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AFFINE SPACES AS MODELS FOR REGULAR IDENTITIES

BY

JUNG R. CHO (Pusan) and JÓZEF DUDEK (Wrocław)

Abstract. In [7] and [8], two sets of regular identities without finite proper models
were introduced. In this paper we show that deleting one identity from any of these sets,
we obtain a set of regular identities whose models include all affine spaces over GF(p)
for prime numbers p ≥ 5. Moreover, we prove that this set characterizes affine spaces
over GF(5) in the sense that each proper model of these regular identities has at least 13
ternary term functions and the number 13 is attained if and only if the model is equivalent
to an affine space over GF(5).

1. Introduction. Axioms without finite models have attracted much
attention because of their peculiar behavior, especially when the axioms
are regular [1, 7, 8, 12, 15]. The characterization of affine spaces by their
pn-sequences has also been an active research area [3, 5, 14].

In this paper, we will show that a proper algebra (A,+, ◦) of type (2, 2)
satisfying the identities x+x = x, x ◦x = x, x+ y = y+x and (x+ y) ◦ z =
(x+ z) ◦ y has at least 13 essentially ternary term functions and, moreover,
it has exactly 13 essentially ternary term functions if and only if it is term
equivalent to a nontrivial affine space over GF(5).

If we add the identity x ◦ y = y ◦ x or x ◦ (y + z) = y ◦ (x + z), then
there exist no finite proper models for those identities and all models have
infinitely many essentially n-ary term functions for all n ≥ 2. In another
respect, this result shows that affine spaces over prime fields can be defined
as proper algebras of type (2, 2) and as models for regular identities lying
at the boundary of the finite and the infinite. This paper might be the first
result characterizing affine spaces in this way.

For an algebra A = (A,F ), we denote by pn(A) the number of all es-
sentially n-ary term functions (or simply “terms”) of A for all n ≥ 0. By
the pn-sequence of A, we mean the sequence (p0(A), p1(A), p2(A), . . .). We
say that A is term infinite if pn(A) is infinite for all n ≥ 2. Of course, term
infinite algebras are infinite but not conversely. Two algebras are said to be
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term equivalent if they have the same set of term functions. It is clear that
term equivalent algebras have the same pn-sequence. Frequently, we regard
term equivalent algebras as the same algebra.
An algebra is called proper if all fundamental operations are pairwise

distinct and every n-ary fundamental operation is essentially n-ary for all
n ≥ 1. An identity is called regular if both sides of the identity involve the
same variables.
Let (A,+) be a vector space over a field K. For all natural numbers n

and for all α1, . . . , αn in K with
∑n
i=1 αi = 1, define an operation f on A

by f(x1, . . . , xn) =
∑n
i=1 αixi and let F be the set of all such operations;

then the algebra (A,F ) is called an affine space over K ([3]).
For other terminology, we refer the readers to [9] and [10].
The main result of this paper is the following.

Theorem 1.1. Let (A,+, ◦) be a proper algebra of type (2, 2) satisfying
the following regular identities:

(A1) x+ x = x, x ◦ x = x,
(A2) x+ y = y + x,
(A3) (x+ y) ◦ z = (x+ z) ◦ y (or x ◦ (y + z) = y ◦ (x+ z)).

Then p3(A,+, ◦) ≥ 13 and , furthermore, p3(A,+, ◦) = 13 if and only if
(A,+, ◦) is term equivalent to a nontrivial affine space over GF(5).

We prove the theorem in the next section by careful manipulation of
identities and counting terms in a series of lemmas.
The following is immediate from [11] and [13].

Lemma 1.1. Let (A,F ) be an affine space over GF(p) for a prime num-
ber p. If F ′ ⊆ F and F ′ contains an essentially binary operation then (A,F ′)
is term equivalent to (A,F ).

Theorem 1.2. Affine spaces over GF(p) for prime numbers p ≥ 5 are
proper models of the identities (A1)–(A3).

