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Abstract. A criterion for tame prinjective type for a class of posets with zero-
relations is given in terms of the associated prinjective Tits quadratic form and a list
of hypercritical posets. A consequence of this result is that if A® is a three-partite sub-
amalgam of a tiled order then it is of tame lattice type if and only if the reduced Tits
quadratic form qae associated with A® in [26] is weakly non-negative. The result general-
izes a criterion for tameness of such orders given by Simson [28] and gives an affirmative
answer to [28, Question 4.7].

1. Introduction. Throughout this paper K is an algebraically closed
field. Let us recall from [28] the notion of a poset with zero relations. If
I = (I,=) is a partially ordered set we denote by max the set of its
maximal elements and I~ = I \ max . We say that I is an r-peak poset if
max I has r elements. From now on we assume that [ is finite.

The incidence algebra K I of I is defined as the subalgebra of the full 7 x I-
matrix algebra M;(K) with coefficients in K consisting of those matrices
[Xijlijer such that \;; = 0 provided i £j [20].

A poset with zero-relations is a pair (I,3), where I is a finite partially
ordered set and 3 is a set of pairs (i,7) of elements of I satisfying the
following conditions:

(Zl) if (ig,jo) € 3 then ig < jo,

(ZQ) if (io,jo) € 3and i1 <9 = Jjo 271 then (’il,jl) € 3.

If the set 3 is empty then we identify (1, 3) with I.

The incidence algebra K(I,3) is associated with a field K and a poset
with zero-relations (I, 3). By definition it is the quotient of the incidence
algebra KI of I by the ideal Z(3) of KI generated by all elements e;; for
(i,7) € 3. Here we denote by e;; the elementary matrix having 1 at place

(i,7). We write e; instead of e; and we denote by the same symbols the
Z(3)-cosets of the elements e;; in K ([, 3).
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It is clear that the elements e;, ¢ € I, form a complete set of primitive
orthogonal idempotents of K (I, 3).

It is often convenient to treat K(I,3) as a K-category with the class
{e; : i € I} of objects; the space of morphisms from e; to e; is ;K (1, 3)e;
and composition is induced by multiplication in K (I, 3).

Assume that (I, 3) satisfies the condition:

(Z3) for every i € I there exists p € max I such that i < p and (¢,p) & 3.

If this is the case ([, 3) is called a multipeak poset with zero-relations.
Thanks to the condition (Z3) the algebra R = K(I,3) of such a poset
is a right multipeak algebra, that is, the right socle of R is a projective
R-module [17].

We denote by mods, (K (1, 3)) (resp. prin(K (1, 3))) the category of right
finitely generated socle projective modules (resp. prinjective modules) over
K(I,3) (see Section 2 for the definitions). The poset with zero-relations
(1,3) is said to be of tame prinjective type if the category prin(K (I, 3)) has
tame representation type (see [19, Chapter 14.4]).

A useful interpretation of the category prin(K(7,3)) in terms of matrix
problems, together with the geometry of varieties of prinjective representa-
tions of posets with zero-relations and their applications are discussed by
Simson in [26] and [25].

Let us restrict our attention to subamalgam-like posets, that is, posets
(I,3) with zero-relations satisfying the following conditions.

1. I is a two-peak poset with maximal elements *, 4.
2. There is a disjoint union decomposition I = C’" U Iy U C"” such that

(a) Ip={ie*x"Nn+V:(i,+)€3},x€C, +€C",

(b) there are no relations i < ¢/, ¢ <ior ¢/ < with ¢/ € C"\ {x},
d'eC", iclyandif d < for some ¢ € C’, " € C" then there
exists ¢ € Iy such that ¢ <7 < ¢,

(¢) C" and C" are empty or linearly ordered,

(d) a pair (4, 7) satisfying ¢ < j belongs to 3 if and only if i € C’ and
jec”.

ExAMPLE 1.1. Consider the six-element poset with the partial order
described by the diagram

C

1

o o — ("’
X 7
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equipped with the one-element set 3 = {(¢/, +)} of zero-relations. This poset
is subamalgam-like.

The main result of this article is the following theorem.

THEOREM 1.2. Let (I,3) be a subamalgam-like poset with zero-relations.
The following conditions are equivalent.

(a) The poset (1,3) is of tame prinjective type.

(b) The category modsy (K (I,3)) is of tame representation type.

(c) The Tits quadratic form q(z 3y associated with (I,3) in (3.6) is weakly
non-negative, that is, q(r3)(2) > 0 for any vector z € N,

(d) The poset (1,3) contains none of the 13 posetsAof Table 1 as a

two-peak subposet with zero-relations; the dotted edge in Fy means a zero-
relation.

Throughout this paper we shall call posets from Table 1 hypercritical
posets. The meaning of numbers at vertices of the diagrams will be ex-
plained in Lemma 3.10 below. The notion of a peak subposet is discussed in
Section 3.

The importance of subamalgam-like posets comes from the fact that they
are closely related to three-partite subamalgams of tiled orders introduced
in [28].

If S is a (subset of a) ring and m, m’ are natural numbers then M, x,/(S)
(resp. M, (S)) denotes the set of all m x m’ matrices (resp. m x m matrices)
with coefficients in S.

Let D be a complete discrete valuation domain over K with the unique
maximal ideal p such that D/p = K. Denote by F' = Dy the field of fractions
of D.

Let C be a finite-dimensional semisimple F-algebra. Each subring A of
C which is a finitely generated free D-module such that AF = C'is called a
D-order in C.

A right A-module M is called a lattice if it is finitely generated and free
as a D-module. The category of right A-lattices is denoted by latt A. It is
known that this category has the finite unique decomposition property [11].
The order A is said to be of finite lattice type if there are only finitely many
indecomposable A-lattices up to isomorphism. The notions of tameness and
wildness are also defined for the categories of A-lattices. The precise defini-
tions can be found in [24], [1], [23], [21], [26]. Roughly speaking, A is of tame
lattice type if the indecomposable A-lattices of fixed D-rank form a finite set
of at most one-parameter families (up to isomorphism).

We restrict our attention to D-orders of a special form considered in
[28], namely so-called three-partite subamalgams of D-orders. A criterion
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for finite lattice type of such orders is given in [26]. It is expressed in terms of
weak positivity of the Tits quadratic form associated with the given order.
The paper [28] gives a criterion for tame lattice type for a class of three-
partite subamalgams of D-orders. Note also that the problem of determining
whether a given order in the class being considered is of polynomial growth
is solved in [27].

