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SYMBOLIC EXTENSIONS FOR NONUNIFORMLY ENTROPY
EXPANDING MAPS
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DAVID BURGUET (Cachan)

Abstract. A nonuniformly entropy expanding map is any C1 map defined on a com-
pact manifold whose ergodic measures with positive entropy have only nonnegative Lya-
punov exponents. We prove that a Cr nonuniformly entropy expanding map T with r > 1
has a symbolic extension and we give an explicit upper bound of the symbolic exten-
sion entropy in terms of the positive Lyapunov exponents by following the approach of
T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].

1. Introduction. Given a continuous map T : X → X on a compact
metrizable space X one can wonder if this topological dynamical system
admits a symbolic extension, i.e. a topological extension which is a subshift
over a finite alphabet. The topological symbolic extension entropy hsex(T ) =
inf{htop(Y, S) : (Y, S) is a symbolic extension of (X,T )} estimates how the
dynamical system (X,T ) differs from a symbolic extension from the point of
view of entropy. The question of existence of symbolic extensions leads to a
deep theory which was developed mainly by M. Boyle and T. Downarowicz,
who related the entropy of symbolic extensions to the convergence of the
entropy of (X,T ) computed at finer and finer scales [4].

Dynamical systems with symbolic extensions have necessarily finite topo-
logical entropy, because the topological entropy of a factor is less than or
equal to the topological entropy of the extension and the topological en-
tropy of a subshift over a finite alphabet is finite. Joe Auslander asked if
the opposite was true: does every finite entropy system have a symbolic ex-
tension? M. Boyle answered this question negatively by constructing a zero-
dimensional dynamical system with finite topological entropy but without
symbolic extensions. Nonetheless it was proved by M. Boyle, D. Fiebig and
U. Fiebig [6] that asymptotically h-expansive dynamical systems with finite
topological entropy admit principal symbolic extensions, i.e. ones that pre-
serve the entropy of invariant measures. Following Y. Yomdin [23], J. Buzzi
showed that C∞ maps on a compact manifold are asymptotically h-expansive
[10]. In particular such maps admit principal symbolic extensions. Recall
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that uniformly hyperbolic dynamical systems are expansive. It is also known
that partially hyperbolic dynamical systems with a central bundle splitting
into one-dimensional subbundles [19], [11] are h-expansive. Therefore all
these dynamical systems are asymptotically h-expansive and so admit prin-
cipal symbolic extensions. On the other hand C1 maps without symbolic
extensions have been built in several works by using generic arguments [15],
[1] or with an explicit construction [8].

We say that a map T : M →M defined on a compact manifold is Cr with
r > 1 when T is [r] times differentiable (1) and the [r]th derivative of T is
r− [r]-Hölder. T. Downarowicz and A. Maass [14] have recently proved that
Cr maps of the interval f : [0, 1] → [0, 1] with 1 < r < +∞ have symbolic
extensions. More precisely they showed that

hsex(f) ≤ r log ‖f ′‖∞
r − 1

.

The present author [8] built explicit examples proving this upper bound to
be sharp. Similar Cr examples with large symbolic extension entropy have
been previously built by T. Downarowicz and S. Newhouse [15] for diffeo-
morphisms in higher dimensions by using generic arguments on homoclinic
tangencies. The present author [7] proved anew that C2 surface local diffeo-
morphisms have symbolic extensions. The existence of symbolic extensions
for general Cr maps with 1 < r < +∞ is still an open question. The following
was conjectured in [15]:

Conjecture 1. Let T : M →M be a Cr map, with r > 1, on a compact
manifold M of dimension d. Then

hsex(T ) ≤ htop(T ) +
dR(T )
r − 1

where R(T ) is the dynamical Lipschitz (2) constant of T , that is,

R(T ) := lim
n→+∞

log+ ‖DTn‖
n

.

A C1 map T : M →M on a compact manifold M will be called nonuni-
formly entropy expanding if any ergodic measure with nonzero entropy has
only nonnegative Lyapunov exponents (3). In this paper we prove the con-
jecture for Cr nonuniformly entropy expanding maps with r > 1 up to a
factor d, i.e.

(1) Throughout this paper [x] denotes the integer part of x for all real numbers x.

(2) R(T ) does not depend on the Riemannian metric ‖ ‖ on M .

(3) For usual nonuniformly expanding maps [2] which are well adapted to the study
of SRB measures it is required that Lebesgue almost all points have only nonnegative
Lyapunov exponents.
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hsex(T ) ≤ htop(T ) +
d2R(T )
r − 1

(see Corollary 1).
It follows from Ruelle’s inequality that C1 maps of the interval are

nonuniformly entropy expanding. Therefore Theorem 4 generalizes the re-
sult of T. Downarowicz and A. Maass [14]. We do not know how large the
class of nonuniformly entropy expanding map in higher dimensions is. Does
it contain a Cr open set for some r ∈ Z+? Do “Alves–Viana like” maps
belong to this class [21]? Anyway, we think the results presented in this
paper can be considered as a first step towards the proof of Conjecture 1
(especially the Main Theorem which applies to general Cr maps).

We now give a class of nontrivial examples of nonuniformly entropy ex-
panding maps. Let T : N → N be a Cr isometry on a compact Riemannian
manifold N of dimension d. Then any Cr skew product on N × [0, 1] of the
form Tg(x, y) = (Tx, g(x, y)) with positive entropy is nonuniformly entropy
expanding: any ergodic measure ν has d zero Lyapunov exponents and by
Ruelle’s inequality the first exponent must be positive when the entropy of
ν is positive. Finally observe that the set of g ∈ Cr(N × [0, 1]) such that
Tg has positive entropy contains a C0 open subset of Cr(N × [0, 1]). Indeed
if f : [0, 1] → [0, 1] is a Cr map of the interval with positive entropy then
it admits a horseshoe which is persistent under small C0 perturbations [17].
Therefore there exists a C0 neighborhood V of f in C([0, 1]) such that if
g(x, ·) ∈ V for all x ∈ N then htop(Tg) > 0.

2. Preliminaries. In the following we denote by M(X,T ) the set of
invariant Borel probability measures of the dynamical system (X,T ) and
by Me(X,T ) the subset of ergodic measures. We endow M(X,T ) with the
weak star topology. Since X is a compact metric space, this topology is
metrizable. We denote by dist a metric on M(X,T ). It is well known that
M(X,T ) is a compact convex metric space whose extreme points are exactly
the ergodic measures. Moreover if µ ∈M(X,T ) there exists a unique Borel
probability measure Mµ on M(X,T ) supported on Me(X,T ) such that
for all Borel sets B we have µ(B) =

	
ν(B) dMµ(ν). This is the so called

ergodic decomposition of µ. A Borel function f : M(X,T ) → R is said to
be harmonic if f(µ) =

	
Me(X,T ) f(ν) dMµ(ν) for all µ ∈M(X,T ). It is well

known that affine upper semicontinuous functions are harmonic.
If f is a Borel function defined onMe(X,T ), the harmonic extension of

f is the function defined on M(X,T ) by

f(µ) :=
�

Me(X,T )

f(ν) dMµ(ν)

It is easily seen that f is harmonic.
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2.1. Symbolic extension entropy function and entropy struc-
tures. A symbolic extension of (X,T ) is a subshift (Y, S) of a full shift on a
finite number of symbols, along with a continuous surjection π : Y → X such
that Tπ = πS. Given a symbolic extension π : (Y, S)→ (X,T ) we consider
the extension entropy hπext :M(X,T )→ R+ defined for all µ ∈M(X,T ) by

hπext(µ) = sup
π∗ν=µ

h(ν)

where π∗ is the map induced on measures by π. Then the symbolic extension
entropy hsex :M(X,T )→ R+ is

hsex = inf hπext

where the infimum is taken over all the symbolic extensions of (X,T ). By
convention, if (X,T ) does not admit any symbolic extension we simply put
hsex ≡ +∞. Recall that in the Introduction we have defined the topolog-
ical symbolic extension entropy hsex(T ) as the infimum of the topological
entropies of the symbolic extensions of (X,T ). We also put hsex(T ) = +∞
when there are no such extensions.

