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LIFTINGS OF 1-FORMS TO (JrT ∗)∗

BY

WŁODZIMIERZ M. MIKULSKI (Kraków)

Abstract. Let JrT ∗M be the r-jet prolongation of the cotangent bundle of an n-
dimensional manifold M and let (JrT ∗M)∗ be the dual vector bundle. For natural num-
bers r and n, a complete classification of all linear natural operators lifting 1-forms from
M to 1-forms on (JrT ∗M)∗ is given.

0. Let JrT ∗M be the r-jet prolongation of the cotangent bundle of an
n-manifoldM and let (JrT ∗M)∗ be the dual vector bundle. In this note we
prove that for natural numbers r and n, the vector space over R of all natural
operators lifting 1-forms on M into 1-forms on (JrT ∗M)∗ is 2-dimensional
if r ≥ 2 or n = 1 and 3-dimensional if r = 1 and n ≥ 2. We construct
explicitly a basis of this vector space.

Various linear natural operators lifting 1-forms are used practically in
all papers in which problems of prolongation of geometric structures are
studied. That is why classifications of natural operators lifting forms to
some natural bundles have been studied (see [1]–[3], [5]–[9], etc.).

Throughout, the usual coordinates on R
n are denoted by x1, . . . , xn, and

∂i = ∂/∂x
i, i = 1, . . . , n.

All manifolds and maps are assumed to be of class C∞.

1. The r-jet prolongation JrT ∗M of the cotangent bundle T ∗M of an
n-manifoldM is the vector bundle of all r-jets of 1-forms onM , i.e. JrT ∗M
= {jrx(ω) | ω is a 1-form on M , x ∈ M}. It is a vector bundle over M with
respect to the source projection jrx(ω) 7→ x.

Let T [r]M = (JrT ∗M)∗ be the dual vector bundle and π : T [r]M → M
be its projection. Every embedding ϕ : M → N of n-manifolds induces a
vector bundle mapping T [r]ϕ : T [r]M → T [r]N covering ϕ given by

〈T [r]ϕ(Θ), jrϕ(x)(ω)〉 = 〈Θ, j
r
x(ϕ
∗ω)〉, ω ∈ Ω1(N), Θ ∈ T [r]x M, x ∈M.

Then T [r] is a vector natural bundle over n-manifolds.
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Let F be a natural bundle over n-manifolds. A linear natural operator
A : T ∗  T ∗F is a system of R-linear maps A : Ω1(M) → Ω1(FM) for
every n-manifold M such that A(ϕ∗ω) = (Fϕ)∗(A(ω)) for every embedding
ϕ :M → N of n-manifolds (cf. [4]).

Example 1. Let F be a natural bundle over n-manifolds. The vertical
lift of a 1-form ω : TM → R to FM is the 1-form ωV = ω ◦Tπ : TFM → R,
where π : FM → M is the bundle projection. The family AV : T ∗  T ∗F
given by AV(ω) = ωV is a linear natural operator.

Example 2. For every ω ∈ Ω1(M) we define ω[r] : T [r]M → R by

ω[r](Θ) = 〈Θ, jrx(ω)〉, Θ ∈ T
[r]
x M , x ∈ M . The family A[r] : T ∗  T ∗T [r]

given by A[r](ω) = d(ω[r]) is a linear natural operator.

Example 3. By an easy computation in coordinates one can show that
there exists a unique linear first order natural operator B(1) : T ∗  J1T ∗

such that B(1)(fdg)(x0) = j
1
x0
((f −f(x0))dg− (g−g(x0))df), f, g :M → R,

x0 ∈ M . For every ω ∈ Ω
1(M) we define ω(1) : T [1]M → R by ω(1)(Θ) =

〈Θ,B(1)(ω)(x)〉, Θ ∈ T
[1]
x M , x ∈ M . The family A(1) : T ∗  T ∗T [1] given

by A(1)(ω) = d(ω(1)) is a linear natural operator. (If n = 1, A(1) = 0.)

The set of all linear natural operators T ∗  T ∗F is a vector space over
R with respect to the obvious operations.

The main result in this note is the following classification theorem.

Theorem 1. Let r and n be natural numbers.