The second aim of the present paper is to generalize the main result
of [28] to the whole class of three-partite subamalgams of tiled orders as
conjectured in [28, Question 4.7].
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Let us recall the basic definitions from [26] and [28].
Suppose that A is a lattice of the form

D 1Dy ... 1D,
p D ... oD,

(1.3) A= : o : n
pop n—1Dn
poop D

where

(a) ;D; is either D or p,
(b) A admits a three-partition

Ay X M, xny (D) }nl
(14) A= Mn3><n1 (P) AS y }n3
My xny (P) [Ming ns () Az tno

where n; = no, As = Ay, ny + ng +ng = n and Az is a hereditary ng X ng
matrix D-order

DD...DD

p D...DD
Ag= |0t ot | A

pp ...DD

pp ...p D

Let €1, €3 and €2 be the matrix idempotents of A corresponding to the
identity elements of A1, Az and Ao, respectively. A three-partite subamalgam
of A is by definition the D-suborder A® of A consisting of all matrices A =
[)\ij] in A whose left upper n; X n; corner €1 Aep is congruent modulo M,,, (p)
to its right lower n; X ny corner g2 Aeg (see [28]). More precisely

(1.5) A ={Xe A:e1der —eaheg € My, (p) }.

The main application of Theorem 1.2 is the following refinement of The-
orem 1.5 of [28] suggested in [28, Question 4.7].

THEOREM 1.6. Let K be an algebraically closed field and D a complete
discrete valuation domain which is a K-algebra such that D/p = K, where
p is the unique maximal ideal of D.

Let A be a three-partite D-order of the form (1.4) and let A® be the
subamalgam (1.5) of A C My, (D), where Ay = Ay C My, (D), A3 C My, (D)
and n1, ng are as above.
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The following conditions are equivalent.

(a) The D-order A® is of tame lattice type.

(b) The integral reduced Tits quadratic form que : Z" 2342 - 7 (see
(7.1)) is weakly non-negative.

(c) The two-peak poset (I'j,34) with zero-relations associated with A®
in (7.2) contains none of the forms listed in Table 1 as a two-peak subposet
with zero-relations.

The equivalence of these conditions was proved by Simson in [28] under
the additional assumption that either the part X or ) of the D-order A
consists of matrices with coefficients in p only. Another condition equivalent
to (a), (b) and (c) expressed in terms of minor D-suborders of A® can be
found in [28].

The paper is organized as follows. Section 2 is devoted to general re-
marks on bipartite algebras and prinjective modules. Here we follow [10].
In Section 3 we present more information on posets with zero-relations and
their socle projective representations.

Section 4 contains a discussion of the most important tools used in the
proof of Theorem 1.2 which is given in Sections 5 and 6.

It is shown in Section 7 how this theorem implies Theorem 1.6.

The main results of the paper were presented at the 9th International
Conference on Representations of Algebras in Beijing, 2000.

2. Bipartite algebras and adjustment functors. Throughout this
section let R be a finite-dimensional K-algebra. All modules considered are
right finitely generated, the category formed by them is denoted by mod(R).

Assume that R is bipartite, that is, has a triangular matrix form

(2.1) R:(’g Ag)

where A and B are K-algebras and M is an A-B-bimodule. It is well known
that R-modules can be identified with triples (X', X%, ¢
Xy ®a M — X}), where X'; is an A-module, X%, is a B-module and ¢
is a B-homomorphism. There are two functors

©3,0 : mod(R) — mod(R)

called adjustment functors which are defined on objects of mod(R) by the
formulas

Op(X)y, X}, 0) = (X4, Imo,res ¢),  O(X)y, X}, 0) = (Im @, X}, Js),

where the map res ¢ : X/, @4 M — Im ¢ is given by (res ¢)(z®@m) = ¢(z@m),
¢ is the homomorphism adjoint to ¢ and Jy is the map adjoint to the
embedding Im ¢ — Homp(M, X7,) (see [10]).



TAMENESS CRITERION 45

Following [10] denote by prin(R)‘g or prin(M) the category of prinjective
modules, that is, the full subcategory of mod(R) consisting of R-modules of
the form

X = (X}, Xp,¢: X3 ®a M — Xp)

where X', is a projective A-module and X is an injective B-module.
There is a commutative diagram

prin(R)% 25, modP&(R)4
(2.2) | |on
modic(R)p =%  adj(R)4

of full subcategories of mod(R) and functors induced by suitable adjust-
ment functors defined as follows. The module X = (X, X}, ¢) belongs
to modP&(R)# if X, is a projective A-module and the B-homomorphism
¢: X'y ®a M — X7 is surjective. The module X = (X/;, X7, ¢) belongs to
modic(R)p if X} is B-injective and the morphism ¢ : X/, — Homp (M, X})
adjoint to ¢ is injective. The category adj(R)g consists of modules X =
(X', X', ¢) such that ¢ is surjective and ¢ is injective.

Assume now that R is a right multipeak algebra. There is a canonical
way of presenting R in a triangular matrix form

(2.3) R:(‘g Ag)

where B treated as an R-module is isomorphic to the direct sum of all simple
projective R-modules. It is known that if R is a right multipeak algebra then

mod;.(R)p = mods,(R)

where modsp, (R) is the full subcategory of mod(R) formed by modules with
projective right R-socle [15, 2.6'], that is, socle projective modules. In such
a situation the functor @p will be denoted by ©.

We refer to [24] for the definition of the representation types of the
categories considered above. It is shown in [3] that the adjustment functors
preserve and respect the tame representation type.

The bipartite algebra R is of tame prinjective type if the category
prin(R) is of tame representation type.

3. Posets with zero-relations. In this section we give more informa-
tion on posets with zero-relations which will be needed later. Let (I, 3) be a
poset with zero-relations. Given an element z € I let 2V = {y € I : y < z}
and 22 ={yel:y = x}.

A poset [ is a garland if for every x € I there exists at most one y €
incomparable with z.
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By the width of a poset I is meant the maximal cardinality of a subset
of I consisting of pairwise incomparable elements.

The reflection duality for right multipeak algebras is defined in [17, Defi-
nition 2.21]. Let us recall this construction in the context of multipeak posets
with zero-relations. Assume in addition that the poset (I, 3) is subamalgam-
like. Then the reflection dual poset (I°,3®) associated with (I,3) can be
described as follows:

e [* =1 as sets,

e the partial order <® in I°® is the minimal partial order relation such
that

— for ¢,j € max [, i <X*jif and only if j <7 in I,
— for p € max 1, i X* pif and only if i <pin I,
o3 ={(i,j)eI*xI*:i=<*j, i€ C"\{+}, jeC'U{x}}
where C’ and C” are the subsets as in the definition of subamalgam-like
posets.
It is easy to observe that (I°,3°) is subamalgam-like as well. Moreover,

the following proposition follows from the general properties of reflection
duality (see [17, Section 2]).

PROPOSITION 3.1. Let (I,3) be a multipeak poset with zero-relations and
(I°,3°) its reflection dual poset. Then

(1) the Tits quadratic form q(j 3) is weakly non-negative if and only if
q(re,3¢) s weakly non-negative.
(2) (I,3) is of tame prinjective type only if (I°,3°) is. m

Given i € I let P, = ¢;K(1,3). Define the modules Q; as follows (the
definition depends on whether ¢ € max I or not):

If i € max [ then Q; = @, (e;K(I,3)e;)" as a K-vector space and the
right K (I, 3)-module structure is defined so that the map

(=) - ejp : (eK(1,3)es) — (ex(K (1, 3)e)’
is dual to the map
ejk - (=) ren(K(1,3))er — e;(K(1,3))e;
for any j, k in I such that j < k and (j,k) ¢ 3.
It is easy to see that @Q; is the K (I, 3)-injective envelope of the simple

projective module P;.