Proof. Let (A,+,GF(p)) be a vector space over GF(p) for a prime num-
ber p ≥ 5. By elementary number theory, there is a unique α ∈ Zp such
that

p+ 1

2
α = (1− α) (mod p),

and this α is different from (p+ 1)/2. Define binary operations “⊕” and “◦”
by

x⊕ y =
p+ 1

2
x+
p+ 1

2
y and x ◦ y = αx+ (1− α)y.

Then it can be checked that the algebra (A,⊕, ◦) satisfies the identities
(A1)–(A3). By Lemma 1.1, the algebras (A,⊕), (A, ◦) and (A,⊕, ◦) are
term equivalent to the affine space (A,F ) over GF(p). Thus, affine spaces
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over GF(p) are models of the identities (A1)–(A3). Clearly (A,⊕, ◦) is a
proper algebra.

Note that

pn(A) =
(p− 1)n − (−1)n

p
for all n ≥ 0

ifA is term equivalent to an affine space over GF(p) ([3]). Thus affine spaces
over GF(5) are models of the identities (A1)–(A3) which have 13 essentially
ternary terms.
We find our theorems interesting in view of the following propositions

and remark.

Proposition 1.1 ([8]). Let (A,+, ◦) be a proper algebra of type (2, 2)
satisfying

(B1) x+ x = x, x ◦ x = x,
(B2) x+ y = y + x, x ◦ y = y ◦ x,
(B3) (x+ y) ◦ z = (x+ z) ◦ y.

Then (A,+, ◦) is infinite and term infinite.

Proposition 1.2 ([7]). Let (A,+, ◦) be a proper algebra of type (2, 2)
satisfying

(C1) x+ x = x, x ◦ x = x,
(C2) x+ y = y + x,
(C3) (x+ y) ◦ z = (x+ z) ◦ y, x ◦ (y + z) = y ◦ (x+ z).

Then (A,+, ◦) is infinite and term infinite.

Remark 1.1. No affine space over any finite prime field GF(p), finite
or infinite, is a proper model of the identities (B1)–(B3) or (C1)–(C3). In
fact, if operations are defined by

x⊕ y =
p+ 1

2
x+
p+ 1

2
y and x ◦ y = αx+ (1− α)y (α ∈ Zp),

then the identities in (C3) would imply p+12 α = 1− α and α =
p+1
2 (1− α),

for which no solutions exist.

Now we make a few more remarks. Firstly, the set of axioms (A1)–(A3)
is weaker than the set (C1)–(C3), which in turn is weaker than (B1)–(B3).
Secondly, if an algebra satisfying the identities (A1)–(A3), (B1)–(B3), or
(C1)–(C3) is not proper, then it is (term equivalent to) a semilattice or even
trivial. Finally, in particular, p3(A,+, ◦) is infinite for algebras satisfying the
identities in (B1)–(B3) or (C1)–(C2). Thus, the propositions together with
Theorem 1.1 suggest that the number 13 plays some specific role, namely it
is a certain upper bound and a certain minimal number with respect to the
axioms x ◦ y = y ◦ x and x ◦ (y + z) = y ◦ (x+ z).
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A groupoid (G, ·) is said to be medial if it satisfies the identity (xy)(uv)
= (xu)(yv), and a semilattice if it is a commutative idempotent semigroup.

We will need the following proposition for the proof of Theorem 1.1.

Proposition 1.3 ([5, 11]). A commutative groupoid (G, ·) is term equiv-
alent to an affine space over GF(5) if and only if (G, ·) is a medial idempotent
groupoid satisfying the identity ((xy)y)x = y.

2. Lemmas and proof of Theorem 1.1. In this section, we prove the
main theorem of this paper by a series of lemmas. Throughout the section,
unless stated otherwise, (A,+, ◦) will be a proper idempotent algebra of
type (2, 2) such that + is commutative.

Notation. For simplicity, we use the notation xy for (x+ y)+ y in this
section.

Let f = f(x1, . . . , xn) be an n-ary term of an algebra A and Sn be
the symmetric group of degree n. For σ ∈ Sn, define f

σ(x1, . . . , xn) =
f(xσ1, . . . , xσn). We say that f admits a permutation σ in Sn if f

σ = f .
The set G(f) = {σ ∈ Sn | f

σ = f} is called the symmetry group of f over
A, and we say f is symmetric if G(f) = Sn. We say that two n-ary terms f
and g of an algebra (A,F ) are strictly distinct if fσ 6= g for all σ ∈ Sn. The
following facts are clear.