(i) If r ≥ 2 and n ≥ 2, then every linear natural operator A : T ∗  
T ∗T [r] is a linear combination with real coefficients of A[r] and AV.

(ii) If r = 1 and n ≥ 2, then every linear natural operator A : T ∗  
T ∗T [1] is a linear combination with real coefficients of A[1], A(1) and AV.

(iii) If n = 1 then every linear natural operator A : T ∗  T ∗T [r] is a
linear combination with real coefficients of A[r] and AV.

The proof of the theorem will occupy Sections 2–3.

2. First we assume that n ≥ 2.

In [7], we proved the following reducibility lemma.

Lemma 1. Let F be a natural bundle over n-manifolds. If A : T ∗  T ∗F
is a linear natural operator such that A(x2dx1) = 0, then A = 0.

By Lemma 1, every linear natural operator A : T ∗  T ∗T [r] is uniquely
determined by A(x2dx1). So, we shall study A(x2dx1).

Set S = {(α, j) = (α1, . . . , αn, j) ∈ (N ∪ {0})
n × N | 0 ≤ |α| ≤ r,

j = 1, . . . , n}. On T [r]Rn we have coordinates (xi, X(α,j)), i = 1, . . . , n,
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(α, j) ∈ S, given by

(1) xi(Θ) = xi0, X(α,j)(Θ) = 〈Θ, jrx0((x− x0)
αdxj)〉,

where Θ ∈ T
[r]
x0 R

n and x0 = (x
1
0, . . . , x

n
0 ) ∈ R

n.

Lemma 2. Let A : T ∗  T ∗T [r] be a linear natural operator. Then

A(x2dx1) = µ1x
2dx1 + µ2X

((0),2)dx1 + µ3x
1dx2 + µ4X

((0),1)dx2(2)

+ µ5x
2dX((0),1) + µ6X

((0),2)dX((0),1) + µ7x
1dX((0),2)

+ µ8X
((0),1)dX((0),2) + µ9dX

(e2,1) + µ10dX
(e1,2)

for some µ1, . . . , µ10 ∈ R, where ei = (0, . . . , 1, . . . , 0) ∈ (N∪ {0})
n, 1 in the

ith position.

Proof. We can write

(3) A(x2dx1) =
n
∑

i=1

fi(x
k, X(β,l))dxi +

∑

(α,j)∈S

f(α,j)(x
k, X(β,l))dX(α,j)

for some smooth maps fi, f(α,j). Using the invariance of A with respect to
the homotheties t idRn and the linearity of A we obtain

t2f(α,j)(x
k, X(β,l)) = t|α|+1f(α,j)(tx

k, t|β|+1X(β,l)),(4)

t2fi(x
k, X(β,l)) = tfi(tx

k, t|β|+1X(β,l)).(5)

From (4) it follows that f(α,j) = 0 for (α, j) ∈ S with |α| ≥ 2, and f(α,j) =
const for (α, j) ∈ S with |α| = 1. Moreover, by the homogeneous function
theorem (see [4]), f((0),j) is a linear combination with real coefficients of

xk and X((0),l) for k, l = 1, . . . , n and it is independent of the X(β,l) with
|β| ≥ 1.

From (5) and the homogeneous function theorem it follows that fi is a
linear combination with real coefficients of xk and X((0),l) for k, l = 1, . . . , n
and it is independent of the X(β,l) for |β| ≥ 1. Then, by the invariance of A
with respect to (t1x

1, . . . , tnx
n), t = (t1, . . . , tn) ∈ R

n
+, we get (2).

We now study µ1, . . . , µ10. We start with the case r = 1.

Lemma 3. If r = 1, we have

(6) X(e1,2) ◦ T [1]G = X(e1,2) +
x2

1− x1
X(e1,1),

(7) X(e2,1) ◦ T [1]G = X(e2,1) +
x2

1− x1
X(e1,1),

(8) X((0),1) ◦ T [1]G = (1− x1)X((0),1) −X(e1,1),
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(9) X((0),2) ◦ T [1]G =
1

(1− x1)
X((0),2)

+
x2

(1− x1)2
X((0),1) +

1

(1− x1)2
X(e1,2)

+
2x2

(1− x1)3
X(e1,1) +

1

(1− x1)2
X(e2,1)

over U , where

G =

(

x1 −
1

2
(x1)2,

x2

1− x1
, x3, . . . , xn

)

is a local diffeomorphism defined on some open neighbourhood U of 0 ∈ R
n.