Now assume that ¢ ¢ max [. Let j € I and denote by U;(j) the cokernel
of the map

(_) * €{ max - EjK(I,B)BZ‘ - ejK(Iva)emax
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where epax = ZPEmaxI ep and €; max = ZpEmaxI,ijp, (i) &3 Eip- We set Q; =
@D, (Ui(4))* and the right action of K(I,3) on Q; is defined as in the case
t € max /.

Recall [19, Sections 5.2 and 11.9], [17], [13] that a module X in the cat-
egory modgy, (K (I,3)) is called sp-injective if it is injective with respect to
the monomorphisms f in mods, (K (1, 3)) with cokernel in mods, (K (1, 3))
or equivalently: the functor Ext}((lj)(—,X) vanishes on mods, (K (1, 3)).
The module X is said to be hereditary sp-injective if every indecompos-
able socle projective K (I,3)-module X’ with Hom g 3)(X, X") # 0 is sp-
injective.

LEMMA 3.2. The modules P;, i € I, form a complete set of pairwise non-
isomorphic indecomposable projective K(I,3)-modules. The modules @,
1 € 1, form a complete set of pairwise non-isomorphic indecomposable sp-
injective K (I,3)-modules, that is, injective objects of modsp(K (I, 3)).

Proof. The assertion about projectives is standard. The remaining one
follows by application of the reflection duality functor (see [17] for the def-
inition): one can check that the module @); is reflection dual to the inde-
composable projective associated with ¢ over the reflection dual algebra to
K(I,3). Then the lemma follows from the general properties of the reflection
duality (see also [15, 2.14, 2.16] and [19, Section 5.2]). =

Note that the hereditary sp-injectives are reflection dual to hereditary
projective modules.
We say that (I’,3') is a peak subposet of (I,3) if

o' CI maxI' =1 NmaxlI,

e ; =< jin I’ if and only if there exists a sequence i, . . . , i, of elements of I’
such that ig =1, 7, = j, i = Tg1 in 1 and (ikyik-i-l) Z3fork=0,...,r—1,

o3 ={@G,j)el'xI':i=<jinI'}N3.

It follows that in this case K(I’,3’) is a full subcategory of K(I,3).
Moreover, a peak subposet of a multipeak poset with zero-relations is a
multipeak poset with zero-relations.

Now we shall recall two functors relating the categories mods, (K (I’, 3'))
and modsp (K (I,3)) when (I,3) is a peak subposet of (I’,3’). Write R =
K(I,3) and R' = K(I',3') as bipartite algebras

A M nd A M
o B) *° 0 B
respectively in the canonical way as at the end of Section 2.

Assume A" = ede and B’ = fBf for idempotents e, f in A and B
respectively.



48 S. KASJAN

There is a restriction functor
res; : modgsp(R) — mods, (R')

given by X — O (X (e+ f)) (see Section 2).
Define a functor N
T : prin(R') — prin(R)

by the formula ’T‘II(XI’LX,,X%,,qﬁ) = (X @ eA, Xg,a), where X7 is just
X7, treated as a B-module and 5 is induced by ¢. We omit defining T I on
homomorphisms since it is done in a standard way.

Further, let Ly = Homp (R(e 4+ f),—) : mod(R') — mod(R). See also
[19, Lemma 12.2], [5, Lemma 3], [17, 2.10].

LEMMA 3.3. (a) There is a unique (up to equivalence) functor T mak-
ing the following diagram commutative:

prin(R’) o, prin(R)

l@B/ l@B

modgp(R') 2 modsp(R)

(b) The functor INJp maps socle projective modules to socle projective
ones, hence it induces a functor

Ly : modsp(R') — mods, (R).

(¢) The functors Tp and Ly are right quasi-inverses of resyp.

(d) The functor Ly is a right adjoint to resy .

(e) The functor Ly maps the sp-injective modules in modg,(R') onto
sp-injective modules in modgp(R).

(f) The functors Tp and Ly are full and faithful.

(g) If the category mods,(R) is of tame representation type then so is
mods, (R').

Outline of proof. The assertions (a), (b) and (c) can be checked directly.
The adjointness of (res;/, L) is a standard fact and (e) is its consequence.
To prove (f) observe that T and Ly are faithful by (c¢) and Ly is full
thanks to (d). Fullness of T needs to be checked directly—first note that
the functor Ty is full and ©p is full thanks to results of [10]. The assertion
(g) is standard, the reader is referred to [5, Lemma 3(c)]. m

The functors
(3.4) Tr,Lp : modgp(R') — modsp (R)

defined in Lemma 3.3 are called the upper and lower induction functors
respectively.
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REMARK 3.5. The functor T/ is not a left adjoint to resy. To see this
consider the following example of a poset and its peak subposet:

O o — O

lcl

O O

and their indecomposable socle projective representations

K K—-K
| and |
K K

The crucial role in our considerations is played by the prinjective Tits
quadratic form

(36) Q(L3) : ZI — 7
of (I,3) defined following [26, 2.10] by the formula
qr,3) (%) = (z,2)(13)

where the bilinear form (-, —) (7 3) is given by

(3.7 (v Y3 = Z Ty + Z TpYp — Z TiYp,

1=J, j¢max I pEmax [ 1<p, pEmax I
(4.9)€3 (i.p)€3
where x = (z;)ier and y = (¥i)ier-
Together with the form (3.7) we shall use its symmetrization (—, —); 3):

(3.8) (@, 9) 1,3 = 5.9 13 + W, 2)(1,3))

Recall from [10], [19] that given a K (I, 3)-module X the coordinate vector
of X is the vector cdn X € Z’ such that cdn X (i) is the multiplicity of
e;K(1,3) as a direct summand in the projective cover of X if i # %, + and
cdn X (i) = dim Xe; otherwise. We shall use the exponential convention
(see [19, Remark 11.57]) of writing coordinate vectors, that is, the vector
(i1,...,i,) € Z" is written as 142%2 . rir k¥ is omitted if i, = 0 and we
write k instead of k.

LEMMA 3.9 [10]. For any prinjective K (I,3)-modules X,Y,
(cdn X, cdnY)(; 5 = dimg Homye(s 3)(X,Y) — dimg Extje(; 5 (X, Y).
LEMMA 3.10. Suppose that (1,3) is a subamalgam-like multipeak poset
with zero-relations. The following conditions are equivalent.