1. |G(fσ)| = |G(f)| for all n-ary terms f and all σ ∈ Sn.

2. If |G(f)| 6= |G(g)| then f and g are strictly distinct.

3. |{fσ | σ ∈ Sn}| = n!/|G(f)| for every n-ary term f .

Lemma 2.1. If (A,+, ◦) satisfies (x+y)◦z = (x+z)◦y (resp. x◦(y+z)
= y ◦ (x+ z)), then:

1. (A,+, ◦) satisfies (x+ y) ◦ x = x ◦ y (resp. x ◦ (x+ y) = y ◦ x).

2. The term (x+ y) ◦ z (resp. x ◦ (y + z)) is symmetric.

Proof. Trivial.

From now on, we will freely employ the obvious identities of the preceding
lemma without referring to the lemma.

Lemma 2.2. Let (A,+) be a commutative idempotent groupoid. Then
(A,+) is a semilattice if and only if both the terms (x + y)z and x(y + z)
are symmetric.

Proof. Let (A,+) be a semilattice. Then (x+ y)z = ((x+ y) + z) + z =
x + y + z and x(y + z) = (x + (y + z)) + (y + z) = x + y + z. Trivially,
the term x+y+ z is symmetric for any semilattice. Conversely, suppose the
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terms (x+ y)z and x(y + z) are symmetric. Then

xy = (x+ x)y = (y + x)x = (y + x)(x+ x) = x((y + x) + x)

= (x+ ((y + x) + x)) + ((y + x) + x)

= (y + x)x+ yx = (x+ x)y + yx = xy + yx,

and hence xy = yx. Now,

x+ y = (x+ y)(x+ y) = ((x+ y) + y)x = (xy)x = (yx)x

= ((y + x) + x)x = (x+ x)(y + x) = x(y + x) = y(x+ x) = yx.

Consequently, (x+ y) + z = (x+ y)z = (y + z)x = x(y + z) = x+ (y + z),
and this proves that (A,+) is a semilattice.

Lemma 2.3 ([6]). Let (A,+, ◦) satisfy the identity (x+y)◦z = (x+z)◦y
(or x◦(y+z) = y◦(x+z)). Then xy is a noncommutative essentially binary
term and , consequently , x + y, xy and yx are pairwise distinct essentially
binary terms.

The following lemma was proved in [6] under the additional assumption
that + is associative, but we prove it here without the associativity.

Lemma 2.4. If (A,+, ◦) satisfies (x+y)◦z = (x+z)◦y (or x◦ (y+z) =
y ◦ (x+ z)) then |G(xy + z)| = 1.

Proof. Suppose (x+ y) ◦ z = (x+ z) ◦ y (if x ◦ (y + z) = y ◦ (x+ z), the
proof is analogous). If xy + z = yx + z, then xy = xy + xy = yx + xy =
xy + yx = yx+ yx = yx, which contradicts Lemma 2.3. If xy + z = zx+ y,
then x+ y = xx+ y = yx+ x and so

x+y = (x+y)◦(x+y) = (yx+x)◦(x+y) = ((x+y)+x)◦(yx) = yx◦yx = yx,

which also contradicts Lemma 2.3. A similar argument gives the same con-
tradiction if xy+z = yz+x or xy+z = zy+x. Finally, if and xy+z = xz+y
then x+ y = xx+ y = xy + x and so

x+ y = (x+ y) ◦ (x+ y) = ((x+ y) + y) ◦ x = (xy) ◦ x

= (xy + xy) ◦ x = (xy + x) ◦ (xy) = (x+ y) ◦ (xy)

= (xy + x) ◦ y = (x+ y) ◦ y = y ◦ x,

which in turn yields the contradiction x◦y = y+x = x+y. Therefore xy+z
admits no nontrivial permutation of its variables.