2.2. Newhouse local entropy. Let us first recall some usual notions
related to the entropy of dynamical systems (we refer to [22] or [12] for a
general introduction to entropy). Consider a continuous map T : X → X
with (X, d) a compact metric space. Let n ∈ Z+ and δ > 0. A subset E of
X is called (n, δ) separated when for all x, y ∈ E there exists 0 ≤ k < n such
that d(fkx, fky) > δ.

We now recall the “‘Newhouse local entropy”. We fix some finite open
cover V of X, a point x ∈ X, a number δ > 0, an integer n, and a Borel
set F ⊂ X. We will denote by Vn the open cover consisting of all the open
sets of the form V0 ∩ T−1V1 ∩ · · · ∩ T−n+1Vn−1, where Vi ∈ V for each
i = 0, 1, . . . , n− 1. We define

H(n, δ |F,V) := log max{]E : E is an (n, δ) separated set
in F ∩ V n with V n ∈ Vn},

h(δ |F,V) := lim sup
n→+∞

1
n
H(n, δ |F,V),

h(X |F,V) := lim
δ→0

h(δ |F,V).

Then for any ergodic measure ν we put

hNew(X | ν,V) := lim
σ→1

inf
ν(F )>σ

h(X |F,V).

Finally we extend the function hNew(X | ·,V) to M(X,T ) by harmonic ex-
tension. Given a sequence (Vk)k∈Z+ of finite open covers whose diameter is
converging to 0 and with Vk+1 finer than Vk for all k ∈ Z+, we consider the
sequence HNew = (hNew

k )k∈Z+ := (h− hNew(X | ·,Vk))k∈Z+ . T. Downarowicz
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proved that this sequence defines an entropy structure (4) [13] for homeomor-
phisms and the present author [9] extended that result to the noninvertible
case.

2.3. Estimate theorem. One of the main tools introduced in [14] is the
so-called Estimate Theorem. We can roughly summarize its statement as fol-
lows: in order to estimate the symbolic extension entropy function one only
needs to bound the local entropy of an ergodic measure near an invariant
measure by the difference of the values of some convex upper semicontinuous
function on M(X,T ) at these two measures.

Theorem 1 (Downarowicz–Maass [14], [12]). Let (X,T ) be a dynamical
system with finite topological entropy and fix some r > 1. Let g be an upper
semicontinuous convex positive function on M(X,T ) such that for every
γ > 0 and µ ∈ M(X,T ) there exist τµ > 0 and a finite open cover Vµ > 0
such that for every ergodic measure ν with dist(ν, µ) < τµ we have

(1) hNew(M | ν,Vµ) ≤ g(µ)− g(ν) + γ.

Then there exists a symbolic extension π : (Y, S) → (X,T ) satisfying hπext

= g. In particular hsex ≤ h+ g.

We will apply this theorem to smooth dynamical systems where the map
g is related to the Lyapunov exponents of invariant measures.

2.4. Ruelle’s inequality. Given a compact Riemannian manifold
(M, ‖ ‖) of dimension d and an integer k ≤ d, we consider the vector bundle
ΛkT ∗M over M whose fiber at x ∈ M is the space of k-forms wx on the
tangent space TxM . It inherits a norm from the Riemannian structure of M
as follows: ‖wx‖ = sup |wx(e1, . . . , ek)| where the supremum is taken over all
the orthonormal families (e1, . . . , ek) ∈ (TxM)k. A C1 map T on M induces
naturally a map DT∧k on ΛkT ∗M defined by DxT

∧k(wx)(v1, . . . , vk) =
wx(DxTv1, . . . , DxTvk) for any wx ∈ ΛkT ∗xM and any k-tuple (v1, . . . , vk) ∈
(TxM)k. The operator norm ‖DxT

∧k‖ = sup‖wx‖≤1 ‖DxT
∧k(wx)‖ is sim-

ply the supremum of the k-volumes of the ellipsoids DxT (Dk) over all the
k-disks Dk of the tangent space with unit k-volume. For k = n it coincides
with the jacobian Jacx(T ) of T at x. Let ‖DxT

∧‖ = maxk=1,...,d ‖DxT
∧k‖.

For all k = 1, . . . , d the cocycle (x, n) 7→ log ‖(DxT
n)∧k‖ is subadditive so

that given an ergodic measure ν one can define the k-volume growth of the
action of DT on TM for ν as the limit limn n

−1 log ‖(DxT
n)∧k‖ for ν-generic

points x. For k = d the cocycle is in fact additive and the d-volume growth
of DT coincides with

	
log Jacx(T ) dν(x). The k-volume growth of DT is

related to the Lyapunov exponents as follows:

(4) In particular hNew(X | ·,Vk) converges pointwise to zero when k goes to infinity.
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Theorem 2 (Oseledets [18], [20]). Let T : M →M be a C1 map defined
on a compact Riemannian manifold (M, ‖ ‖) of dimension d. Let ν be an
ergodic measure and +∞ > χ1(ν) ≥ · · · ≥ χd(ν) ≥ −∞ its Lyapunov
exponents. Then for ν-almost all x,

lim
n→+∞

1
n

log ‖(DxT
n)∧k‖ =

k∑
i=1

χi(ν) for every 0 ≤ k ≤ d

and thus

lim
n→+∞

1
n

log+ ‖(DxT
n)∧‖ =

d∑
i=1

χ+
i (ν).

Observe that in particular
	

log Jacx(T ) dν(x) =
∑d

i=1 χi(ν) for all er-
godic measures ν. The affine function g : M(M,T ) → [−∞,+∞[ defined
by g(µ) =

	
log Jacx(T ) dµ(x) for all invariant measures µ is upper semicon-

tinuous. Therefore (5) g+ := max(g, 0) is an upper semicontinuous convex
function.

In the following we are interested in the entropy of ergodic measures.
We recall Ruelle’s inequality which states that the entropy is bounded from
above by the “maximal volume growth of DT”:

Theorem 3 (Ruelle’s inequality). Let T : M → M be a C1 map on a
compact manifold M of dimension d. Then for all ergodic measures ν,

h(ν) ≤
d∑
i=1

χ+
i (ν).

