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ON A CONSTRUCTION OF UNIVERSAL HEREDITARILY
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THE BAIRE CATEGORY
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ELZBIETA POL (Warszawa)

Abstract. We give a proof of a theorem of Mac¢kowiak on the existence of universal
n-dimensional hereditarily indecomposable continua, based on the Baire-category method.

1. Introduction. Our terminology follows [2]. All spaces are assumed
to be normal. A subset A of the space X is residual if its complement
X \ A is a first category set, equivalently, if A contains a dense Gs-subset
in X. By C(X,I*) we denote the function space of all continuous mappings
from X into the Hilbert cube I, endowed with the supremum metric dgyp.
By a hereditarily indecomposable (briefly, HI) compactum we mean a com-
pact topological space X such that for any two intersecting subcontinua
of X, one is contained in the other. We say that a space X has the prop-
erty (KM) if for any two disjoint closed sets C' and D in X and disjoint
open sets U and V in X with C C U and D C V there exist closed sets
Xp, X1 and X5 in X such that X = XU X; U Xy, C C Xy, D C Xo,
XoNX;CcV, X1NXe CcU and XgN Xy = 0. We call a triple <X0,X1,X2>
a fold of X for the quadruple (C, D,U, V). As proved by J. Krasinkiewicz
and P. Minc [6], a compact space is hereditarily indecomposable iff it has
the property (KM).

Let us recall that the first examples of hereditarily indecomposable n-
dimensional continua were constructed by B. Knaster [5] for n = 1 and
by R. H. Bing [I] for arbitrary n = 2,3,...,00 (for other constructions of
such continua see [3] or [I1), §3.8]). The existence of universal n-dimensional
hereditarily indecomposable metric continua was proved by T. Mackowiak
[10], who used McCord’s method of constructing universal continua, which
applies inverse limits. The paper [4] of K. P. Hart and E. Pol contains another
proof of Mackowiak’s theorem, which exploits a factorization theorem for
HI compacta and the fact that the Cech-Stone compactification of a normal
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space with the property (KM) has itself the property (KM) (see Theorems
2.3 and 2.1 in [4]).

We will show that the proof of the theorem of Mackowiak, as well as the
proof of Theorem 1.1 from [4], can be obtained by yet another method, which
uses some ideas from [4], but applies the Baire category theorem instead of
Theorems 2.3 and 2.1 from [4].

Our proofs are based on the following theorem.

THEOREM 1. If Xis a normal space having the property (KM), then the

set H = {f € C(X,I¥) : f(X) is hereditarily indecomposable} is a dense
Gs-set in the function space C(X,I¥).

We will prove Theorem 1 in Section 2, and in Section 3 we will point out
connections between this theorem and some results from [4].
Now we will give some corollaries and applications of Theorem 1.

COROLLARY 1. Let n € {1,2,...,00}. If X is a metrizable separable
n-dimensional space with the property (KM), then the set & consisting of all
mappings f € C(X,1¥) such that

(i) f is an embedding,
(i) dim F(X) < n,
(iii) f(X) is hereditarily indecomposable,

is residual in the function space C'(X, I¥).

Indeed, the set of mappings satisfying each of the conditions (i), (ii) or
(iii) separately is residual in C'(X, I¢¥) (see [8, Ch. IV, §44, VI, Theorem 2,
and §45, VII, Theorem 4']). As an immediate consequence of Corollary 1 we
obtain

COROLLARY 2 (Proposition 4.4 of [4] for 7 = Ng). Every metrizable

separable space X with the property (KM) has an HI metric compactification
X such that dim X < dim X.

In our proof of the Mac¢kowiak theorem and Theorem 1.1 of [4] we will
also use the following proposition (needed only for metrizable separable
spaces).

THEOREM 2 ([4, Theorem 3.1)). Let f : X — Y be a perfect mapping
from a space X onto a strongly zero-dimensional paracompact space Y such
that for every y € Y the fiber f~(y) is hereditarily indecomposable. Then
X has the property (KM).

COROLLARY 3 (T. Mac¢kowiak [I0]). For every n € {1,2,...,00} there
exists a hereditarily indecomposable metric continuum Z, of dimension n
containing a copy of every hereditarily indecomposable metric continuum of
dimension at most n.
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Proof. Tt suffices to modify slightly the proof of the theorem of Macko-
wiak given in [4, Corollary 4.1], using Corollary 2 and Theorem 2 instead
of Theorem 1.1 of [4]. For the convenience of the reader, let us describe
this modification. Let P be the subset of the hyperspace 2 of the Hilbert
cube consisting of all HI continua of dimension n or less. Since P is a Gg-
subset of 2/” (see [8, §45, IV, Theorem 4 and §48, V, Remark 5]), there
exists a continuous surjection ¢ : Y — P, where Y is the space of ir-
rationals. Let X = {(z,t) : t € Yandx € ¢(t)} be the subspace of
I“ xY and let # : I¥ XY — Y be the projection. Then the restric-
tion f = 7|X : X — Y is a perfect map (see [7, §18] or [II, Exercise
1.11.26]) with hereditarily indecomposable fibers, hence X has the prop-
erty (KM) by Theorem 2. Since the dimension of the fibers of f does not
exceed n, we have dim X = n by a theorem on dimension-lowering map-
pings (see [2, Theorem 1.12.4]). From Corollary 2 it follows that X has an
n-dimensional HI compactification X*. Now, applying the pseudosuspension
method of Maékowiak, one constructs an n-dimensional HI continuum Z,
containing X* (see [4, proof of Corollary 4.1]). Since X* contains a copy
of every HI continuum of dimension < n, Z,, satisfies the required condi-
tions.

