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UNBOUNDED HARMONIC FUNCTIONS ON

HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE

BY

RICHARD PENNEY (West Lafayette, IN) and ROMAN URBAN (Wrocław)

Abstract. We study unbounded harmonic functions for a second order differential
operator on a homogeneous manifold of negative curvature which is a semidirect product
of a nilpotent Lie group N and A = R

+
.We prove that if F is harmonic and satisfies some

growth condition then F has an asymptotic expansion as a → 0 with coefficients from
D
′(N). Then we single out a set of at most two of these coefficients which determine F.

Then using asymptotic expansions we are able to prove some theorems answering
partially the following question. Is a given harmonic function the Poisson integral of
“something” from the boundary N?

1. Introduction. In this paper we consider unbounded harmonic func-
tions for a second order differential operator on a connected, simply con-
nected homogeneous manifold of negative curvature. Such a manifold is a
semidirect product G = N ×s A, where N is a nilpotent Lie group and
A = R

+ normalizes N (see [7]).

In general, we use upper case Roman letters to denote Lie groups and
the corresponding upper case script letter to denote the Lie algebra, which
allows us to write

G = N ×s R.

Then the negative curvature assumption also implies that H = (0, 1) ∈ G
may be chosen so that the eigenvalues dj of ad(H) on N all have positive
real parts which satisfy

Re dj ≥ 3.

Let the general element of G = N ×s R+ be denoted by (x, a). On G we
consider the second order left-invariant operator

Lγ =
∑

j

(Xaj )
2 +Xa + a2∂2a + (1− γ)a∂a,
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where X,X1, . . . , Xm are left-invariant vector fields on N , X1, . . . , Xm gen-
erate N as a Lie algebra, and for Y ∈ N ,

Y a = Ad(exp(log a)H)(Y ).

We say that a function F on N ×s A is Lγ-harmonic if LγF = 0.

There is a vast body of literature on Lγ-harmonic functions, much of it
devoted to the study of bounded harmonic functions in the γ > 0 case by
means of their boundary values on N as a → 0. For γ > 0 it certainly is
of interest to study unbounded harmonic functions as well. For γ = 0 it is
essential, as there are no non-constant bounded harmonic functions in this
case. This work is devoted to the unbounded case.

It turns out that in the unbounded case, to uniquely determine an
Lγ-harmonic function F , we need to know not only its boundary values,
but those of a function that is analogous to a normal derivative of F .
For example, consider the Laplace operator ∆ on the upper half plane
H+ = {x+ ia | a > 0}. The typical harmonic function is F (z) = Re(f(z)),
where f is holomorphic on H+. Assume that f is entire and

f(z) =

∞∑

n=0

anz
n.

We assume (without loss of generality) that a0 is real. Then, for x ∈ R,

F (x) =

∞∑

n=0

Re(an)x
n,

which determines only the real parts of the an. However, from the Cauchy–
Riemann equations, the normal derivative of F is

dF

da
(x) = Re(if ′(x)) = −

∞∑

n=0

n Im(an)x
n−1,

which determines the imaginary parts of the an.

The general theory is similar. Let F be Lγ-harmonic. We identify locally
integrable functions on N with elements of D′(N) (the space of distributions
on N) via integration against them with respect to the Haar measure dx
on N . We say that F has moderate growth as a → 0 if there is an r ∈ R

such that for all compact K ⊂ N and a ∈ (0, 1],\
K

|F (x, a)| dx ≤ CKa
−r(1.1)

for some constant CK . It is clear that (1.1) holds for uniformly bounded
solutions (with r = 0), although it is, in general, considerably weaker. The
following is our first main result.
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Theorem 1.1. Suppose that F is Lγ-harmonic and satisfies (1.1). Then
the following limits exist in D′(N):

lim
a→0+

F (·, a) =: F0(·), 1 ≥ γ > 0,

lim
a→0+

a−γ(F (·, a)− F0(·)) =: G0(·), 1 ≥ γ > 0,

and
lim
a→0+
(lna)−1F (·, a) =: F 10 (·), γ = 0,

lim
a→0+
(F (·, a)− (lna)F 10 (·)) =: F

0
0 (·), γ = 0.

Furthermore, if F0 = G0 = 0 (1 ≥ γ > 0) or F 00 = F
1
0 = 0 (γ = 0), then F

vanishes identically.

One remarkable consequence of this result is that if the growth of F̃ (a) =
F (·, a) as a → 0+ is known to be of order at most a−r, then the growth is
in fact at most of order a0 for γ > 0, and at most logarithmic for γ = 0.