3. Statements. We first state our Main Theorem which holds for gen-
eral Cr maps with r > 1:

Main Theorem. Let T : M → M be a Cr map, with r > 1, on a
compact manifold of dimension d. Let µ be an invariant measure and fix
some γ > 0. Then there exist τµ > 0 and a finite open cover Vµ > 0 such
that for every ergodic measure ν with dist(ν, µ) < τµ we have

(2) hNew(M | ν,Vµ) ≤ d(g+(µ)− g+(ν))
r − 1

−
d∑
i=1

χ−i (ν) + γ

where g+(ξ) = max(
	

log Jacx(T ) dξ(x), 0) for all invariant measures ξ.

If we assume moreover that T is nonuniformly entropy expanding then
the conclusion of the Main Theorem can be rewritten as

hNew(M | ν,Vµ) ≤
d(
∑d

i=1 χ
+
i (µ)−

∑d
i=1 χ

+
i (ν))

r − 1
+ γ.

(5) In the following we use the notations a+ = max(a, 0) and a− = min(a, 0).
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Indeed if ν is an ergodic measure with nonzero entropy then all its
Lyapunov exponents are by assumption nonnegative. Therefore g(ν) =	

log Jacx(T ) dν(x) =
∑d

i=1 χi(ν) =
∑d

i=1 χ
+
i (ν) = g+(ν). Moreover g+(µ)

≤
∑d

i=1 χ
+
i (µ) for all invariant measures µ.

The Estimate Theorem (Theorem 1) implies:

Theorem 4. Let T : M → M be a Cr nonuniformly entropy expanding
map, with r > 1, defined on a compact manifold M of dimension d. Then
there exists a symbolic extension π : (Y, S)→ (X,T ) such that

hπext = h+
d

r − 1

d∑
i=1

χ+
i .

In particular,

hsex ≤ h+
d

r − 1

d∑
i=1

χ+
i .

Then the usual variational principle for the entropy and the obvious
inequality χ1(ν) ≤ R(T ) for all ergodic measures ν yield (6):

Corollary 1. Let T : M →M be a Cr nonuniformly entropy expanding
map, with r > 1, defined on a compact manifold M of dimension d. Then
there exists a symbolic extension (Y, S) of (X,T ) such that

htop(S) ≤ htop(T ) +
d2R(T )
r − 1

.

In particular,

hsex(T ) ≤ htop(T ) +
d2R(T )
r − 1

.

Let T : M →M be a C1 map on a compact manifold M . An n-invertible
branch is any set An ⊂ M such that for each 0 ≤ k < n the set T kAn
is open and the map T |TkAn is a diffeomorphism onto T k+1An. Any con-
nected component of the set {x : Jacx(Tn) 6= 0} of noncritical points of Tn

is an n-invertible branch. Such n-invertible branches will be called maxi-
mal. In dimension one, n-invertible branches coincide with the branches of
monotonicity of Tn.

The proof of the Main Theorem goes as follows:

• we first prove a Ruelle inequality which bounds from above the en-
tropy in the invertible branches by the sum of the negative Lyapunov
exponents;

(6) In fact it is easily seen that the following variational principle holds:
supν∈Me(M,T ) χ

+
1 (ν) = R(T ).
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• then, given a Cr map, we count the number of invertible branches with
a large jacobian;
• finally we bound the Newhouse local entropy of ergodic measures as

in [14].

4. Inverse Ruelle inequality. To estimate the entropy of a C1 map in
the invertible branches we introduce the following quantity. We fix a number
δ > 0, an integer n, an n-invertible branch An and a Borel set F ⊂ M . We
define

H inv(n, δ |F,An) := log max{]E : E is (n, δ) separated in F ∩An},
H inv(n, δ |F ) := sup

An

H inv(n, δ |F,An),

hinv(δ |F ) := lim sup
n→+∞

1
n
H inv(n, δ |F ),

hinv(M |F ) := lim
δ→0

hinv(δ |F ).

Then for any ergodic measure ν we put

hinv(ν) := lim
σ→1

inf
ν(F )>σ

hinv(M |F ).

We prove in this section the following “inverse Ruelle inequality” of in-
dependent interest:

Theorem 5. Let T : M → M be a C1+η map with η > 0. Then for all
ergodic measures ν,

hinv(ν) ≤ −
d∑
i=1

χ−i (ν).

Clearly hinv(ν) is less than or equal to the usual Kolmogorov–Sinai en-
tropy hT (ν). When T is a diffeomorphism, hinv(ν) is equal to hT (ν). It is
well known that hT (ν) = hT−1(ν) and thus Theorem 5 follows in this case
from the usual Ruelle inequality. When T is a local diffeomorphism, hinv(ν)
is greater than or equal to hNew

k (ν) for large k. In the one-dimensional case
it follows easily from the total order on R that the cardinality of an (n, δ)
separated set lying in a given monotone branch of Tn is bounded from above
by n/δ and so hinv(ν) is zero.

To prove the usual Ruelle inequality one relates the maximal volume
growth of DT , which is equal to the sum of the positive Lyapunov expo-
nents, to the maximal volume growth of T , that is, the maximal volume
growth of disks of the Riemannian manifold (M, ‖ ‖). It is then convenient
to work with the exponential map of M to make the connection between
these two quantities. We recall the basic properties of the exponential map
which we use in the present paper. We refer to [16] for a definition and further
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developments. We denote by ∂ the distance induced on M by the Rieman-
nian structure and by expx : TxM →M the exponential map at x ∈M . The
derivative of expx at the origin of TxM is the identity map so that by the
Inverse Function Theorem the restriction of expx to the ball of the tangent
space at x centered at the origin with radius r is a diffeomorphism onto its
image for small r > 0. The radius of injectivity Rinj of the compact Rieman-
nian manifold M is the largest r > 0 such that the previous property holds
for all x ∈ M . Furthermore the exponential map expx maps bijectively the
ball of the tangent space at x centered at the origin with radius r < Rinj,
denoted by Bx(0, r) := {v ∈ TxM : ‖v‖x < r}, onto the ball of M centered
at x with radius r > 0, denoted by B(x, r) := {y ∈ M : ∂(x, y) < r}. The
global exponential map exp : TM → M defined by exp(x, v) = expx(v)
is C1. In particular there exists R < Rinj such that ‖Dy expx‖ < 2 and
‖Dz(exp−1

x )‖ < 2 for all y ∈ Bx(0, R), all z ∈ B(x,R) and all x ∈M .
We now introduce some geometrical tools which will be useful in the

proof of our Ruelle inequality. For each α > 0 let Mα be a subset of
M which meets any ball of radius α/16. One can assume that αd]Mα is
bounded above by a constant C(M) depending only on M . For exam-
ple consider a finite atlas A = {Φ1, . . . , ΦK} such that the local charts
Φi : ]0, 1[d→ M satisfy ‖DΦi‖ ≤ 1 for all i = 1, . . . ,K. For all β > 0 let
Lβ = {kβ ∈ ]0, 1[d : k ∈ Z+}. Then the set Mα =

⋃
i=1,...,K Φi(Lα/16

√
d)

meets any ball of radius α/16. For each subset S of M let Cov(α, S) be
a subset of Mα with minimal cardinality such that the balls of radius α/2
centered at the points of Cov(α, S) cover S. Let x ∈ M and E ⊂ TxM be
an ellipsoid centered at the origin of TxM . We denote by ‖E‖∧k the supre-
mum of the k-volumes of E ∩ V over all the vector subspaces V of TxM of
dimension k. Let ‖E‖∧ = maxk=1,...,d ‖E‖∧k. With these notations we have
‖DyT (By(0, 1))‖∧ = ‖DyT‖∧ for all y ∈M .