Proof. We only prove formula (6). The proofs of (7)–(9) are similar.

Consider x0 = (x
1
0, . . . , x

n
0 ) ∈ U and Θ ∈ T

[1]
x0 R

n. We see that

(10) j1x0((G
1−G1(x0))dG

2) = j1x0

(

(x1−x10)dx
2+

x20
1− x10

(x1−x10)dx
1

)

,

where G = (G1, . . . , Gn). (We analyse the suitable partial derivatives at
x = x0.)

Using (10) we get

X(e1,2) ◦ T [1]G(Θ) = 〈T [1]G(Θ), j1G(x0)((x
1 −G1(x0))dx

2)〉

= 〈Θ, j1x0((G
1 −G1(x0))dG

2)〉

=

(

X(e1,2) +
x2

1− x1
X(e1,1)

)

(Θ).

Lemma 4. Let A be as in Lemma 2. If r = 1, then µ3 = µ2 = µ6 =
µ8 = µ7 = 0, −µ4 + µ9 + µ10 = 0 and µ4 − µ5 = 0.

Proof. Since

G−1 =

(

x1 −
1

2
(x1)2,

x2

1− x1
, x3, . . . , xn

)−1

preserves the germ at 0 of x2dx1, it also preserves the germ at 0 of
O∗(A(x2dx1)), where O : R

n → T [1]Rn is the zero section. Hence G−1

preserves the germ at 0 of µ1x
2dx1 + µ3x

1dx2, i.e. for the germs we have
the equality

µ1x
2dx1 + µ3x

1dx2

= µ1x
2dx1 + µ3

(

x1 −
1

2
(x1)2
)(

1

1− x1
dx2 +

x2

(1− x1)2
dx1
)

.

So µ3 = 0.
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Then using (2) and (6)–(9), we see that the equivariance of A(x2dx1) at
x = 0 with respect to G−1 is equivalent to the following equality at x = 0:

µ2X
((0),2)dx1 + µ4X

((0),1)dx2 + µ6X
((0),2)dX((0),1)

+ µ8X
((0),1)dX((0),2) + µ9dX

(e2,1) + µ10dX
(e1,2)

= µ2(X
((0),2) +X(e1,2) +X(e2,1))dx1 + µ4(X

((0),1) −X(e1,1))dx2

+ µ6(X
((0),2) +X(e1,2) +X(e2,1))(−X((0),1)dx1 + dX((0),1) − dX(e1,1))

+ µ8(X
((0),1) −X(e1,1))(X((0),2)dx1 + dX((0),2) +X((0),1)dx2

+ dX(e1,2) + 2X(e1,2)dx1 + 2X(e1,1)dx2 + dX(e2,1) + 2X(e2,1)dx1)

+ µ9(dX
(e2,1) +X(e1,1)dx2) + µ10(dX

(e1,2) +X(e1,1)dx2).

Analysing the coefficients of X(e1,2)dx1 we get µ2 = 0. Then analysing
the coefficients of X(e1,1)dx2 we obtain −µ4+µ9+µ10 = 0. Next, analysing
the coefficients of X(e1,2)dX((0),1) we have µ6 = 0. Finally, considering the
coefficients of X(e1,1)dX((0),2) we derive µ8 = 0.

Hence, using (2) and (6)–(9) again, we see that the equivariance of
d(A(x2dx1)) at x = 0 with respect to G−1 is equivalent to the following
equality at x = 0:

µ1dx
2 ∧ dx1 + µ4dX

((0),1) ∧ dx2 + µ5dx
2 ∧ dX((0),1) + µ7dx

1 ∧ dX((0),2)

= µ1dx
2 ∧ dx1 + µ4(−X

((0),1)dx1 + dX((0),1) − dX(e1,1)) ∧ dx2

+ µ5dx
2 ∧ (−X((0),1)dx1 + dX((0),1) − dX(e1,1))

+ µ7dx
1 ∧ (X((0),2)dx1 + dX((0),2) +X((0),1)dx2 + dX(e1,2)

+ 2X(e1,2)dx1 + 2X(e1,1)dx2 + dX(e2,1) + 2X(e2,1)dx1).