The proof of Theorem 1.1 is based on an asymptotic expansion for F .
Specifically, we show that if F is Lγ-harmonic and satisfies (1.1) then F has
an asymptotic expansion as t→ −∞,

F (·, et) ∼





∑

α∈I

eαtFα(t) + e
γt
∑

α∈I

eαtGα(t), 1 ≥ γ > 0,

∑

α∈I

eαtFα(t), γ = 0,

where Fα(t) and Gα(t) are polynomials on R with coefficients in D′(N) and

I =
{∑

j

djkj

∣∣∣ kj ∈ Z, kj ≥ 0
}
.

We refer the reader to Section 2 for the sense in which these expansions
converge. For γ > 0, F0(t) and G0(t) are independent of t while for γ = 0,
F0(t) = F

0
0 + tF

1
0 where F

i
0 ∈ D

′(N). Both this result and its proof were
motivated by results of van den Ban and Schlichtkrull [1], although our proof
is actually considerably different from theirs.

The operator Lγ has a Poisson kernel, i.e. there is a positive function P γ

on N such that for all “nice” functions f ,

F (x, a) =
\
N

f(xya)P γ(y) dy(1.2)

=
\
N

f(y)P γ((x−1y)a
−1

)a−Q dy =: P γ(f)

satisfies LγF = 0, where dy is the Haar measure on N ,

Q = Tr ad(H)



102 R. PENNEY AND R. URBAN

and ya is the element of N defined by

ya = exp((log a)H)y exp((−log a)H).

For γ > 0, P γ is integrable, but for γ = 0 it is not. In fact, from [4] for
every γ ≥ 0 there is a positive constant Cγ such that

C−1γ (1 + |x|)
−Q−γ ≤ P γ(x) ≤ Cγ(1 + |x|)

−Q−γ,(1.3)

where |x| is a certain homogeneous norm defined from the action of A on N
(cf. [5, 4]). Specifically, for x, y ∈ N and a ∈ R

+,

(H1) |xy| ≤ C(|x|+ |y|) for some fixed constant C.

(H2) |x| = 0 if and only if x = e.

(H3) |xa| = a|x|.

(H4) |x−1| = |x|.

It turns out (see [10]) that we can control constants which appear in the
proof of (1.3) in [4] and show that we may in fact choose Cγ independent of
γ for 0 ≤ γ ≤ 1, i.e.

C−1(1 + |x|)−Q−γ ≤ P γ(x) ≤ C(1 + |x|)−Q−γ, 0 ≤ γ ≤ 1.(1.4)

The statements about the integrability of the Poisson kernel follow from
(1.3) and the following well known (and easily proved) lemma.

Lemma 1.2 ([6], Proposition 1.15). Let S = {x ∈ N | |x| = 1}. Then
there is a unique probability measure dS on S such that for all f ∈ L1(N),\

N

f(x) dx =

∞\
0

\
S

f(sa)aQ−1 dS da.

Since P 0 is not integrable, we normalize our Poisson kernel functions so
that P γ(e) = 1 instead of assuming that their integral is 1. It follows from
results of [3] that for γ > 0, if f ∈ L∞(N), then F = P γ(f) is a uniformly
bounded, Lγ-harmonic function and

‖P γ‖−11 lima→0
F (x, a) = f(x).(1.5)

Hence the inverse of the Poisson transformation on L∞(G) is given by F 7→
‖P γ‖−11 F0.

Our second main result is a description of the inverse of the Poisson
transform for not necessarily bounded f and all 1 ≥ γ ≥ 0. We prove the
following result. The existence and positivity of the limit defining C0 is a
remarkable consequence of our theory.

Theorem 1.3. Assume 0 ≤ γ ≤ 1. Then for f ∈ L1((1 + |x|)−Q−γdx),
F = P γ(f) is Lγ-harmonic and satisfies (1.1). Furthermore, as distributions



UNBOUNDED HARMONIC FUNCTIONS 103

on N,

f(x) =





‖P γ‖−11 lim
a→0+

P γ(f)(x, a), 1 ≥ γ > 0,

−C−10 lim
a→0+
(lna)−1P 0(f)(x, a), γ = 0,

where

C0 = lim
γ→0+

γ‖P γ‖1.