Lemma 1. Let R > α1, α2 > 0. Let x ∈ M and let E ⊂ TxM be an
ellipsoid centered at the origin of TxM such that α1E ⊂ Bx(0, R/2). Then

]Cov(α2, expx(α1E)) ≤ P ([‖E‖∧] + 1)(max(α1, α2)/α2)d

with a constant P depending only on d.

Proof. Since Mα2 meets any ball of radius less than α2/16 and since
‖Dy(exp−1

x )‖ < 2 for all y ∈ B(x,R) the set exp−1
x (Mα2) meets any ball

of radius less than α2/8 which is included in Bx(0, R). The ellipsoid α1E
can be covered by at most [‖E‖∧] + 1 cubes of size α1 and therefore by at
most ([‖E‖∧] + 1)([8 max(α1, α2)

√
d/α2] + 1)d cubes of size α2/8

√
d. Such

a cube intersecting α1E is included in a subball of Bx(0, R) of radius α2/8
and therefore in a subball of Bx(0, R) of radius α2/4 centered at a point of
exp−1

x (Mα2). This last subball is mapped by expx into a ball of M of radius
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α2/2 centered at a point of Mα2 because ‖Dy expx‖ < 2 for all y ∈ Bx(0, R).
We conclude that

Cov(α2, expx(α1E)) ≤ ([‖E‖∧] + 1)([8 max(α1, α2)
√
d/α2] + 1)d.

Lemma 2. Let ν be an ergodic measure with
	

log Jacx T dν(x) > −∞.
Then (n−1 log+ ‖(DxT

n)−1‖∧)n∈Z+ converges to −
∑d

i=1 χ
−
i (ν) for ν-almost

all x and n−1
	

log+ ‖(DxT
n)−1‖∧ dν(x) converges to −

∑d
i=1 χ

−
i (ν) when n

goes to infinity.

Proof. It is well known that invertible d × d matrices, endowed with
the operator norm ‖ ‖ induced by the Euclidean norm, satisfy the relations
‖A‖ ‖A−1‖ ≥ 1 and |det(A)| ≤ ‖A‖d−1/‖A−1‖. Therefore

+∞ > (d− 1) log ‖DT‖∞ −
�
log ‖(DxT )−1‖ dν(x)

≥
�
log Jacx(T ) dν(x) > −∞

and so the map x 7→ log ‖(DxT )−1‖ is ν-integrable. Let (M,ν) be the nat-
ural extension of (M,ν). The invertible cocycle x = (. . . , x−1, x0, x1, . . . ) 7→
Dx0T over the natural extension is integrable because

	
log+ ‖Dx0T‖ dν(x) =	

log+ ‖DxT‖ dν(x) < +∞ and
�
log+ ‖(Dx0T )−1‖ dν(x) =

�
log+ ‖(DxT )−1‖ dν(x) < +∞.

This cocycle has the same Lyapunov exponents as T , and the sequence
1
n

�
log+ ‖(Dx−nT

n)−1‖∧ dν(x) =
1
n

�
log+ ‖(DxT

n)−1‖∧ dν(x)

converges to −
∑d

i=1 χ
−
i (ν) when n goes to infinity according to the cocycle

invertible version of Oseledets’ Theorem [20]. Now by Kingman’s subad-
ditive ergodic theorem applied to the subadditive sequence of integrable
functions x 7→ log+ ‖(DxT

n)−1‖∧ the limit limn→+∞ n
−1 log+ ‖(DxT

n)−1‖∧
exists for ν-almost all x and coincides with the limit of the integrals
limn→+∞ n

−1
	

log+ ‖(DxT
n)−1‖∧dν(x).

It is convenient in the next proofs to use the following terminology:

Definition 1. Let S ∈ Z+ and n ∈ Z+. We say that a sequence Kn :=
(k1, . . . , kn) of n positive integers misses the value S if n−1

∑n
i=1 ki ≤ S.

The number of sequences of n positive integers missing the value S is
exactly the binomial coefficient

(
nS
n

)
. We denote by H : [0, 1]→ R the map

defined by H(t) = −t log t− (1− t) log(1− t). It is easily seen that

log
(
nS

n

)
≤ nSH(S−1) + 1.(3)

For all γ > 0 we fix Sγ ∈ Z+ so that H(S−1) < γ for all S ≥ Sγ .
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We now prove our Ruelle inequality. First let us briefly outline the proof.
We will consider some iterate TN of T such that the negative Lyapunov
exponents of ν are almost given by the average of the norm of (DTN )−1

along the orbits of typical points. Then, given an nN -invertible branch AnN ,
we bound the cardinality of any (n, δ) separated (for TN ) set E in AnN by
shadowing the orbits of TnNE under the action of T−N . In the usual Ruelle
inequality the orbits under forward iterates are shadowed. Our situation
is more difficult because the derivative of T−N is not bounded near the
critical values of TN . However we show that the integrability assumption,	

log Jacx T dν(x) > −∞, and the Hölder property of the differential allow
us to neglect the growth of orbits near the critical values. The proof goes as
follows:

• we first define N and exploit our integrability asumption;
• then we bound the volume T−N -growth of balls by distinguishing two

cases depending on whether we are far from or close to the critical
values of TN ;

• we prove a combinatorial estimate which allows us to consider (n, δ)
separated sets E such that the size of ‖DT−1‖ along the T -orbit of E
is fixed;

• finally we detail our shadowing construction.

Proof of Theorem 5. Fix an ergodic measure ν with
	

log Jacx T dν(x)
> −∞. Let γ > 0. By Lemma 2 there exists an integer N and a Borel set
G with ν(G) > 1− γ/max(−

∑d
i=1 χ

−
i (ν), 1) such that for all x ∈ G,

(4) −
d∑
i=1

χ−i (ν)− γ < 1
N

log+ ‖(DxT
N )−1‖∧ < −

d∑
i=1

χ−i (ν) + γ

and
1
N

�
log+ ‖(DxT

N )−1‖∧ dν(x) < −
d∑
i=1

χ−i (ν) + γ.

From the above inequalities one deduces easily that
1
N

�

M\G

(log+ ‖(DxT
N )−1‖∧ + 1) dν(x) < 4γ.