(a) The Tits quadratic form q(; 3) is weakly non-negative.
(b) (I,3) contains none of the posets of Table 1 as a peak subposet.
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Proof. The proof is analogous to the construction of the list of hypercrit-
ical two-peak posets [4, Theorem 5.5]. The list of critical subamalgam-like
posets with zero-relations is given in [26] (it can also be recovered from
[29]). They are just subposets consisting of elements marked by digits in
Table 1. The numbers associated with the elements of such a critical poset
C = (C, 3¢) are the coordinates of the radical vector pc of the correspond-
ing quadratic form qc, that is, the integral vector uc generating the group
Rad(qc) = {v € Z° : q¢(v) = 0}.

A case by case inspection shows that each of the posets of Table 1 is
an extension of some critical poset by one point with negative index in the
sense of [4, Definition 5.3] and moreover every extension of a critical poset
by a point with negative index which is subamalgam-like contains one of the
posets of Table 1 as a peak subposet.

For example, observe that the poset ﬁlz in Table 1 is an extension of the
critical poset

= e—

C: N

DO——
DO— =

by a point with index —1. In the above picture the elements of C are labeled
by coordinates of pc.

Recall that (I,3) is an extension of a critical poset C' by a point a
with negative index if C' is a peak subposet of (I,3), I = C U {a} and
(Hes€a)(1,3) < 0. Here &g is the standard basis vector of Z associated with a.

Repeating the arguments from the proof of Theorem 5.5 of [4] we show
that the posets listed in Table 1 form a complete list of minimal multipeak
posets with zero-relations which are subamalgam-like and such that the
associated quadratic form is not weakly non-negative. m

4. Right peak algebras and the upper chain reduction. In the
proof of our main result we essentially use the construction of the upper
chain reduction & : I — &I introduced in [16]. For the convenience of the
reader we briefly sketch some of the relevant ideas.

Consider a two-peak poset I with maxI = {*,+} and assume that the
poset Iy = *¥ N+ has a unique maximal element ¢ and it is dual to the
poset of socle projective modules over the incidence algebra of another poset
I of width at most 2 (see [19, Section 2]). We consider Iy together with the
natural embedding Iy — Iy sending an element i to the element representing
the indecomposable projective module corresponding to i.
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The incidence algebra K1 of I can be viewed in triangular matrix form as
Kly N
0 KI.
where I, = I, U I, (disjoint union) and I, = ¥ \ ¢V, I, = +V \ ¢V.

LEMMA 4.1. Let I and Iy be as above. Assume that I, and I are empty
or linearly ordered, and Iy is a garland (see Section 3). Then

(a) If inf{z,y} exists in Iy for any z,y € Iy then I is dual to the poset
of socle projective modules over the incidence algebra of Iy, where

Iy = Ip \ {inf{x,y} : x,y € Iy are incomparable}.

(b) If the condition in (a) holds and for every x € I. the set {y € Iy :
y 2 x} has a greatest element then the right KIy-module Homgr (N,Y) is
projective for every socle projective KI.-module Y .

(¢) If sup{x,y} and inf{x,y} exist in I for any x,y € Iy and are both
in Iy then the conclusions of (a) and (b) hold.

Proof. The statement (a) follows from the description of socle projective
modules over the incidence algebra of a poset of width at most two [19,
Section 2], whereas (b) and (c) are easy to check. m

Throughout this section we assume that the conditions (a) and (b) of
Lemma 4.1 are satisfied.

Together with Iy we consider the poset I = I \ {c} U {w} with a new
unique minimal element w.

Denote by H,. the category Hompg . (N, mods, (K 1)), that is, the image
of the functor

Hompgr, (N, —) : modgp (K1) — mod(K),

and let ind H,. be a fixed set of isomorphism classes of indecomposable objects
of He. Let Y = @yeind g ¥ and H = H.(Y,Y). Then H has a natural algebra
structure induced by composition in H, and Y is an H-K Iy-bimodule.

We assume that the condition (b) of Lemma 4.1 holds, hence Y is pro-
jective as a K Ip-module and it follows that it corresponds via the Yoneda
functors composed with a suitable reflection to a KT ¢-H-bimodule M. Con-

sider the algebra
(Kl M\ (K W
RQ‘( 0 H>_<O B>

where B = (K(TOO\{C}) ]\Z), Mis a K(Ip\ {c})-H-bimodule and W is a K-B-
bimodule.
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The inverse of the Yoneda functor induces a functor

Ko K
Kl N K W
. pg N pg

Composing w, with a suitable reflection (see [16], [15, Definition 2.13])

K
K W B W
vV : pg .
+mod (0 B> Hlodm(o K>K

we get an equivalence

Ky
Kly N B W*
pg R .
(4.2) mod ( 0 KIC> mod;c ( 0 K )

[16, Theorem 2.22]. Define the algebra
. (B w*
where
B = B/anng W*.
It is proved in [15] that

B W+ B wW*
mod;e < 0 K ) and modgy ( 0 K )

are equivalent categories.
This is the crucial element of the construction. Using adjustment functors
and the equivalence (4.2) one can define an equivalence

E : mody (K1) /[T, (modyy (K 1.))] > modsy (€1 K1),/ [Ly, (modsy (K To))]

where Ty, and Ly, are defined in Lemma 3.3 (see [16, Theorem 3.4, Remark
3.15]). Given a class C of objects in some category we denote by [C] the
two-sided ideal of morphisms factorizing through an object in C.

Consider again the case when [y is a garland and I, I, are empty
or linearly ordered. Under the additional assumption that ¢ is maximal in
I~ =T\ maxI one can give an explicit description of the algebra £*(K1T).
Namely, define a poset

(4.3) §l =ToU(LN\{+}) U (L \{+D) U{F +}

where *, + are new elements, with partial order extending the ordering in I
by the following new relations:

o x <z for x € I, \ {x},

o + <yforyely\{+},
ez <cforzel



TAMENESS CRITERION 53

LEMMA 4.3. If the poset I satisfies the conditions (a) and (b) in Lem-
ma 4.1 then there exists an algebra isomorphism

EN(KI) = KET.

Proof. The assertion follows from the analysis of the construction of
£X(KI) sketched above; see [16, Remark 3.15] for details. =

It is easy to check that £¥I is the one-point enlargement (by the unique
maximal element ¢) of the poset £.I constructed according to Remark 3.15
in [16].

5. The proof of Theorem 1.2——case A. Throughout this section we
assume that (I, 3) is a subamalgam-like poset with zero-relations.

The aim is to prove Theorem 1.2. First we concentrate on the proof of
the implication (c¢)=-(a) (or (c)=-(b)) since this is the crucial part of the
whole proof.

From now on we assume that the prinjective Tits quadratic form of (1, 3)
is weakly non-negative. It follows from Lemma 3.10 that (I, 3) contains no
poset of Table 1 as a peak subposet. Therefore Iy is a garland.

The case Iy = () is trivial since then (I,3) decomposes into a disjoint
union of two linearly ordered posets. Hence we assume that I is not empty.
We distinguish two cases:

A. 1Y is linearly ordered.

B. I° is not linearly ordered.

Case B will be treated separately in Section 6.