Note that in the case when n = 0o, the above theorem states that there
exists a universal hereditarily indecomposable metric continuum. The next
corollary is a strengthening of Theorem 1.1 from [4].

COROLLARY 4. Let f : X — Y be a perfect mapping with HI fibers
from an n-dimensional metrizable separable space X onto a zero-dimensional
metrizable separable space Y. Let Y* be any 0-dimensional metric compact-
ification of Y. Then the set H of all embeddings h : X — I¥ such that
h(X) is HI, dimh(X) < n and the mapping foh™! : h(X) — Y extends to
[*h(X) — Y™ is residual in the function space C(X,1%).

Proof. By Theorem 2, the space X has the property (KM), so by Corol-
lary 1, the set € of all embeddings h : X — I such that h(X) is HI and
dim h(X) < n is residual in C(X, I*). By Theorem 3.4 of [I3], the set F of
all embeddings h : X — I such that the map foh ! : X — Y extends
to f*: h(X) — Y™ is residual in the function space C(X, ). Thus the set
H = ENYTF is residual in C(X, I¥).

2. Proof of Theorem 1. For the convenience of the reader, we will
give all the details of the proof.

Let F be a countable base for closed sets in I* which is closed under
finite intersections. Let D = {(C,D,U,V):C cU, D CcV,UNV =0 and
all C,D,I¥\ U, I* \ V belong to F}.
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For D = (C,D,U,V) € D let us define

9p = {f € C(X,I¥) : there exists a fold (X, X1, Xo) in f(X)
for (CNf(X),DNf(X), UNf(X),VNf(X)}

By a theorem of Krasinkiewicz and Minc [6], for f € C(X,1¥), f(X) is HI
iff f(X) has the property (KM), which is equivalent to f € (pcp 9p (as
observed in [3], a compact space Z has the property (KM) iff there exists
a fold in Z for every quadruple (C,D,U,V) such that C Cc U, D C V,
UNV =0 and the sets C, D, X \ U, X \ V belong to a given base for closed
sets in Z that is closed under finite intersections). Thus H = (\pcp Sp, and
therefore to prove Theorem 1 it suffices to show that for every D € D the
set 9p is open and dense in C'(X, I¥).

Fix D= (C,D,U,V) € D. First we will show that

(i) the set Gp is open in C(X, I¥).
Suppose that f € Sp and let (Xp, X1, X2) be a fold in f(X) for (C'N
f(X),DnN f(X),UN f(X), VN f(X))}. Fore >0and A C I¥ let B{(A) =

{z € I¥ : dist(z, A) < €} be a ball around A of radius €. Let ¢ > 0 be such
that a sequence

B = <BE(C)7 BE(D>7 BE(IW \ U)v Be(Iw \ V)7 BE(X0)7 BC(Xl)a Be<X2>>

forms a swelling of a sequence
A=(C,D,I*\U,I°\V, Xy, X1, X2)

(see [2l Theorem 3.1.1]), i.e. if the intersection of some elements of A is
empty then the intersection of the corresponding elements of B (i.e., the
closures of the e-balls around these elements) is empty.

To prove (i) it suffices to check that for every g € C(X,I*) such that
dsup(f, 9) < €/2, the triple (B(Xo) N g(X), B«(X1) N g(X), Be(X2) N g(X))
is a fold for the quadruple (C N g(X),DNg(X),UNg(X),VNg(X)) and
thus g € §p.

Indeed, since f(X) = XoU X1 U X and dsup(f, g) < €/2, it follows that
g(X) C BE(XO) U BE(Xl) U Be(XQ)‘

Recall that B is a swelling of A. Thus, since Xg N Xy = (), we have
B.(Xo) N B(X2) = (). Moreover, since CNX; = () = C'N Xy, it follows that
B(C) N B(X1) =0 and B.(C) N B(X3) = 0, hence

CNg(X) C B(C)Ng(X) C Be(Xo) Ng(X).

Similarly, D N g(X) C B(X2) Ng(X).
Finally, since Xo N X7 N (I¥\ V) = 0, we have

B (X0) N B(X1) N B(I°\ V) =0,
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hence B¢(Xp) N B(X1) € V and Be(Xg) N B(X1) Ng(X) € V ng(X).

Similarly, B¢(X1) N Be(X2) Ng(X) C UNg(X). This ends the proof of (i).
Let us show now that
(ii) 9p is dense in C(X, I¥).

Take an arbitrary f € C(X,I*) and n > 0. Pick € > 0, € < 7, such that
(1) Bee(C) C U and Bge(D) C V.