Observe also that the set Crit(T ) of critical points has zero ν-measure.
Let us denote by Crit(T )θ = {y ∈ M : ∂(y,Crit(T )) < θ} the θ-neighbor-
hood of the set of critical points. We also put Crit(T )θN =

⋃N−1
k=0 T

−k Crit(T )θ.
Since x 7→

∑
0≤j<N log+ ‖(DT jxT )−1‖ is a ν-integrable function there exists

θ > 0 such that �

Crit(T )θN

∑
0≤j<N

(log+ ‖(DT jxT )−1‖+ 1) dν(x) < γ.
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Let σ ∈ ]0, 1[. By Birkhoff’s ergodic theorem and the previous two in-
equalities there exists a set F with ν(F ) > σ and an integer n0 such that
for all x ∈ F and n ≥ n0,

(5)
1
nN

∑
0≤l<nN

1Crit(T )θN
(T lx)

∑
0≤j<N

(log+ ‖(DT l+jxT )−1‖+ 1) < γ

(we write 1E for the characteristic function of a subset E of M) and
1

nN2

∑
0≤l<nN

1M\G(T lx)(log+ ‖(DT lxT
N )−1‖∧ + 1) < 4γ,

in particular there exists some 0 ≤ i(x) < N such that

(6)
1
nN

∑
0≤k<N

1M\G(T i(x)+kNx)(log+ ‖(DT i(x)+kNxT
N )−1‖∧ + 1) < 4γ.

Let n be an integer larger than n0 and let AnN be an nN -invertible
branch. We first control the growth of balls under T−1 for pieces of orbits
far from the set of critical values. As T is a C1 map there exists, by an easy
continuity argument, a number 0 < δ < θ such that for all 0 < r < δ,
all y ∈ T i+kNAnN ∩ (M \ Crit(T )θN ) with i + (k + 1)N < nN and all
z ∈ B(TNy, r),

(7) (TN |T i+kNAnN )−1B(z, r) ⊂ expy((DyT
N )−1BTNy(0, 3r)).

Observe that δ can be chosen independent of the choice of the invertible
branch AnN .

Now we give satisfactory estimates for pieces of orbits close to the set of
critical points. Choose R < R′ < Rinj such that T (B(x,R)) ⊂ B(Tx,R′) for
all x ∈M . We consider the local dynamics Tx : Bx(0, R)→ BTx(0, R′) at x
in the local charts defined by the exponential map, i.e. Tx := exp−1

Tx ◦T ◦expx.
Fix y ∈ T tAnN with 0 ≤ t < nN . Let 0 < Q < R be a constant depending
only on T such that ‖(DTy)|By(0,Q)‖η ≤ 2‖DT‖η and let h ∈ TyM with
‖h‖ ≤ Q. First notice that

Ty(h)−DyT (h) = Ty(h)−D0Ty(h) =
1�

0

(DthTy(h)−D0Ty(h)) dt.

Then by using the Hölder property of the differential we have

‖Ty(h)−DyT (h)‖ ≤ ‖(DTy)|By(0,Q)‖η‖h‖1+η ≤ 2‖DT‖η‖h‖1+η.

By assuming r < amax(‖(DyT )−1‖, 1)−(1+η)/η with a constant a we have,
for all h ∈ By(0, 2 max(‖(DyT )−1‖, 1)r),

‖Ty(h)−DyT (h)‖ < 2‖DT‖η(2 max(‖(DyT )−1‖, 1))1+ηr1+η

< 2‖DT‖η(2 max(‖(DyT )−1‖, 1))1+ηaη max(‖(DyT )−1‖, 1)−1−ηr < r,
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where the last inequality follows from an appropriate choice of the con-
stant a.

Moreover obviously BTy(0, 2r) ⊂ DyT (By(0, 2 max(‖(DyT )−1‖, 1)r)).
Therefore BTy(0, r) ⊂ Ty(By(0, 2 max(‖(DyT )−1‖, 1)r)). Finally by taking
the exponential map expTy, for all 0 ≤ r < amax(‖(DyT )−1‖, 1)−(η+1)/η we
have

(8) (T |T tAnN )−1B(Ty, r) ⊂ B(y, 2 max(‖(DyT )−1‖, 1)r).

We are going to bound max{]E : E ⊂ F ∩ AnN and E is (nN, δ)
separated}. There exists δ′ < δ such that ∂(y, z) < δ′ ⇒ ∂(T ky, T kz) < δ
for 0 ≤ k ≤ N . We also choose δ′ < a. Notice that δ′ (as δ) does not depend
on the invertible branch AnN .

In order to estimate the growth of orbits in F ∩ AnN near the critical
points, for each z ∈M \ Crit(T ) we let

ψ(z) = [log+
2 ‖(DzT )−1‖] + 1.

We also consider the following sequences for all y ∈ F ∩AnN :

Jn(y) = (1Crit(T )θN
(T i(y)+kNy))0≤k≤n−2,

J̃n(y) = (1Crit(T )θN
(T i(y)+kNy)ψ(T i(y)+kN+ly))0≤k≤n−2

0≤l≤N−1
.

In order to control the dynamics far from the critical points, for each z ∈
M \ Crit(TN ) we let

ξ(z) = [log+
2 ‖(DzT

N )−1‖∧] + 1

and we consider the following sequences for all y ∈ F ∩AnN :

Hn(y) = (1M\(G∪Crit(T )θN )(T
i(y)+kNy))0≤k≤n−2,

H̃n(y) = (1M\(G∪Crit(T )θN )(T
i(y)+kNy)ξ(T i(y)+kNy))0≤k≤n−2.

Now we estimate the cardinality of {(H̃n(y), J̃n(y)) : y ∈ F ∩ AnN and
i(y) = i, Hn(y) = H, Jn(y) = J} for some fixed n ≥ n0, i ∈ {0, . . . , N − 1},
H = (H0, . . . ,Hn−2) ∈ {0, 1}n−1 and J = (J0, . . . , Jn−2) ∈ {0, 1}n−1. We
consider the sequences {h1, . . . , hMH

} = {0 ≤ j ≤ n − 2 : Hj = 1} and
{j1, . . . , jMJ

} = {0 ≤ j ≤ n − 2 : J j = 1}. For all y ∈ F ∩ AnN with
i(y) = i, Hn(y) = H and Jn(y) = J we put

Hn(y) = (ξ(T i+hmNy))1≤m≤MH
, Jn(y) = (ψ(T i+jmN+ly))1≤m≤MJ

0≤l≤N−1

.

The above sequences Hn(y) and Jn(y) coincide respectively with H̃n(y) and
J̃n(y) once the zeros are removed. Observe that the sequences Hn(y) and
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Jn(y) miss respectively the values SH and SJ where

SH :=
1
MH

sup
y∈F

∑
1≤m≤MH

(log+
2 ‖(DT i+hmNyT

N )−1‖∧ + 1),

SJ :=
1

MJN
sup
y∈F

∑
1≤m≤MJ

∑
0≤l<N

(log+
2 ‖(DT i+jmN+lyT )−1‖+ 1).

By (6) and (5) we have

MHSH = sup
y∈F

∑
1≤m≤MH

(log+
2 ‖(DT i+hmNyT

N )−1‖∧ + 1) <
4γnN
log 2

,

MJNSJ = sup
y∈F

∑
1≤m≤MJ

∑
0≤l<N

(log+
2 ‖(DT i+jmN+lyT )−1‖+ 1) <

γnN

log 2
.