CAse A. We shall apply the peak reduction with respect to the peak x
(see [7]).

Let R = K(I,3), R = K(I\ {+},3), H' = k{+}, where 3’ = {(4,7)
€ 3:j # +}. The algebra R has a presentation

R/ ' N gy
(5 )

for an R'-H"-bimodule N = g/ Npy».
Consider the functor

| — | =(-) ®r N : prin(R’) — mod(H")
and denote its image by Kgn.
LEMMA 5.1. The functor | — | has the following properties:
(i) the image of every indecomposable module X in prin(R') is at most

one-dimensional and dimy | X| =3, edn(X)(i),
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(ii) for every pair X,Y of indecomposable objects of prin(R') such that
| X|#0#[Y],
dimgx Homp/ (X,Y) — dimg Exth (Y, X) < dimg Ky (| X, [Y]).

Proof. The category prin(K ") can be embedded into prin(R’) via the

induction functor T = T*v (see Lemma 3.3). Observe that each indecom-
posable prinjective R’-module is either induced from a K" -module (via the
upper induction functor) or is isomorphic to e; R’ for some i € C”.

Moreover, the poset *V = Iy U C’ has width at most 2. Denote this
poset by S. It follows [19, Section 2.4] that each indecomposable prinjective
K S-module is isomorphic to one of the following:

P3(i) = ¢;K S, i €S,
Py (i) = P*(i) /soc(P5 (i), i€ S\ {x},
P3(s,t) = P5(s) & P5(1)/A(PS(+)),
where A : P9(x) — P5(s) @ P9(t) is induced by the diagonal embedding
of PJ into soc(P*(s)) @ soc(P3(t)) for any incomparable s,t € S.
Denote by M the space (N”)* dual to N”. Observe that M is the re-

striction of the R-injective envelope E, of P, to R'.
It is easy to check that

dimg Homp (X, M) =) " edn X (i) < 1
i€lp
for every indecomposable prinjective R’-module X and (i) follows since

Homp/ (X, M) = Homg (| X|, K).

The statement (ii) follows by simple case by case inspection. It is trivial
in the case when one of X,Y is either projective or of the form Py (i) for
some 7. m

Let ind Ky~ be a set of representatives of isomorphism classes of inde-
composable objects in Kgr. Let

Z= @ =z and E=Kg:(Z 2).

z€ind K g

Then Z has an E-H"”-bimodule structure and we set

EF Z
S*R:(O H//>

(compare [6, 2.6]).



TAMENESS CRITERION 55

There is a well-behaved functor
S« : modg,(R) — modsp (S« R)
defined in [6, 3.4].

It follows from Lemma 5.1(i) above that the algebra S, R is an incidence
algebra of a poset. Let us give an explicit description of that poset.

Let indKgy» = {zj}jc,r and let Y; be the indecomposable object of
prin(R’) corresponding to z; for every j € J'. It follows from [6, Propo-
sition 4.5] that S, R = KJ, where J = J' U {+} is partially ordered by

g1 2 g2 & K([Y|, [Yj]) #0  for ji,j2 € J',
j=+ for every j € J.

Following [7, 2.14] and [4] we define a map s; : Z7 — Z! by the formulas
ST(e;) —edn(Y)) forj e, si(eq)=cs,
where ¢; denotes the jth standard basis vector of 77 or Z'. Observe that
sy (NY) € N,
We denote by q; the Tits quadratic form associated with J, that is, the
form (3.6), where J is identified with (., ).

LEMMA 5.2. In the above notation the following hold.

(a) (€51,€42)0 = (s (€41)s 85 (€42))(1,3) for every ji,ja € J,
(b) as(v) > ar3)(s5 (v) for any v € N7,
(c) if the form q(1,3) s weakly non-negative then so is q;.
Proof. Denote Ky~ by K.
(a) First consider the case when ji,j2 € J'. Then
2(5j175j2)J = dimg K(‘lef, ’Y]2‘) + dimg K(’Y]é‘v ‘Yh’)
By Lemmas 5.1(ii) and 3.9 we get

1
(5]'175]'2)J > §(<Cdanvadn Y32>(1,3) + <CdnY327Cdan1>(I,3))

= (5. (€j1), 55 (€52)) (1,3)-
If j1 = +, jo € J' then (g5,¢5,)s = —1 and (s, (g),), 8. (€x))(1,3) =
(e4,cdnY}, )1 3), where cdn Y, (+) = 0 and edn Y}, (i) > 0 for at least one
i < +. It is easy to observe that (4, cdn Y}, )7 5) = — dimg Ext%[,a) (Yj,, Py)
< -1
For j; = jo = + both sides of the inequality in (a) are 1. Thus (a) follows.
The assertions (b) and (c) are direct consequences of (a). m

5.3. Proof of the implication (c)=-(b) of Theorem 1.2 in case A. Since
the functor S, preserves and respects tame representation type (see [6, The-
orem 3.3(c)]) it is enough to prove that the category prin(K.J) is of tame
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representation type. This follows from the well known Nazarova theorem
[8], [19, Theorem 15.3] since by Lemma 5.2(c) the Tits quadratic form q is
weakly non-negative. m

6. Proof of Theorem 1.2 in case B. As in the previous section, (I, 3)
is a subamalgam-like poset with zero-relations and the associated prinjective
Tits quadratic form q(; 3y is weakly non-negative. Throughout this section
we assume that the poset Iy is not linearly ordered. Let us start with a
combinatorial preparation.

LEMMA 6.1. If z and y are incomparable elements of Iy and z € C'UC"
then z is comparable with at least one of x and y.

Proof. Otherwise q(y35)(v) < 0if v € Z” is the vector such that v(z) = 1,
v(z) =v(y) =v(x) =v(+) =2 and v(i) =0 for i € {x,y,z,%,+}. =

It follows that €'\ {*} C +V and every element of C” is comparable
with at least one element of Ij.

Let ¢/, be the maximal element of C"\ {x} (if C'\ {x} # () and ¢, the

minimal element of C”.