Lemma 2.5. The following ternary terms:

s = (x+ y) + z, f1 = (x+ y) ◦ z, f2 = z ◦ (x+ y),

g1 = (x+ y)z, g2 = z(x+ y), q = xy + z

are essentially ternary over (A,+, ◦).
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Proof. The proof follows by the binary algebra version of [4, Lemma 8.1],
where a more general result is proved for algebras with a symmetric idem-
potent m-ary operation and an idempotent n-ary operation for arbitrary
m ≥ 2 and n ≥ 2.

Lemma 2.6. Let (A,+, ◦) satisfy the identity (x+y)◦ z = (x+ z)◦ y (or
x ◦ (y+ z) = y ◦ (x+ z)). Then p3(A,+, ◦) ≥ 13. Moreover , p3(A,+, ◦) > 13
if p2(A,+, ◦) > 3.

Proof. By Lemma 2.3, the terms x+ y, xy and yx are essentially binary
and pairwise distinct. If x ◦ y = y ◦ x then, by Proposition 1.1, (A,+, ◦) is
term infinite and hence p3(A,+, ◦) > 13. Thus, we assume x ◦ y 6= y ◦ x.
The operation + is not associative: otherwise, we have xy = (x+ y) + y =
x+(y+y) = x+y, a contradiction. Now consider the essentially ternary terms
s, f1, g1, g2 and q defined in the preceding lemma. By Lemma 2.2, g1 and g2
cannot be both symmetric. Note that |G(s)| = 2 since + is commutative but
not associative, |G(f1)| = 6 by Lemma 2.1, and |G(q)| = 1 by Lemma 2.4.
Also note that |G(gi)| = 2 or 6 for i = 1, 2. Thus s, f1, and q are pairwise
strictly distinct, and gi and q are strictly distinct for i = 1, 2. It can also
be checked that s, g1 and g2 are pairwise strictly distinct. For instance,
(x + y) + z = y(x + z) would imply the contradiction that (x + y) + z is
symmetric. Now the proof splits into three cases: (1) xy 6∈ {x ◦ y, y ◦x}, (2)
xy = x ◦ y and (3) xy = y ◦ x.

Case (1). In this case, it can be checked that the terms s, f1, g1, g2 and
q are pairwise strictly distinct. For instance, f1 = g2 would imply the con-
tradiction xy = (x+ x) ◦ y = y(x+ x) = y ◦ x. Now, if none of g1 and g2 is
symmetric, then |G(g1)| = |G(g2)| = 2 and so we have

p3(A,+, ◦) ≥
6

|G(s)|
+

6

|G(f1)|
+

6

|G(g1)|
+

6

|G(g2)|
+
6

|G(q)|

=
6

2
+
6

6
+
6

2
+
6

2
+
6

1
= 16.

If one of g1 and g2 is symmetric, say g1 is symmetric and g2 is not, then
|G(g1)| = 6 and |G(g2)| = 2, and the same argument as above gives

p3(A,+, ◦) ≥
6

2
+
6

6
+
6

6
+
6

2
+
6

1
= 14.

Case (2). Since xy = x◦y, we have (x+y)z = (x+z)y from (x+y)◦z =
(x+z)◦y. Thus g1 is symmetric and so g2 is not symmetric. Then |G(g1)| = 6
and |G(g2)| = 2, and hence s, g1, g2 and q are pairwise strictly distinct. Thus,
we have

p3(A,+, ◦) ≥
6

|G(s)|
+

6

|G(g1)|
+

6

|G(g2)|
+
6

|G(q)|
=
6

2
+
6

6
+
6

2
+
6

1
= 13.



AFFINE SPACES AS MODELS FOR REGULAR IDENTITIES 35

Suppose that p2(A,+, ◦) > 3. Then there exists another essentially binary
term, say x ∗ y, different from xy, yx and x + y. Now it can also be shown
that the term (x+ y) ∗ z is essentially ternary and it is equal to none of the
terms obtained from s, g1, g2 or q by permuting variables. For instance, if
(x+y)∗z = x(y+z) then (x+y)∗z is symmetric and so x∗z = (x+x)∗z =
(z + x) ∗ x = z(x + x) = zx, which is a contradiction . Therefore, we have
p3(A,+, ◦) > 13.