By (3) the logarithm of ]{(H̃n(y), J̃n(y)) : y ∈ F ∩AnN and i(y) = i, Hn(y)
= H, Jn(y) = J} is bounded above by 5γnN + 2 and thus we finally get

(9) log ]{(i(y), H̃n(y), J̃n(y)) : y ∈ F∩AnN} ≤ (2 log 2+5γN)n+logN+2.

Fix 0 ≤ i < N , Ĥ = (Ĥ0, . . . , Ĥn−2) ∈ Z+n−1, Ĵ = (Ĵ0, . . . , Ĵ(n−1)N−1)

∈ Z+(n−1)N . By the combinatorial estimate (9) we only need to bound the
cardinality of (n, δ) separated sets (7) in

F (i, Ĥ, Ĵ) := F ∩AnN ∩ {y : i(y) = i, H̃n(y) = Ĥ, J̃n(y) = Ĵ}.

To this end we would like to δ′-shadow the orbits of TnNF (i, Ĥ, Ĵ) under
the action of T−N by sequences of points in Mδ′ , i.e. associate to each
y ∈ F (i, Ĥ, Ĵ) a sequence y1, . . . , yN ∈ Mδ′ such that d(yk, T kNy) < δ′ for
all k = 1, . . . , N . But the volume T−1-growth of balls near the critical values
of T is not uniformly bounded and is controlled for balls with radius small
compared to the inverse of the norm of DT−1 according to (7). Therefore
we will also shadow the orbit under the action of T−1 when we are close to
the critical value of T , and the shadowing scales this time will vary with the
norm of DT−1.

We define the sequence (δj)i≤j≤i+(n−1)N of shadowing scales by

δi = δ′, δi+t = min(δ′, a2−
η+1
η

bJt−1) for t = 1, . . . , (n− 1)N − 1

and δi+(n−1)N = δ′ again. Observe that

max(δi+t, δi+t+1)
δi+t+1

≤ 2
η+1
η

bJt for all 0 ≤ t < (n− 1)N .

(7) We use the notation eJn(x) := (1Crit(T )θ
N

(T i(x)+[s/N ]x)ψ(T i(x)+sx))0≤s<(n−1)N ,

slightly different than before.
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We shadow the orbits of the set F (i, Ĥ, Ĵ) by associating to any y in this set
a point d(y) in Mδ′∩B(y, δ′/2) and a sequence Cn(y) = (c(T i+kNy))0≤k≤n−1

where c(T i+kNy) is a point in Mδi+kN ∩ B(T i+kNy, δi+kN/2) if k = n − 1
or T i+kNy /∈ Crit(T )θN , and c(T i+kNy) is an N -tuple c(T i+kNy) = (C0,
. . . , CN−1) with Cl ∈Mδi+kN+l

∩B(T i+kN+ly, δi+kN+l/2) otherwise.
If d(y) = d(z) and Cn(y) = Cn(z) then z belongs to the Bowen ball

B(y, nN, δ) and therefore y and z are not (nN, δ) separated. Indeed we
have first ∂(y, z) ≤ ∂(y, d(y)) + ∂(d(z), z) < δ′ and so ∂(T ly, T lz) < δ
for all 0 ≤ l < N . Secondly if m is an integer with i < N ≤ m < nN
there exist 0 ≤ k < n and 0 ≤ l < N satisfying m = i + kN + l. But
c(T i+kNy) = c(T i+kNz) implies that

∂(T i+kNy, T i+kNz) ≤ ∂(T i+kNy, c(T i+kNy)) + ∂(c(T i+kNz), T i+kNz)

<
δi+kN + δi+kN

2
≤ δ′

and hence ∂(Tmy, Tmz) < δ.
Now we build the sequences Cn(y) for y ∈ F (i, Ĥ, Ĵ) and we estimate

their cardinality. We will use the following claim which follows easily from
(7) and (8) and Lemma 1:

Claim. There exists a constant P depending only on d such that for all
0 ≤ k < n− 1 and 0 ≤ l < N and for all y ∈ F (i, Ĥ, Ĵ):

]Cov(δi+kN , (TN |T i+kNAnN )−1B(z, δi+(k+1)N/2))

≤ P
(
δi+(k+1)N

δi+kN

)d
eN(−

Pd
l=1 χ

−
l (ν)+γ)

for all z ∈ B(T i+(k+1)Ny, δi+(k+1)N/2) with T i+kNy ∈ G ∩ (M \ Crit(T )θN );

]Cov(δi+kN , (TN |T i+kNAnN )−1B(z, δi+(k+1)N/2)) ≤ P
(
δi+(k+1)N

δi+kN

)d
2 bHk

for all z ∈ B(T i+(k+1)Ny, δi+(k+1)N/2) with T i+kNy ∈M \ (G ∪ Crit(T )θN );

]Cov(δi+kN+l, (T |T i+kN+lAnN
)−1B(z, δi+kN+l+1/2))

≤ P
(

max(δi+kN+l, δi+kN+l+1)
δi+kN+l

2 bJkN+l

)d
for all z ∈ B(T i+kN+l+1y, δi+kN+l+1/2) with T i+kNy ∈ Crit(T )θN .

Notice that δi+(k+1)N = δ′ ≥ δi+kN in the first two cases of the Claim
since Ĵ(k+1)N−1 = 0 when T i+kNy /∈ Crit(T )θN for some y ∈ F (i, Ĥ, Ĵ).

By decreasing induction on k we define c(T i+kNy) for all y ∈ F (i, Ĥ, Ĵ)
and show that
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(10) ]{(c(T i+lNy))k≤l≤n−1 : y ∈ F (i, Ĥ, Ĵ)}

≤ C(M)
δdi+kN

· Pn−ke(n−k)N(−
Pd
l=1 χ

−
l (ν)+γ)

× 2
Pn−2
t=k

bHt · 2(
P(n−1)N−1
t=kN

bJt)(d 2η+1
η

+log2 P )
.

First for all y ∈ F (i, Ĥ, Ĵ) we put c(T i+(n−1)Ny) = z where z is chosen
in Cov(δi+(n−1)N ,M) ∩ B(T i+(n−1)Ny, δi+(n−1)N/2). Then inequality (10)
for k = n − 1 follows from the Claim. Assume we have already defined
c(T i+(k+1)Ny) and that (10) holds for k + 1. We distinguish two cases:

• ĴkN = 0, i.e. T i+kNy is far from the critical set of TN ; then we choose

c(T i+kNy) ∈ Cov(δi+kN , (TN |T i+kNAnN )−1B(c(T i+(k+1)Ny), δi+(k+1)N/2))

∩B(T i+kNy, δi+kN/2).

• ĴkN 6= 0, i.e. T i+kNy is close to the critical set of TN ; then we define
c(T i+kNy) = (C0, . . . , CN−1) with, for all 0 ≤ l ≤ N − 1,

Cl ∈ Cov(δi+kN+l, (T |T i+kN+lAnN
)−1B(Cl+1, δi+kN+l+1/2))

∩B(T i+kN+ly, δi+kN+l/2)

and with the convention CN = c(T i+(k+1)Ny).