In the γ > 0 case, all uniformly bounded Lγ-harmonic functions F are
Poisson integrals. One might hope that if F0 ∈ L1((1 + |x|)−Q−γdx), then
F = ‖P γ‖−11 P

γ(F0). This, we suspect, is false. The general theory says
that we need both F0 and G0 to uniquely determine F . Conditions such
as uniform boundedness are essentially boundary conditions that force a
portion of the asymptotic expansion to vanish. We can prove the following
result.

Theorem 1.4. An L0-harmonic function F is the Poisson integral of a
compactly supported element of L1(N) if and only if

(a) F satisfies (1.1),
(b) there is a compact set K ⊂ N such that F is uniformly bounded on

G \ (K × (0, 1]),
(c) the boundary distribution F 10 is a locally integrable function.

Our results also yield new information concerning the Poisson kernel:

Theorem 1.5. In the topology of C∞(N),

lim
γ→0+

P γ(x) = P 0(x).

The existence of the following limit yields interesting information on the
rate of growth of the Poisson kernel as we approach the boundary.

Theorem 1.6. Let 1 ≥ γ > 0. There is a function Qγ which is locally
integrable on N \{e} such that in the weak topology on measures on N \{e},

lim
a→0
a−Q−γP γ(xa

−1

)dx = Qγ(x)dx, γ > 0,

where dx denotes the Haar measure on N .

Let

̺γ(x) = (Q
γ(x))−1/(Q+γ).(1.6)

It is easily seen from (1.4) that there is a constant C ≥ 1 such that

C−1|x| ≤ ̺γ(x) ≤ C|x|,

so that ̺γ has properties (H1) and (H2). From the definition, it is obvious
that it also satisfies property (H3), so that only (H4) may not be satisfied.
Therefore, we call ̺γ an almost homogeneous norm.
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The following says that for γ > 0, the G0 term in F ’s asymptotic expan-
sion is essentially the “fractional Laplacian” of f with respect to ̺γ .

Theorem 1.7. Let f ∈C∞c (N) and set F = P
γ(f). Then for 1 ≥ γ > 0,

the G0 term in the asymptotic expansion of F is

G0(x) =
\
N

(f(xy)− f(x))̺γ(y)
−Q−γ dy =: ∆γ(f)(x).

The mapping of L1((1+|x|)−Q−γdx) into D′(N) defined by f 7→ G0-term
of the asymptotic expansion of P γ(f) is a continuous extension of ∆γ and
is still denoted by ∆γ . The following corollary is an immediate consequence
of the uniqueness in Theorem 1.1.

Corollary 1.8. Let F be Lγ-harmonic where 1 ≥ γ > 0 and have mod-
erate growth. Suppose that f = ‖P γ‖−11 F0 belongs to L

1((1 + |x|)−Q−γdx).
Then F = P γ(f) if and only if G0 = ∆

γ(f).

The structure of the paper is as follows. In Section 2 we study asymptotic
expansions mentioned above. The proofs and results are inspired by those
in [1], although our proofs are quite different from theirs and somewhat less
involved.
In Section 3 we make use of quite general results of Section 2 in our

setting. In particular, we prove Theorem 1.1.
Finally, in Section 4 we prove our main results announced in the Intro-

duction: Theorems 1.3–1.7.

Acknowledgements. The authors wish to thank the referee for a num-
ber of helpful suggestions.

2. Asymptotic expansions. The material here is based on, and some-
what repetitive of, Section 1 of [9]. We include it because (a) at the time of
writing, [9] was not in print, (b) our differential operator is somewhat dif-
ferent than that considered in [9], and (c) we require Proposition 2.8, which
does not appear in [9], and whose proof requires repetition of the proof of
Theorem 2.5.
Let V be a locally convex complete and reflexive topological linear space

over C and let C = C∞((−∞, 0],V), given the topology of uniform con-
vergence on compact subsets of functions and their derivatives. For r ∈ R,
let Cor be the set of F ∈ C such that {e

−rtF (t) | t ∈ (−∞, 0]} is bounded
in V. Let ‖ · ‖m, m ∈ Λ, where Λ is an index set, be a family of continuous
seminorms on V that defines its topology. We equip Cor with the topology
defined by the seminorms

‖F‖r,m = sup
t∈(−∞,0]

e−rt‖F (t)‖m, ‖F‖k,n,m = sup
−k≤t≤0

‖F (n)(t)‖m,

where k ∈ N and n ∈ N0 = N ∪ {0}.
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We let

Cr =
⋂

s<r

Cos

given the inverse limit topology. The space Cr is used since, unlike Cor , it is
closed under multiplication by polynomials.