LEMMA 6.2. Suppose that (I,3) is a subamalgam-like poset with zero-
relations and the Tits quadratic form q(r3) is weakly non-negative. There

exists a subamalgam-like poset (I,3) such that

(a) for any incomparable x,y € I, sup{z,y} and inf{x,y} exist in I and
are both in Iy, where

Ip={ze€l:z<% z<+, (z,+) & 3}.

b) (I 3) is a peak subposet of (I,3),

c)q is weakly non-negative,

(
(
(d) zf Inodsp( (I,3)) is of tame representation type then so is
modsp (K (1, 3))-

Proof. The construction of (I,3) goes as follows. Let {x1,yi},...
{Zm,ym} be all two-element sets of incomparable elements of Iy listed
in such a way that 1 < ... < xp,. Let z; Vy; and x; Ay; fori =1,...,m be
new elements.
Let Ly = {x, Vyn} if there is no sup{x,,, ym } in I or sup{zm,, ym} & lo,
and L; = () otherwise. Similarly, Lo = {x1 A y1} if there is no inf{z1, 31} in
I or inf{z1,y1} & Ip, and Ly = ) otherwise. Moreover, put

.7:IU{;171\/y1,...,xm_1\/ym_1}UL1U{xg/\yg,...,a:m/\ym}ULg.
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The partial order relation in I extends that in I as follows:

ANy <z,y<zVy,

z=<xVy ifandonlyifz<xorz <y,

xVy<z ifand onlyif x < z and y < z,
z<xz Ay ifandonlyif z < x and z < v,
xAy<z ifandonlyifz <zory=<z

for every pair z,y of incomparable elements of Ip and z € I. We put
3 =23
It is clear that (f, 3) is a multipeak poset with zero-relations and it
has a partition C’ U Iy U C” satisfying the conditions in the definition of a
subamalgam-like poset. Moreover, the assertion (a) follows; (b) is obvious.
(c) Assume that q(1,3) 1s weakly non-negative whereas a7 3) is not. It

follows that (f , 3) contains a hypercritical poset H containing z; A y; or
x; V y;. Assume that x; Ay; € H for some i = 1,...,m. Observe that either
x; A\ y; is comparable with all the remaining elements of I or i =1, x1 A yy
is minimal in I and the set of elements of I which are incomparable with
x1 Ay is linearly ordered or empty. It follows by analysis of the hypercritical
posets listed in Table 1 that this is impossible. We proceed analogously in
the case when x; V y; € H for some i =1,...,m.
The assertion (c) follows from Lemma 3.3(g). =

Let ¢ be the maximal element of Iy. If J” = {i €l :c<i =< +}, D
is the poset of elements of C” incomparable with ¢ and J' = I\ (J' U D)
then J' + D + J” is a splitting decomposition in the sense of [17, Definition
3.3]. The Splitting Theorem [17, 3.10] implies that every indecomposable
socle projective K (I, 3)-module is induced either from a K (DU J”)-module
or a K(J'"U D)-module. Similarly if co is the minimal element of Iy, set
J, ={i € C":i < ce}, let Dy be the set of elements of C"\ {*} which are
incomparable with ¢e and J =T\ (De U J,). Then J, + Do + J/ is again a
splitting decomposition.

Thus thanks to the Splitting Theorem and Lemma 6.2 without loss of
generality we can assume that the poset I satisfies the following conditions:

(6.3) e for any incomparable x,y € Iy, sup{z,y} and inf{z,y} exist in I
and both lie in I,
e there is no ¢ € I such that ¢ <7 < +,
e there is no x € I such that = < i for every i € Iy.

Observe that according to the definition of subamalgam-like posets there
is no ¢ € I such that ¢ <7 < *.
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From now on we assume that (I, 3) is a subamalgam-like poset which
satisfies the condition (6.3). Note also that (I, 3) satisfies this condition if
and only if the reflection dual poset (1°,3°) does.

PROPOSITION 6.4. If (I,3) is a subamalgam-like poset with zero-relations
satisfying (6.3) and such that q(; 3 is weakly non-negative then the category
modsp (K (I,3)) is of tame representation type.

We precede the proof by several preparatory lemmata.

Let J be the poset (I\ C")U{x}; J is a peak subposet of (I,3). Thanks
to the condition (6.3), Lemma 4.1 applies to J.

Consider the one-peak poset &.J (see 4.2). Recall that there exists an
equivalence of categories

2 : modsp (KJ) /[T, (modsp (K Je))] = modsy (KE:JT) /[ Lz, (modsy (K To))]

where J. = J\ ¢V and I is defined in the formulation of Lemma 4.1. In our
case J, is a disjoint union of two subposets {*} and C”.
Let

7 : modsp (K J) — modg, (K J)/[T ;. (modsy (K Je))]

and
7' s modgp (KE:J) — modg, (K& J)/[Lz, (modsy, (K To))]

be the natural projection functors.

For each object X of mods,(/J) having no summands in mods, (K J.)
there exists a unique (up to isomorphism) object Y in modg,(KE}J) with
no summands in L (mods,(K1p)) such that E(r(X)) = «/(Y). Denote Y
by £(X).

We shall use the following terminology: if G is a garland then a node is
an element of G which is comparable with each element of G.

Let xq,y0 be incomparable elements such that all proper predecessors
of zg and yp in Iy are nodes. Given =z € Iy denote by N, the module
exKJ/ Zc”eC”ﬂzA exc//KJ.

Denote the set C”\ {*} by C{. The algebra K(I, 3) is isomorphic to the

triangular matrix algebra
KC, M
0 KJ

and for each ¢’ € C{ the right K J-module e~ M is isomorphic to Ny ,, where
Ze is the (unique!) minimal element of {y € Iy : ¢ < y}.

For z < inf{xo,y0} in Iy or = € {x0,y0} let N, be the unique K¢&.J-
module with coordinate vector « + ¢. For x = inf{zo,y0} let N, be the
unique K¢ J-module with coordinate vector zgyo + c.
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LEMMA 6.5. Under the above notation there is an isomorphism
EXN, & N.

for all elements x € Iy such that © < x¢ or x < yo in Iy and the module N,
is hereditary sp-injective.

Outline of proof. The assertions follow from the observation that if x <
inf{xo,yo} or x = xp then z € I corresponds to the KIy-module e, K Iy.
The element inf{zg, 30} corresponds to the unique K Io-module with coordi-
nate vector xgygc. The detailed proof requires an analysis of the &, construc-
tion and is left to the reader. The remaining assertion is a consequence of the
description of sp-injective modules (see [19, Section 5.2] and Lemma 3.2). m

LEMMA 6.6. Under the above notation and assumptions we have:
(1) If X is an object of T, (modsp(KJ.)) then Hompg ;(M, X) = 0.
(2) If there ezists a non-zero homomorphism
f&(M) =Y
in (L7, (modsp(K1o))] then Y has a direct summand in Lz (modsp(K1o)).

Proof. The assertion (1) follows easily from the observation that K.J.
is hereditary and every socle projective KJ.module is projective and is
mapped onto a projective K J-module. To prove (2) note that by Lemma 6.5,
£:(M) is hereditary sp-injective in modg, (K} J). Moreover, if Y is heredi-
tary sp-injective in the image of the functor Ly and f : Y — Z is a non-zero
homomorphism in modg,(K&}J) with Z indecomposable then Z belongs to
the image of Ly as well.