Notice that

(11)
1

δi+(k+1)N

N−1∏
l=0

max(δi+kN+l, δi+kN+l+1)
δi+kN+l

≤ 1
δi+kN

N−1∏
l=0

max(δi+kN+l, δi+kN+l+1)
δi+kN+l+1

≤ 2
η+1
η

PN−1
l=0

bJkN+l

δi+kN
.

By using the Claim and (11) we easily check by decreasing induction on k
that (10) holds for all k = 0, . . . , n − 1. Then according to (6) and (5) we
get, for all n ≥ n0,

log ]{(d(y), (c(T i+lNy))k≤l≤n−1) : y ∈ F (i, Ĥ, Ĵ)}
≤ −2d log δ′ + 2 logC(M) + n logP

+ nN
(
−

d∑
l=1

χ−l (ν) + γ
)

+ 4γnN + γnN

(
d

2η + 1
η

+ log2 P

)
.
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Then by using the combinatorial estimate (9) we have

log max{]E : E ⊂ F ∩AnN and E is (nN, δ) separated}
≤ log ]{(i(y), H̃n(y), J̃n(y)) : y ∈ F ∩AnN}

+ sup
i, bH, bJ

F (i, bH, bJ)6=∅

log ]{(d(y), Cn(y)) : y ∈ F (i, Ĥ, Ĵ)}

≤ −2d log δ′ + 2 logC(M) + n(2 log 2 + logP ) + logN + 2

+ nN
(
−

d∑
l=1

χ−l (ν)
)

+ γnN

(
d

2η + 1
η

+ log2 P + 10
)
.

By taking N and then n0 large enough, we get, for n ≥ n0,

log max{]E : E ⊂ F ∩AnN and E is (nN, δ) separated}

≤ nN
(
−

d∑
l=1

χ−l (ν)
)

+ γnN

(
d

2η + 1
η

+ log2 P + 11
)
.

Finally for general m ∈ Z+ observe that if σ > ρ > 0 are such that
d(x, y) < ρ⇒ d(T kx, T ky) < σ for all 0 ≤ k < N , then any (m,σ) separated
set in Am is ([m/N ]N, ρ) separated in A[m/N ]N . This easily concludes the
proof of Theorem 5.

5. Counting lemma. The following lemma is a generalization in any
dimension of Lemma 4.1 of [14]. The proof given below is independent and
based on a semi-algebraic approach.

Lemma 3. Let f : ]−1, 1[d → R be a Cr map with r > 0. Then there
exists a constant c depending only on r and d such that for every 0 < s < 1
the number of connected components of the open set {x : f(x) 6= 0} on which
|f | reaches or exceeds the value s is at most cmax(‖f‖r, 1)d/rs−d/r where
‖f‖r is the supremum norm ‖Drf‖∞ of the rth derivative if r ∈ Z+ and the
r − [r]-Hölder norm ‖D[r]f‖r−[r] of the [r]th derivative (8) if r /∈ Z+.

Proof. We cover the unit square ]−1, 1[d by(
2
[(

as

max(‖f‖r, 1)

)−1/r]
+1
)d

subsquares of size <

(
as

max(‖f‖r, 1)

)1/r

where a = a(r, d) is a constant depending only on r and d which we specify
later. Consider one such subsquare S and let PS be the Lagrange polynomial
of order [r − 1] at the center x0 of S. By the Taylor–Lagrange formula we

(8) By convention the 0th derivative of T is the map T itself.
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have, for all x ∈ S,

f(x) = PS(x) +
1

[r − 1]!

1�

0

(1− t)[r]−1D
[r]
x0+t(x−x0)f(x− x0)[r] dt

where (x− x0)[r] denotes the vector (x− x0, . . . , x− x0︸ ︷︷ ︸
[r] times

) ∈ (Rd)[r]. Then

|f(x)− PS(x)| ≤ ‖D
rf‖∞
r!

‖x− x0‖r for r ∈ Z+,

and if r /∈ Z+ we have

f(x)− PS(x)− D
[r]
x0f(x− x0)[r]

[r]!

=
1

[r − 1]!

1�

0

(1− t)[r]−1(D[r]
x0+t(x−x0)f −D

[r]
x0
f)(x− x0)[r] dt

and thus∣∣∣∣f(x)− PS(x)− D
[r]
x0f(x− x0)[r]

[r]!

∣∣∣∣ ≤ ‖D[r]f‖r−[r]

[r]!
‖x− x0‖r.

Put QS = PS if r ∈ Z+ and QS := PS + D[r]f(x0)(·−x0)[r]

[r]! if r /∈ Z+. Then

‖f −QS‖∞ ≤
diam(S)r‖f‖r

[r]!
.

Then the constant a = a(r, d) can be chosen so that

‖f −QS‖∞ < s/2.

By the above inequality any connected component of {x : f(x) 6= 0} meeting
S and on which |f | reaches or exceeds the value s contains at least one
connected component of {|QS | > s/2}. In particular the number of such
connected components is bounded by the number of connected components
of {|QS | > s/2}. But {|QS | > s/2} is a semi-algebraic set of Rd and it is
well known [25] that the number of connected components of such sets is
bounded by a constant b = b(r, d) depending only on r and d and not on
the coefficients of the polynomial QS , nor on s (this is obvious for d = 1
because this number is bounded from above by the number of roots of the
polynomial Q2

S − s2/4, which is less than 2r). We conclude that the number
of connected components of the open set {x : f(x) 6= 0} on which |f | reaches
or exceeds the value s is at most b(2[(as/max(‖f‖r, 1))−1/r] + 1)d.

6. Proof of the Main Theorem. Let γ > 0 and µ ∈ M(M,T ).
If

	
log Jacx(T ) dµ(x) < 0 then by the upper semicontinuity of g : ξ 7→	

log Jacx(T ) dξ(x) we have
	

log Jacx(T ) dν(x) =
∑d

i=1 χi(ν) < 0 for ergodic
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measures ν close to µ. The map T being nonuniformly entropy expanding,
this implies that h(ν) = 0 and thus (2) is checked.

We assume now that g(µ) =
	

log Jacx(T ) dµ(x) ≥ 0. In particular the
set Crit(T ) of critical points of T has zero µ-measure. Let U be an open
neighborhood of Crit(T ) satisfying the following properties:

• log Jacx(T ) < −Sγ for x ∈ U (recall Sγ ∈ Z+ was fixed such that
H(S−1) < γ for all S ≥ Sγ);

• µ(∂U) = 0 and µ(U) < γ;
•
	

log Jacx(T ) dµ(x) ≤
	
M\U log Jacx(T ) dµ(x)

≤
	

log Jacx(T ) dµ(x) + γ.

We fix a Riemannian structure ‖ ‖ on the manifold M . We denote by
Rinj the radius of injectivity and by expx : TxM →M the exponential map
at x ∈M . There exist R < R′ < Rinj/

√
d such that T (B(x,R)) ⊂ B(Tx,R′)

for all x ∈ M . Let Vµ = (W1, . . . ,Wp, U1, . . . , Uq) be a finite open cover of
M such that:

• diam(Wi) < R,diam(Ui) < R;
•
⋃q
i=1 Ui = U ;

• T |Wi is a diffeomorphism onto its image.

