally, let n = l + 1. Since J is gl-covered by I1, it is gn-covered by I.
Thus I1 and I are non-overlapping, I1 ∪ I ⊂ J and I1 ∪ I ⊂ J ⊂ gn(I1) ∩
gn(I).

Theorem 2. Assume f : I → I is Darboux. If f has a periodic point x
with prime period 2nk, where k > 1 is odd and n ≥ 0, then h(f) > 0.

Proof. Set g = f2n ; then g has a cycle of prime period k. By Lemma 1,
gm is turbulent for some m, so h(gm) > 0. By [3, Proposition 3.6], h(gm) =
mh(g), so h(g) > 0, and consequently h(f) > 0.
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Theorem 3. For every set A of positive integers with 1 ∈ A there exists
an almost continuous function f : I → I such that f(J) = I for each non-
degenerate interval J ⊂ I, and Per(f) = A.

Proof. Let {Kα : α < c} be a well-ordering of the family of all closed
subsets K ⊂ I2 with |dom(K)| = c. First, choose a family {Bn : n ∈ A}
of pairwise disjoint subsets of I with |Bn| = n for each n ∈ A. Let B =⋃
n∈ABn. Note that B is countable.
For n ∈ A set Bn = {bn0 , bn1 , . . . , bnn−1} and define fn : Bn → Bn by the

formula fn(bni ) = bni+1 for i < n − 1, and fn(bnn−1) = bn0 . Let f ′ =
⋃
n∈A fn.

Then f ′ is a function which permutes the set B. We will extend f ′ to an
almost continuous function f : I→ I. For every α < c choose (by transfinite
induction) an xα ∈ I and define f(xα) such that:

(1) xα ∈ dom(Kα) \ [
⋃
β<α{xβ, f(xβ)} ∪B];

(2) (xα, f(xα)) ∈ Kα.

Let C = I\ [{xα : α < c}∪B]. Define f ′′ : C → C to be the identity function
on C.

Clearly, the relation f = f ′ ∪ f ′′ ∪ {(xα, f(xα)) : α < c} is a function
which maps I into I. By (1) and (2), f ∈ ACS, and f(J) = I for each
non-degenerate interval J ⊂ I (observe that for each closed non-degenerate
interval J and every y ∈ I the set J×{y} belongs to the family {Kα : α < c}).
Since f ′ ⊂ f , A ⊂ Per(f). We will verify that Per(f) ⊂ A. It is enough to
prove that f�(I \ (B ∪ C)) has no periodic points with period k > 1. So,
suppose that a ∈ I \B is a periodic point of f with period k > 1. Let a0 = a
and ai = f i(a) for i = 1, . . . , k − 1, and let αi < c be the ordinal such that
ai = xαi . Observe that α0 > α1 > · · · > αk−1, so α0 > αk−1. But f(ak−1) =
a0 = xα0 ∈ {xβ : β < αk−1} ⊂ {xβ : β < α0}, in contradiction with (1).

Obviously, if f : I→ I maps every non-degenerate interval J ⊂ I onto I,
then it is turbulent, hence h(f) > 0. Thus f constructed above for A = {1}
solves Pawlak’s problem in the negative.

Remark. Note that for the function f constructed in the proof of The-
orem 3 each point x ∈ I is eventually periodic, i.e., for each x there exists
n ∈ N such that fn(x) is a periodic point for f . (See [4].)

Indeed, clearly each x ∈ B∪C is a periodic point of f . Now, fix α < c and
assume that f(xα) 6= xα. We will show that fn(xα) ∈ B∪C for some n < ω.
Suppose otherwise: fn(xα) ∈ I \ (B ∪C) = {xβ : β < c} for all n. For each n
let αn be the ordinal such that fn(xα) = xαn . Then f(xαn) = xαn+1 and (1)
yields αn+1 < αn, thus we obtain an infinite strictly decreasing sequence of
ordinals, a contradiction.

Finally, note that the function constructed in the proof of Theorem 3
can be both Lebesgue and Baire measurable. (In fact, it is enough to choose
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points xα from some meager and null set which is c-dense in I.) However,
such a construction does not work in the case of Borel measurability. Hence
we pose the following question.

Problem 4. Does there exist, for every set A ⊂ N with 1 ∈ A, a Borel
measurable function f : I → I which satisfies all conditions of Theorem 3
(i.e., f ∈ ACS, h(f) > 0, and Per(f) = A)?
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