It follows that E induces an isomorphism of the algebras Endg j(M) and
Endgex s (§5 M) and therefore £$ M has a canonical structure of KCj-K¢.J-
bimodule. Let us construct the algebra

EK(1,3) = (KOCO Ié;?,)
Let £.(I,3) be the set
(6.7) E(1,3) = Cuuert

(disjoint union) with partial order generated by the orders in C{) and &J
and the following new relations:

d=<x if <z, 2 €1lyand z < inf{xo, yo},
d 2 xo,yo if ¢ < inf{zg,yo},
2+,

for ¢ € C.
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ExXAMPLE 6.8. Let I be the poset
d 0

N
1

7N

NS
4

7N
NN

SN
* +

and let
3= {(clv 7)7 (C/’ +)}
Observe that Iy = {0,1,2,3,4,5,6,c}. The poset (I, 3) has the form

0 c
X LN
2 3

I X!

5 6 +
! L/

¥ - c— 7

LEMMA 6.9. Under the above notation and assumptions:

(1) &K (1,3) 2 K&(1,3),

(2) if q(z,3) is weakly non-negative then so is either Az, (13) O g (10 30"
Here (I°®,3°) is the poset reflection dual to (1, 3) (see Proposition 3.1).
Proof. The assertion (1) follows immediately from the definition of the

poset &.(I,3) and Lemma 6.5.

(2) Let a : 78(13) 5 7] be a Z-linear map acting in the following way
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on the standard basis vectors ¢;, i € {31, of 7Ee(13).

gi— e, —e,—¢e  forieCy,
g — € fori e C"\ {+},
€j € — € for j € Ip \ {c},

Ecrr e+ +el,
€% = —8;7
o _ !

Here we denote by &’ the standard basis vector of Z corresponding to x for
x € I. A direct calculation shows that

(5$>€y)§c(1,3) = (a(es), aley))(r,3)
for every x,y € €1 (compare [5]). It follows that

ez (1,3)(v) = qz,3)(a(v))
for any vector v € 7z,

Now assume that q¢x(7,3) is not weakly non-negative. The Nazarova the-
orem (see [19, 15.3]) shows that £}(I, 3) contains a peak subposet L isomor-
phic to a one-peak enlargement N;* of a Nazarova poset for some ¢ = 1,...,6.

Let Sy (resp. S2) be the set of nodes in Iy which are incomparable with
. (resp. ). The posets S; and Sy are linearly ordered or empty. Since I
contains a pair of incomparable elements it follows that S; N Sy = (.

Let s be the maximal element of S;. Then C§, S1 \ {s{}, 92 C &:(1,3)
by definition of (I, 3). Note that ¢’ < sy and s; = sy for every ¢ € CY,
s1 € 51, 59 € Ss.

Assume that all the sets LNC), LNS1\{s]}, LNS2\ {c} are non-empty.
It follows from the analysis of shapes of Nazarova hypercritical posets that
then all those sets have exactly one element.

It follows that without loss of generality we can assume that one of the
following conditions is satisfied:

(1) 106\ = 1 [51], 152] <2,

(2) C
()!Sll<1
(4) [S2] < 1.

In case (4), after applying the reflection duality to (I,3), we obtain a
poset with zero-relations satisfying (3). Thus without loss of generality we
can assume that (I, 3) satisfies one of the conditions (1)—(3) above.

Therefore L N (C§ U Ip) contains at most one element z such that there
are at least two elements incomparable with z in L N (C} U Iy). Moreover,
the poset L N (C} U Ip) has width 2.
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There exists a vector v € Né such that qe:7(v) <0 and, in addition,

UOEDPIC)
zelU
whenever U is a subposet of £}(1, 3) of width at most 2 and such that there
is at most one element in U incomparable with at least two elements of U
(see [19, 15.24]).
The above remarks imply that a(v) has non-negative coordinates; indeed,
this follows now immediately from the formula

0 ifiel\ (C'uC”"Uly),
v(4) ificC'uC”Ulp\ {c, *, +},
v(c) — > v(z) ifi=c,
a(v)(i) = z€lp\{e}ucy
v(c) — v(¥) if i = x,
vie) —v(+) — > (i) ifi=+,
. ieCy

for any v € Z&1,
Since q(z,3)(a(v)) < 0 the form q(; 3) is not weakly non-negative, a con-
tradiction. m

Consider two socle projective algebras

A M A M
(o 5) n=(o )
such that M and M’ are faithful as left A-modules. Let C (resp. C’) be a
class of socle projective B-modules (resp. B’-modules) such that C = add(C
and C' = add(C’). Let
7 : modsp(B) — modg,(B)/[C],
7' : modgp(B') — mody,(B')/[C']
be the canonical projection functors.
Assume moreover that
(1) Homp(M, —) annihilates [C],
(2) if a B’-homomorphism f : M’ — X belongs to [C’] for a socle
projective B’-module X then X has a direct summand in C’,

(3) M (resp. M’) has no direct summand in C (resp. C'),
(4) there exists a fully faithful additive functor

S : modsp(B)/[C] — mods,(B')/[C']

and an isomorphism

o:S(r(M)) — 7' (M)
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such that for every a € A the diagram
S(m(M)) = n'(M')

[sren |
S(m(M)) = ='(M’)
is commutative, where ¢, : M — M and £, : M’ — M’ is the left multipli-

cation by a.

LEMMA 6.10. Under the above notation and assumptions (1)—(4) there
exists a fully faithful functor

S : modsp(R),/[modep (B)] — modep(R')/ [modep (B)]

where modgp(B) and mods,(B') are treated as subcategories of mods,(R)
and mods,(R') respectively. The image of the functor S is the full subcate-
gory of mods,(R')/[modsp(B’)] formed by cosets of R'-modules (Y}, Y}, ¢)
such that Y}, has no direct summands in C'.

Proof. We begin with two observations.

1) For every socle projective B-module X without direct summands in
C there exists a unique (up to isomorphism) socle projective B’-module Y
without direct summands in C’ such that S(7(X)) = 7/(Y). Fix a representa-
tive s(X) of the isomorphism class of such Y’s together with an isomorphism
ox : S(m(X)) — 7'(s(X)). Without loss of generality we can assume that
s(M)=M'and o) = 0.

2) If X is a socle projective B-module without direct summands in C
then there is a bijection

sx : Homp(M, X) — Homp/ (s(M), s(X))
such that for any homomorphism f: M — X the diagram
S(n(f))
S(m(M)) —" S(x(X))

o o
/ ' (sx(f)) /
m(s(M)) " =" 7' (s(X))
is commutative. This is a consequence of the fact that Homp(M, X)N[C] =0
and Homp/ (s(M), s(X))NI[C'] = 0.
Let us construct a map
5 : (Ob(modgy(R)))° — Ob(modsy(R'))

where (Ob(mods,(R)))° denotes the class of objects in modgp(R) having no
non-zero direct summands in modgp(B).

Let X = (X, X%,0: Xy, ®4a M — XJ) be such an object. It follows
that X7, has no direct summands in C.
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Let ¢ : X/ — Homp(M, X},) be the map adjoint to ¢ and
$(X) = (X}, 8(XB),vhp : Xy @4 M' — s(Xp))

where 1)y is the homomorphism adjoint to the map

X1,4 - HOIHB/(M/, S(X%))7 L= Sxn (gb(:l:))

Thanks to the commutativity of the diagram in condition (4) above, the
latter map is an A-homomorphism.