Let F and G belong to C. We write

F ∼r G

if F − G ∈ Cr. Note that F ∼r G implies that F ∼u G for all u < r.
(Remember that the functions from C are defined on (−∞, 0].)
Let I ⊂ C be finite. An exponential polynomial with exponents from I is

a sum

F (t) =
∑

α∈I

eαtFα(t),(2.1)

where for α ∈ I we have Fα ∈ V[t], t ∈ (−∞, 0], i.e.,

Fα(t) =

nα∑

k=0

F kα t
k,

where F kα ∈ V and nα ∈ N0.

By a formal exponential series with exponents in I, where I ⊂ C, we
mean a formal sum as in (2.1) where now I might be infinite.

Let F ∈ C and let F̌ be an exponential series. We write

F ∼ F̌ =
∑

α∈I

eαtFα(t),(2.2)

if

(i) for all r ∈ R, there is a finite subset I(r) ⊂ I such that F ∼r Fr,
where

Fr(t) =
∑

α∈I(r)

eαtFα(t)(2.3)

(ii) I =
⋃
r I(r).

In this case, we say that F̌ is an asymptotic expansion for F .

Remark. In formula (2.3), any term corresponding to an index α with
Reα ≥ r belongs to Cr and may be omitted. Thus, we may, and will, take
I(r) to be contained in the set of α ∈ I where Reα < r.

We note the following lemma, which is a simple consequence of Lemma
3.3 of [1].

Lemma 2.1. If the function from (2.1) belongs to Cr, then Fα(t) = 0 for
all Reα < r and all t ∈ R.
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Lemma 2.2. Let I(r) be chosen as in the preceding remark. Suppose also
that all the Fα(t) for α ∈ I are non-zero. Then I(r) = {α ∈ I | Reα < r}.
In particular , the set of such α is finite.

Proof. Let r < s. Then F ∼r Fr and F ∼r Fs. Hence Dr = Fr−Fs ∈ Cr.
Then Dr is an exponential polynomial with index set

(I(r) ∪ I(s)) \ (I(r) ∩ I(s)).

Lemma 2.1 shows that this set is disjoint from Reα < r, implying that it
is disjoint from I(r). Hence I(r) ⊂ I(s). It also follows that I(s) \ I(r) is
disjoint from {Reα < r}. Hence {Reα < r} ∩ I ⊂ I(r), which proves our
lemma.

Corollary 2.3. Let F ∈ C. Suppose that for each r ∈ R, there is an
exponential polynomial P r such that F ∼r P r. Then there is an exponential
series F̌ such that F ∼ F̌ .

Proof. For each r ∈ R let

P r(t) =
∑

α∈S(r)

eαtP rα(t),

where S(r) is a finite subset of C. We may assume that P rα(t) 6= 0 for all
α ∈ S(r). Note that if α ∈ S(r) and Reα ≥ r, then the corresponding term
in the above sum belongs to Cr and can be dropped from the sum. Thus, we
may assume that for all α ∈ S(r), Reα < r.

We claim now that if r < s, then

P s(t) = P r(t) +
∑

S(s)\S(r)

eαtP sα(t).

In fact, F ∼r P r and F ∼r P s imply that P r ∼r P s. Our claim follows from
Lemma 2.1. Since none of the P rα is zero, we also have I(r) ⊂ I(s) for r < s.

Our corollary now follows: we let I be the union of the S(r) and let

F̌α(t) = P
r
α(t),

where α ∈ S(r). The previous remarks show that this is independent of the
choice of r.

The following is left to the reader. The minimum exists due to Lem-
ma 2.2.

Proposition 2.4. Suppose that F ∈ C has an asymptotic expansion
with exponents from I. Then F ∈ Cr, where r = min{Reα | α ∈ I, Fα 6= 0}.

We consider a differential equation on C of the form

F ′(t) = (Q0 +Q(t))F (t),(2.4)
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where F ′ is the derivative of F as a V-valued function and

Q(t) =

d∑

i=1

pi(t)e
βitQi,

where the pi are C-valued polynomials,

1 ≤ Reβ1 ≤ . . . ≤ Reβd(2.5)

and the Qi are continuous linear operators on V. We also assume that Q0 is
finitely triangularizable, meaning that:

(a) There is a direct sum decomposition

V =

q∑

i=1

V i,(2.6)

where the V i are closed subspaces of V invariant under Q0.
(b) For each i there is an αi ∈ C and an integer ni such that

(Q0 − αiI)
ni |Vi = 0.

(c) αi 6= αj for i 6= j.