Analysing the coefficients of dx1 ∧ dX(e1,2) we get µ7 = 0. Finally,
analysing the coefficients of X((0),1)dx1 ∧ dx2 we obtain µ4 − µ5 = 0.

Now, let r = 2.

Lemma 5. If r = 2, we have

X(e2,1) ◦ T [2]G = X(e2,1) +
x2

1− x1
X(e1,1),(11)

X(e1,2) ◦ T [2]G = X(e1,2) +
1

2

1

1− x1
X((2,0,...,0),2) +

x2

1− x1
X(e1,1)(12)

+
3

2

x2

(1− x1)2
X((2,0,...,0),1) +

1

1− x1
X((1,1,0,...,0),1),

X((0),1) ◦ T [2]G = (1− x1)X((0),1) −X(e1,1),(13)
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over U , where

G =

(

x1 −
1

2
(x1)2,

x2

1− x1
, x3, . . . , xn

)

is as in Lemma 3.

Proof. The proof is similar to that of Lemma 3.

Lemma 6. Let A be as in Lemma 2. If r = 2, then µ3 = µ2 = µ6 = µ8 =
µ7 = µ10 = 0, −µ4 + µ9 = 0 and µ4 − µ5 = 0.

Proof. We have the natural inclusion I [1,2] : T [1]M → T [2]M for any n-
manifoldM . This inclusion is dual to the jet projection J2T ∗M → J1T ∗M .
Using I [1,2] we pull-back A. In this way we obtain a linear natural operator
(I [1,2])∗A : T ∗  T ∗T [1]. Applying Lemma 4 to (I [1,2])∗A we obtain µ3 =
µ2 = µ6 = µ8 = µ7 = 0, −µ4 + µ9 + µ10 = 0 and µ4 − µ5 = 0.
It remains to prove that µ10 = 0. Using (2) and (11)–(13), we see that

the equivariance of A(x2dx1) at x = 0 with respect to G−1 is equivalent to
the following equality at x = 0:

µ4X
((0),1)dx2 + µ9dX

(e2,1) + µ10dX
(e1,2)

= µ4(X
((0),1) −X(e1,1))dx2 + µ9(dX

(e2,1) +X(e1,1)dx2)

+ µ10

(

dX(e1,2) +
1

2
X((2,0,...,0),2)dx1 +

1

2
dX((2,0,...,0),2) +X(e1,1)dx2

+
3

2
X((2,0,...,0),1)dx2 +X((1,1,0,...,0),1)dx1 + dX((1,1,0,...,0),1)

)

.

Analysing the coefficients of dX((1,1,0,...,0),1) we get µ10 = 0.

Now, let r ≥ 3.

Lemma 7. Let A be as in Lemma 2. If r ≥ 3, then µ3 = µ2 = µ6 =
µ8 = µ7 = µ10 = 0, −µ4 + µ9 = 0 and µ4 − µ5 = 0.

Proof. We have the natural inclusion I [2,r] : T [2]M → T [r]M for any n-
manifoldM . This inclusion is dual to the jet projection JrT ∗M → J2T ∗M .
Using I [2,r] we pull-back A. In this way we obtain a linear natural opera-
tor (I [2,r])∗A : T ∗  T ∗T [2]. Applying Lemma 6 to (I [2,r])∗A we end the
proof.

Proof of Theorem 1 for n ≥ 2. By Lemmas 1 and 4 we see that the
vector space of all natural operators T ∗  T ∗T [1] has dimension ≤ 3 if
r = 1 and n ≥ 2. On the other hand, the operators AV, A[1] and A(1) are
linearly independent. (For, d(AV(x2dx1)) = dx2∧dx1 6= 0, d(A[1](x2dx1)) =
d(A(1)(x2dx1)) = 0, A[1](dx1) = dX((0),1) 6= 0 and A(1)(dx1) = 0.) These
facts complete the proof of Theorem 1 for n ≥ 2 and r = 1.
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By Lemmas 1, 6 and 7 we see that the vector space of all natural opera-
tors T ∗  T ∗T [r] has dimension ≤ 2 if r ≥ 2 and n ≥ 2. On the other hand,
the operators AV and A[r] are linearly independent. (For, d(AV(x2dx1)) 6= 0
and d(A[r](x2dx1)) = 0.) These facts complete the proof of Theorem 1 for
n ≥ 2 and r ≥ 2.