Case (3). Since xy = y◦x, we have z(x+y) = y(x+z) from (x+y)◦z =
(x + z) ◦ y. Then g2 is symmetric and so g1 is not symmetric. The rest is
similar to Case (2).

Corollary 2.7. Let (A,+, ◦) be an idempotent algebra of type (2, 2)
such that + is a commutative and essentially binary , and let (A,+, ◦) satisfy
the identities (x+ y) ◦ z = (x+ z) ◦ y and x ◦ y = xy. Then either (A,+, ◦)
is term equivalent to a semilattice or p3(A,+, ◦) ≥ 13.

Proof. Note that (A,+, ◦) is term equivalent to (A,+) since x◦y = xy =
(x + y) + y. Suppose that (A,+, ◦) is not term equivalent to a semilattice.
Note that x + y = (x + y)(x + y) = ((x + y) + y)x = (xy)x. Assume
that xy is not essentially binary. Then xy = x or xy = y. If xy = x then
x+ y = (xy)x = xx = x and if xy = y then x+ y = (xy)x = yx = x, which
is a contradiction since x + y is essentially binary. Therefore, xy must be
essentially binary. Suppose that x+ y = xy. Then (x+ y) + z = (x+ y)z =
(y+ z)x = (y+ z) + x, that is, (A,+) is a semilattice and hence (A,+, ◦) is
term equivalent to a semilattice. Suppose now x+ y 6= xy. Then (A,+, ◦) is
a proper algebra, and so p3(A,+, ◦) ≥ 13 by Lemma 2.6.

Lemma 2.8. If (A,+, ◦) satisfies the identity (x+y)◦z = (x+z)◦y and
p3(A,+, ◦) = 13, then:

1. x ◦ y = xy, x + y = (xy)x and hence (A,+, ◦) is term equivalent to
(A,+) as well as to (A, ◦).

2. The 13 essentially ternary terms are obtained from the terms s, g1, g2
and q in Lemma 2.5 by permuting variables.

3. xy + y = yx and xy + x = y.

4. The groupoid (A,+) is medial.

Proof. By Lemmas 2.3 and 2.6, we infer that x + y, xy and yx are the
only essentially binary terms (A,+, ◦), and they are pairwise distinct.

(1) We first claim that x◦y 6= yx. Assume that x◦y = yx. Then (A,+, ◦)
satisfies x(y+z) = y(x+z). Hence x+y = (x+y)(x+y) = x((x+y)+y) =
x(xy) = (xy + x) + xy. Consider the term xy + x. If xy + x = x, then
x + y = (xy + x) + xy = x + xy = x, a contradiction. If xy + x = y, then
xy = x(xy+x) = (xy)(x+x) = (xy)x = (xy+x)+x = y+x, a contradiction
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again. Thus xy + x is essentially binary. Now, xy + x = x+ y would imply

x+ y = (xy+ x) + xy = (x+ y) + ((x+ y) + y) = y(x+ y) = x(y+ y) = xy,

which is a contradiction, while xy + x = xy would imply the same contra-
diction since x + y = (xy + x) + xy = xy + xy = xy. If xy + x = yx, then
we would have

x+ y = x(xy) = x(xy + xy) = (xy)(xy + x) = (xy + (xy + x)) + (xy + x)

= (x+ y) + yx = (x+ y) + ((y + x) + x) = x(x+ y) = yx,

which is also a contradiction. Thus, xy+x is another essentially binary term
different from x + y, xy and yx, and this is a contradiction. Therefore, we
have x ◦ y 6= yx as claimed.

If we also have x ◦ y 6= xy then, since x ◦ y 6= x+ y, we would have the
contradiction of having four essentially binary terms, namely x+ y, xy, yx
and x◦y. Therefore, x◦y = xy. Using this, we have x+y = (x+y)(x+y) =
((x + y) + y)x = (xy)x. Consequently, the algebras (A,+, ◦), (A,+) and
(A, ◦) are term equivalent.