Now we shall extend s to a functor as required. Consider an R-homo-
morphism

F= (0" X = (X X)) = Y = (YA, YH.0)
and assume that X and Y do not have non-zero direct summands in

modsp(B). Since the functor n’ is full there exists a B’-homomorphism
g" : s(X}) — s(YF) making the diagram

s(r(x5) **5 s(x(vg))

O 511 O~ 11
J/ XB J/ YB

(s(X1) ML) (s(vE))

commutative. Let us prove that (f’,¢”) defines an R’-homomorphism from
5(X) to 5(Y). We need to prove that v, o (f' ® idpyr) = g” o g The
homomorphism ¢” is chosen in such a way that
m(g") o 7' (sxy(d(@))) = 7' (syy (A(f'(2))))
for every x € X;. It follows that the map
9" 0 sxy(d(x)) = syy(M(f'(2))) = 9" 0 Yg(x) — ¥y (f'(2)) : s(M) — s(Yp)

belongs to [C'] and since s(Y};) has no direct summands in C’ it is the zero
map thanks to our assumptions. This proves our claim.

Observe that the [C']-coset of the homomorphism ¢” constructed above
is uniquely determined.

It is now clear that the map s together with the map (f’, f”) — (f’,¢")
defined above induce a functor

S : modgp (R)/[modsp (B)] — mods,(R')/[mods, (B')].

It is easy to check that this functor is faithful and its image is as described
in the lemma. We leave to the reader checking that S is full. »

COROLLARY 6.11. The map
5 : (Ob(modgsp(R)))° — Ob(modsy(R'))

preserves indecomposability and sends non-isomorphic modules to non-iso-
morphic ones. m
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LEMMA 6.12. (1) There exists an equivalence of categories

modsp (K (1,3)/[ T, (moduy (KT))]
= modup(KEX (1. 3))/ [T s (modep (K€1),

(2) If the categories mods, (K J), modsp (K (£5J)) and mods, (K€% (1, 3))
are of tame representation type then so is modg, (K (I, 3)).

Proof. 1t is easy to see that Lemma 6.10 applies here. Thus assertion (1)
follows. We only sketch the main arguments for (2). We observe that the map
on objects defined in (1) is constructible in the spirit of [9], that is, it can be
represented by a family of regular maps between suitable algebraic varieties
of socle projective modules. Thanks to Corollary 6.11 this map preserves
indecomposability. Therefore parameterizations for indecomposable modules
in modg, (K (€} (1, 3))) induce suitable parameterizations for indecomposable
modules in modg, (K (1, 3)).

Then the preservation of tameness follows by standard arguments as in
[9,4.3]. m

Proof of Proposition 6.4. Let gC(I,S) be the poset constructed in 6.7.
Thanks to Lemma 6.9 we can assume the Tits quadratic forms of &.(I,3)
and &)J are weakly non-negative and thus by the Nazarova theorem the
categories modsp(Kgc(I, 3)) and modg, (K (£J))) are of tame representation
type. The results of [28] apply to the poset J and therefore modg, (K J) is of
tame representation type. Then the assertion follows from Lemma 6.12(2). m

Now we are able to finish the proof of Theorem 1.2.

6.13. Proof of Theorem 1.2. The equivalence of (a) and (b) is a special
case of a general fact (see e.g. [3, Theorem 3.10]).

The implication (a)=-(c) follows by standard algebraic geometry argu-
ments; this is done in [28, Theorem 2.14].

The equivalence of (c¢) and (d) is the content of Lemma 3.10.

(c)=(b). This implication in case A is proved in 5.3. In case B we can
assume thanks to Lemma 6.2 that the poset (I, 3) satisfies (6.3). Thus the
implication (c¢)=-(b) follows from Proposition 6.4. =

7. Applications to three-partite subamalgams of tiled D-orders.
Let A® be the three-partite subamalgam of the tiled order A as in the intro-
duction.

A reduced Tits quadratic form
(7.1) que : VAR N
is associated with A® in [26], [28]. It is defined by the formula
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qae (1'17 R xnlJrTstjnlJrlv s 7§n1+n37 L, er)
ni+ns ni+ns
_ .2 2 2 =2
=z, +z3 + g T+ g z;
j=1 j=n1+1
+ E ;T + E TsTy + E Ts—ny—nsTt
+Dj=D s<t tDs=D
1<i<j<ni+ns n1<t<ni+nz<s
ni+ns ni ni+na
—IL’+< E .%j)—l’*(g IL’]‘+ E fj).
Jj=1 Jj=1 Jj=ni+1

Following the idea of [28] we shall consider the poset with zero-relations
(I'§,3¢) associated with A® in [26], [28] (see also [22]). It is the result of a
two-step procedure: the first step is a reduction of the infinite-dimensional
problem of lattices over A°® to a finite-dimensional matrix problem (see [2],
[12], [22]) and the next one is to apply the covering technique to the latter
problem [18], [14]. The construction can be summarized as follows. Set

(7.2) I ={1,...,n1 + 2n3, x,+},

with partial order generated by all relations ¢ < j, where i, j satisfy one of
the following conditions:

e, Di=Dand1<4,57<n;+n3orn+n3<ij<n+2ns,
Oi_n3Dj+n1+n3ZDandlijTLl, ny+ng <1< ny+ 2ns,
o1 <i<n;+mn3andj=+,

el <i<niorng+n3z<i<n;+2nsandj=x.

Finally, 340 = {(2,]) 11 =g, n+ny <t < ni+2n3 n<jg<
ni+ns or j=-+}.

See [31] and [32] for other reduction techniques for orders.

The importance of the above construction is established by the following
assertion.

PROPOSITION 7.3 [28, Theorem 3.4]. (1) There exists a full additive func-
tor

H : latt A° — modsp (K (Id, 3 49))

which reflects isomorphisms, preserves indecomposability and preserves and
reflects the tame representation type. In particular the order A® is of tame
lattice type if and only if the poset (IZJI,BA-) with zero-relations is of tame
prinjective type.

(2) The Tits quadratic forms qae and q ) defined in (7.1) and

148,300
(3.6) respectively, coincide. m
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LEMMA 7.4. Let A® be a three-partite subamalgam of a tiled order. The

poset (IS, 34¢) defined in (7.2) is subamalgam-like.

Proof. Tt is enough to put In = {1,...,n1}, C" = {n1 +n3 +1,...,

ny+2ns,x}and O ={ny +1,...,n1 +n3, +}. =

7.5. Proof of Theorem 1.6. In view of the results of [28] it is enough

to prove the implication (b)=-(a). Thanks to Lemma 7.4 one can apply
Theorem 1.2 to the poset ( f.r, 34¢) to prove it is of tame prinjective type
provided its prinjective Tits quadratic form is weakly non-negative. Then
the order A*® is of tame lattice type by Proposition 7.3. =
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