Since X satisfies the condition (KM), there is a fold (Xy, X7, X2) in X for
the quadruple <f_1(B2e(C))v f_l(BQE(D))’ f_l(B4e(C))v f_l(B46(D))>a i.e.,

(2) X = XoUX1UXs, f7 1By (C)) C Xo, fH(Ba2c(D)) C X2, XoN X
= @, XoNX; C fﬁl(B45(D)) and X7 N Xy C fﬁl(B4€(C)>.

Let us note that

(3) if A and B are two closed sets in a normal space X then the set of
all mappings ¢g : X — I* such that g(ANB) = g(4) Ng(B) is a
dense Gs-set in C(X, I¥).

For the proof of (3) see for example [0l Lemma 1.2] (where this fact is stated
for a metrizable separable space X, but the proof is valid for a normal
space X). Note also that the proof of (3) can be extracted from the proof of
Theorem in K. Morita’s paper [12], where (3) was proved for n-dimensional
metrizable separable space X and I?"*! instead of I“. For the special case
of (3) when AN B = () see also [8, Ch. IV, §45, VII, Theorem 4'].

By (3), the sets

F1=1{9 € C(X,I¥) : g(Xo) N g(X2) = 0},
Fa={g9 € C(X,I¥) : g(Xo N X1) = g(Xo) Ng(X1)},
F3={g9 € C(X,I¥) : g(X1 N X2) = g(X1) Ng(X2)}

are dense Gs-sets in C(X, I¥).

Thus, by the Baire theorem, the set F3 N Fo N Fy is dense in C(X, I¥).
Therefore there exists g € F1 NFaNF3 such that dsup(f, ) < €. We will show
that (g(Xo), g(X1), g(X2)) is a fold in g(X) for (C Ng(X),DNg(X),UnN
9(X),V Ng(X)), which implies that g € Sp.

Obviously, g(X) = g(Xo) Ug(X1) Ug(X1) and g(Xo) N g(X2) = 0, since
g € F1. It remains to show that
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To show (4) let us note that since Xo N X1 C f~1(By (D)), we have
f(XoN X1) C Bye(D), hence g(XoN X1) C Be(f(XoN X1)) C Bse(D), and
thus, by g € ¥ and (1),

9(Xo) Ng(X1) = g(Xo N X1) C Bse(D) C Bee(D) C V.

Similarly, replacing Xy by X2, D by C and V by U, one proves (5).

Now, let us check (6). Observe that =1 (B (C)) N X1 =0, so Ba.(C) N
F(X1) = 0. Since g(X1) © Bo(f(X1)), we have (X1) C Bo(I° \ Byc(C).
Obviously, B.(I¥ \ Ba.(C)) N C = 0, hence g(X1) N C = (. Similarly, since
[T (B2e(C)) N X5 = 0, replacing X1 by Xy we get g(X2) N C = 0, so
CNg(X) C g(Xo), which is (6).

To prove (7) we proceed similarly, replacing Xy by X5 and C by D.

3. Comments. The following remarks show that the method of con-
structing universal hereditarily indecomposable n-dimensional continua pre-
sented in this paper and the approach from [4] are closely related and in some
sense equivalent.

REMARK 1. Let us show how to obtain Theorem 1 using the results
of [4].

Suppose that X is a normal space satisfying the condition (KM) and let
H={feC(X,I¥): f(X) is hereditarily indecomposable}. Since the set of
all HI compacta in the hyperspace 2/ of the Hilbert cube is a Gs-set, I is
a Gs-set in C'(X, I¥) (cf. [8, §44, V, Theorem 4]). Thus to prove Theorem 1
it suffices to show that J is dense in C(X, I¥). This follows from Theorems
2.1 and 2.3 in [4]. Indeed, take any f € C(X,I¥) and € > 0. Suppose that
X C BX and £ is an extension of f onto SX. By [4, Theorem 2.1], 3X is HI
and by [4, Theorem 2.3] (for Y = I) there exists an HI metric compactum
Z and mappings g : X — Z and h : Z — I* such that f® = hog. Let
W : Z — I® be an embedding such that dsu,(h, k) < €. Then f’ = b’ o f%|X
is a mapping which is e-close to f and f’ € H.

REMARK 2. Note that the special case of Theorem 2.3 of [4] when Y is
a compact metric space can be strengthened in the following way:

Let f : X — Y be a continuous surjection of a hereditarily indecom-
posable compact space onto a compact metric space Y. Then the set H of
mappings g : X — I¥ such that

(i) g(X) is hereditarily indecomposable,
(ii) dimg(X) < dim X,
(iii) there ezists a continuous map h: g(X) — Y such that f =hog,

is residual in C(X, I¢).
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Indeed, the residuality of the set of mappings g : X — I¥ satisfying (i)

follows from Theorem 1, and the residuality of the set of mappings satisfying
(ii) and (iii) follows from Corollary 4.3 in [I4] (where we put 7 = Ry and
observe that in this case the space J(Rp)“ can be replaced by I).
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