(2) Since x ◦ y = xy by (1), Case (2) in the proof of Lemma 2.6 ap-
plies here. Recall that s, g1, g2 and q are strictly distinct and |G(s)| = 2,
|G(g1)| = 6, |G(g2)| = 2 and |G(q)| = 1. We obtain exactly 13 pairwise
distinct essentially ternary terms from these terms by permuting variables.

(3) Using (1), we obtain xy+ y = ((x+ y) + y) + y = (x+ y)y = yx and
x+y = (xy)x = (xy+x)+x. Consider the term xy+x. If xy+x = x+y then
x+y = (xy+x)+x = (x+y)+x = yx, a contradiction. If xy+x = xy then
x+ y = (xy + x) + x = xy + x = xy, another contradiction. If xy + x = yx
then x+ y = (xy + x) + x = yx+ x = xy, which is the same contradiction
again. Thus, xy+x is not essentially binary and so xy+x = x or xy+x = y.
However, xy+ x = x would imply the contradiction x+ y = (xy+ x) + x =
x+ x = x, and hence xy + x = y.

(4) Consider the term x(yz). Using (3), we have

x(xy) = (x+ xy) + xy = y + xy = y + ((x+ y) + y) = (x+ y)y = yx,

x(yx) = (yx)x+ x = ((yx+ x) + x) + x = (xy + x) + x = y + x = x+ y.

With these identities, it can be shown that x(yz) is essentially ternary. By
(2), x(yz) is equal to one of the 13 essentially ternary terms obtained from
s, g1, g2 and q by permuting variables. Assume that the symmetry group of
x(yz) is trivial. Then x(yz) is equal to a term obtained from q by permuting
variables. Equivalently, σx(σyσz) = q = xy + z for some permutation σ of
x, y and z. Letting x = z in this identity, we can show that xy + x = yx
or xy + x = x + y using the identities x(xy) = yx and x(yx) = x + y.
However, this contradicts the identity xy+x = y in (3). Thus, x(yz) admits
a nontrivial permutation. If x(yz) ∈ {x(zy), y(xz), y(zx), z(xy)} then, by
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letting x = y, we obtain the contradiction x + y = yx from the identities
x(xy) = yx and x(yx) = x + y again. Thus, we must have x(yz) = z(yx).
Then (xy)(uv) = v(u(xy)) = v(y(xu)) = (xu)(yv), and hence

(x+ y) + (u+ v) = (x(yx))((u(vu))(x(yx)) = (x(yx))((ux)((vu)(yx)))

= (x(ux))((yx)((vy)(ux))) = (x(ux))((y(vy))(x(ux))

= (x+ u) + (y + v).

This proves that (A,+) is medial, and the proof is now complete.

Proof of Theorem 1.1. The first assertion that p3(A,+, ◦) ≥ 13 is proved
in Lemma 2.6. To prove the second assertion, suppose that p3(A,+, ◦) = 13.
By Lemma 2.8, (A,+, ◦) and (A,+) are term equivalent, and (A,+) is a
medial commutative idempotent groupoid satisfying ((x + y) + y) + x =
xy+x = y. By Proposition 1.3, we deduce that (A,+) and hence (A,+, ◦) as
well is term equivalent to a nontrivial affine space over GF(5). The converse
is obvious since p3(A) = 13 for any nontrivial affine space A over GF(5)
([3]). This completes the proof.

Remark 2.9. If (A,+, ◦) satisfies the identity (x+ y) ◦ z = (x+ z) ◦ y
then, by Lemma 2.3, the term xy is essentially binary. By [2], we deduce
that pn(A,+, ◦) ≥ 3

n−1 for all n ≥ 1.

Problem 2.10. Does there exist a model (A,+, ◦) for the identities
(A1)–(A3) with pn(A,+, ◦) = 3

n−1 for some n ≥ 4? Note that p3(A,+, ◦) ≥
13 > 33−1 by Theorem 1.1, and p2(A,+, ◦) = 3

2−1 if (A,+, ◦) is term
equivalent to an affine space over GF(5). Which varieties are subvarieties of
the variety defined by (A1)–(A3) and which finite algebras can be models
of the subvarieties, besides affine spaces?
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