It is well-known that the function ξ 7→
	
f(x)ξ(x) is upper semicontinu-

ous on M(M,T ) when f is an upper semicontinous function on M . In
particular ξ 7→ ξ(U) is upper semicontinuous on M(M,T ). The function
ξ 7→

	
M\U log Jacx(T ) dξ(x) is also upper semicontinuous onM(M,T ) since

x 7→ 1M\U (x) log Jacx(T ) is upper semicontinuous on M : the function x 7→
log Jacx(T ) is continuous on the closure of M \U and negative on its bound-
ary. We choose a parameter τµ > 0 such that for all ergodic measures ν with
dist(ν, µ) < τµ we have

(12)

ν(U) < γ,�

M\U

log Jacx(T ) dν(x) <
�

M\U

log Jacx(T ) dµ(x) + γ.

We fix an ergodic measure ν with dist(µ, ν) < τµ. One can assume g(ν) =	
log Jacx(T ) dν(x) =

∑d
i=1 χi(ν) ≥ 0 (if not then h(ν) = 0 as already

noticed) and thus g+(ν) = g(ν).
We break the integral

	
log Jacx(T ) dν(x) into the sum of three integrals:

over U , M \ U and ∂U . Since log Jacx(T ) is negative on ∂U , by dropping
the last term we can only increase the right hand side. Moving the terms
around we get
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(13) −
�

U

log Jacx(T ) dν(x)

≤
�

M\U

log Jacx(T ) dν(x)−
�
log Jacx(T ) dν(x)

≤
�

M\U

log Jacx(T ) dµ(x)−
�
log Jacx(T ) dν(x) + γ

≤
�
log Jacx(T ) dµ(x)−

�
log Jacx(T ) dν(x) + 2γ.

Let σ ∈ ]0, 1[. Let F be a Borel set of ν-measure larger than σ such that

(14) hinv(M |F ) < −
d∑
i=1

χ−i (ν) + γ.

One can also assume by Birkhoff’s ergodic theorem that the sequences
(n−1

∑n−1
k=0 1U (T kx))n and (n−1

∑n−1
k=0 1U (T kx) log JacTkx T )n converge uni-

formly in x ∈ F to ν(U) and
	
U log Jacx(T ) dν(x), respectively.

Let V n =
⋂

0≤k<n T
−kVk ∈ Vnµ . Consider the sequence {i1, . . . , iN} =

{0 ≤ k < n : there exists 0 ≤ l ≤ q such that Vk = Ul}. To any maximal
n-invertible branch An intersecting V n we associate the sequence K(An) =
(k1(An), . . . , kN (An)) defined by

∀j = 1, . . . , N, kj(An) = [ inf
x∈An∩V n

− log Jac
T ijx

(T )] + 1.

With these notations note that the Cr−1 function defined on M by x 7→
Jacx(T ) reaches or exceeds the value e−kj(An) on T ijAn ∩ Vij . We consider
a sequence K = (k1, . . . , kN ) of N positive integers. By Lemma 3 applied
for 1 ≤ j ≤ N to the Jacobian of exp−1

Txj
◦T ◦ expxj (R · ) : ]−1, 1[d ⊂

TxjM → TTxjM with some fixed xj ∈ Vij , the number of maximal n-
invertible branches An meeting V n with K(An) = K is bounded above by
cNe

PN
j=1 dkj/(r−1) where c depends only on r, d, M and maxs=1,...,[r],r ‖T‖s.

If we assume moreover that An meets F ∩ V n then K(An) misses the value

S := sup
x∈F

1
N

N∑
j=1

(− log Jac
T ijx

T + 1) ≥ Sγ ,

i.e. N−1
∑N

j=1 kj(An) ≤ S. Since the number of sequences of N positive
integers missing S is

(
NS
N

)
, we deduce by inequality (3) and since we have

arranged that H(S−1) < γ, that the logarithm of the number of maximal
n-invertible branches meeting F ∩ V n is bounded above by

N log c+NS

(
d

r − 1
+ γ

)
+ 1.

Observe now that N ≤ supx∈F
∑n−1

k=0 1U (T kx) and
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NS = sup
x∈F

N∑
j=1

(− log Jac
T ijx

T + 1) ≤ sup
x∈F

n−1∑
k=0

1U (T kx)(− log JacTkx T + 1).

Therefore for each V n ∈ Vnµ (by An we always denote a maximal n-invertible
branch) we get

(15) log ]{An : An ∩ F ∩ V n 6= ∅}

≤ N log c+NS

(
d

r − 1
+ γ

)
+ 1

≤
(

sup
x∈F

n−1∑
k=0

1U (T kx)(− log JacTkx T + 1)
)( d

r − 1
+ γ

)

+
(

sup
x∈F

n−1∑
k=0

1U (T kx)
)

log c+ 1.

Fix δ > 0. Clearly E ∩An is (n, δ) separated in F ∩An for any maximal
n-invertible branch An when E is (n, δ) separated in F . It follows that

max{]E : E is (n, δ) separated in F ∩ V n with V n ∈ Vnµ}
≤ max

V n∈Vnµ
]{An : An ∩ F ∩ V n 6= ∅}

× sup
An

(max{]E : E is (n, δ) separated in F ∩An}).

By taking the logarithmic limit in n and then letting δ go to zero, we get

h(M |F,Vµ) ≤ lim sup
n→+∞

1
n

log max
V n∈Vnµ

]{An : An ∩ F ∩ V n 6= ∅}+ hinv(M |F ).

Finally by (14) and (15) and by the uniform convergence on F of the Birkhoff
sums we obtain

h(M |F,Vµ)

≤ lim
n→+∞

(
sup
x∈F
− 1
n

n−1∑
k=0

1U (T kx) log JacTkx T
)(

d

r − 1
+ γ

)

+ lim
n→+∞

(
sup
x∈F

1
n

n−1∑
k=0

1U (T kx)
)(

d

r − 1
+ γ + log c

)
−

d∑
i=1

χ−i (ν) + γ

≤ −
�

U

log Jacx(T ) dν(x)
(

d

r − 1
+ γ

)
+ ν(U)

(
d

r − 1
+ γ + log c

)

−
d∑
i=1

χ−i (ν) + γ.
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Since ν has been chosen close to µ, according to (12) and (13) we have
(denoting by C the constant d

r−1 + γ + log c+ 1)

h(M |F,Vµ) ≤
(�

log Jacx(T ) dµ(x)−
�
log Jacx(T ) dν(x) + 2γ

)( d

r − 1
+ γ

)
−

d∑
i=1

χ−i (ν) + Cγ

≤ (g+(µ)− g+(ν) + 2γ)
(

d

r − 1
+ γ

)
−

d∑
i=1

χ−i (ν) + Cγ.

Then by taking the infimum over the Borel sets F of ν-measure larger than
σ and by letting σ → 1 we get

hNew(M | ν,Vµ) ≤ (g+(µ)− g+(ν) + 2γ)
(

d

r − 1
+ γ

)
−

d∑
i=1

χ−i (ν) + Cγ.

This concludes the proof since γ can be chosen arbitrarily small.
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