3. Now, we prove Theorem 1 for n = 1.

In [7], we proved the following reducibility lemma.

Lemma 8. Let F be a natural bundle over 1-manifolds. If A : T ∗  T ∗F
is a linear natural operator such that A(dx1) = 0, then A = 0.

We set S = {(α, 1) | α = 0, . . . , r}. On T [r]R1 we have the coordinates
(x1, X(α,1)), (α, 1) ∈ S, given by

x1(Θ) = x10, X(α,1)(Θ) = 〈Θ, jrx0((x
1 − x10)

αdx1)〉,

where Θ ∈ T
[r]
x0 R

1 and x0 = x
1
0 ∈ R

1.

Lemma 9. Let A : T ∗  T ∗T [r] be a linear natural operator. Then

A(dx1) = µ1dx
1 + µ2dX

(0,1)

for some µ1, µ2 ∈ R.

Proof. We use similar methods to those in the proof of Lemma 2.

Proof of Theorem 1 for n = 1. By Lemmas 8 and 9 we see that the vector
space of all natural operators T ∗  T ∗T [r] has dimension ≤ 2 if n = 1. On
the other hand, the operators AV and A[r] are linearly independent. These
facts complete the proof of Theorem 1 for n = 1.

4. As an application of Theorem 1 we get a classification of all linear
natural transformations B : JrT ∗ → JrT ∗ over n-manifolds.

Example 4. For any n-manifold M we have the identity map id :
JrT ∗M → JrT ∗M . Thus we have the identity natural transformation id :
JrT ∗ → JrT ∗ over n-manifolds.

Example 5. The first order linear natural operator B(1) : T ∗  J1T ∗

from Example 3 defines the corresponding linear natural transformation
B(1) : J1T ∗ → J1T ∗ over n-manifolds such that B(1)(j1x(ω)) = B

(1)(ω)(x),
ω ∈ Ω1(M), x ∈M .

Corollary 1. Let r and n be natural numbers.

(i) If r ≥ 2 and n ≥ 2, then every linear natural transformation B :
JrT ∗ → JrT ∗ is a constant multiple of the identity natural transformation.
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(ii) If r = 1 and n ≥ 2, then every linear natural transformation B :
J1T ∗ → J1T ∗ is a linear combination with real coefficients of id and B(1).

(iii) If n = 1 then every linear natural transformation B : JrT ∗ → JrT ∗

is a constant multiple of the identity natural transformation.

Proof. We prove only (i). The proofs of (ii) and (iii) are similar.

Let B : JrT ∗ → JrT ∗ be a linear natural transformation over n-mani-
folds. Then we have a linear natural operator A[B] : T ∗  T ∗T [r] defined
as follows. Given ω ∈ Ω1(M) we define ω[B] : T [r]M → R by ω[B](Θ) =

〈Θ,B(jrx(ω))〉, Θ ∈ T
[r]
x M , x ∈M . We put A[B](ω) = d(ω[B]).

By Theorem 1(i) there are a, b ∈ R such that d(ω[B]) = aωV+bd(ω[r]) for
every ω ∈ Ω1(M). Taking the differential of both sides we get ad(ωV) = 0,
i.e. a = 0 because d((x2dx1)V) 6= 0. Hence ω[B] = bω[r] + C(ω) for some

C(ω) ∈ R. Evaluating both sides at Θ = 0 ∈ T
[r]
x M we get C(ω) = 0. Hence

B = b id.

Remark. There is a linear first order natural operator B(1) : T ∗  
J1T ∗ with B(1)(fdg)(x0) = j

1
x0
((f−f(x0))dg−(g−g(x0))df), f, g :M → R,

x0 ∈ M (see Example 3). Corollary 1 shows that this construction cannot
be generalized to higher orders. Namely, from Corollary 1 it follows that if
r ≥ 2, then there is no linear rth order natural operator B(r) : T ∗  JrT ∗

with B(r)(fdg)(x0) = j
r
x0
((f − f(x0))dg − (g − g(x0))df), f, g : M → R,

x0 ∈M .
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