In this case, we may define etQ0 by

etQ0 |Vi = e
αit
ni∑

n=0

(Q0 − αiI)n

n!

∣∣∣∣
Vi
.

Let

I0 =
{∑

j

βjkj

∣∣∣ kj ∈ N0

}
.

The first main result of this section is the following:

Theorem 2.5. Let F ∈ Cr satisfy (2.4). Then F has an asymptotic
expansion with exponents from I = {αi | 1 ≤ i ≤ q}+ I0.

Proof. From Corollary 2.3 it suffices to prove that for all n ∈ N, there is
an exponential polynomial Sn(t) with exponents from I such that

F (t)− Sn(t) ∈ Cr+n.

We reason by induction on n. Let

P (t) =
∑

i

pi(t)e
(βi−1)tQi,

so that Q(t) = etP (t). Note that Reβi − 1 ≥ 0 for all i.
We apply the method of Picard iteration to (2.4). Explicitly, (2.4) implies

that

F (t) = etQ0F (0)−
0\
t

e(t−s)Q0esP (s)F (s) ds.(2.7)
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Let Bi = (Q0 − αiI)|Vi . On V
i,

etQ0 = eαitAi(t),

where

Ai(t) = e
tBi =

ni∑

j=0

Bji
tj

j!
.

The ith component in the decomposition (2.6) of the second term on the
right in (2.7) is

(2.8) −
0\
t

e(t−s)αiesAi(t− s)(P (s)F (s))
i ds

=

ni∑

k=0

ni∑

j=0

tkeαit
0\
t

sje(1−αi)sCk,j(P (s)F (s))
i ds,

where the Ck,j are continuous operators on V
i.

Since s 7→ P (s)F (s) belongs to Cr, it follows that for each v < r and
each m ∈ Λ, there is a constant Mv,m such that

‖Ck,j(P (s)F (s))
i‖m ≤Mv,me

vs(2.9)

for all s < 0. Hence, (2.8) is bounded in ‖ · ‖m by

C(|t|N + 1)(e(v+1)t + etReαi),(2.10)

where C and N are positive constants. Moreover, it is easy to see that the
‖ · ‖k,n,m norm of (2.8) is also finite. Therefore, the left side of (2.8) belongs
to Cr+1 if Reαi ≥ r + 1.

On the other hand, if Reαi < r + 1, then we may express the left side
of (2.8) as

eαitHi(t) +

t\
−∞

e(t−s)αiesAi(t− s)(P (s)F (s))
i ds,

where

Hi(t) = −
0\
−∞

es(−αi+1)Ai(t− s)(P (s)F (s))
i ds.

(Note that the integrals converge in the topology of V since we may choose
Reαi − 1 < v in (2.9).) The Hi term is an exponential polynomial which
becomes part of S1. It follows from (2.9) that the other term belongs to
Cr+1. Hence there does indeed exist an exponential polynomial S1(t) with
exponents from I such that F (t)− S1(t) ∈ Cr+1.
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Next suppose by induction that we have proved the existence of Sn(t)
for some n. We provisionally define

Sn+1(t) = e
tQ0F (0)−

0\
t

e(t−s)Q0esP (s)Sn(s) ds.(2.11)

Lemma 2.6. Each Sn is an exponential polynomial with exponents
from I.

Proof. If p is a polynomial, k, α ∈ R, then there is a polynomial q such
that

0\
t

e(t−s)αeksp(s) ds = q(0)eαt − q(t)ekt.

Hence, the answer is an exponential polynomial with exponents from {k, α}.
Our lemma follows by composing (2.9) with the projection to V i and induc-
tion.

Now we proceed with the theorem. Note that F − Sn+1 = Rn+1, where

Rn+1(t) = −
0\
t

e(t−s)Q0esP (s)Rn(s) ds.

An argument virtually identical to that done above shows that if Reαi ≥
r+n+1, then Rin+1 ∈ Cr+n+1. On the other hand, if Reαi < r+n+1, then

Rin+1(t) = e
αitHi(t) +

t\
−∞

e(t−s)αiesAi(t− s)(P (s)Rn(s))
i ds,

where

Hi(t) = −
0\
−∞

es(−αi+1)Ai(t− s)(P (s)Rn(s))
i ds.

The Hi(t) terms become part of Sn+1. It follows easily by induction that all
the terms in Sn(t) have their exponents from I. This finishes the proof of
Theorem 2.5.

The following is a consequence of Proposition 2.4 and Theorem 2.5.

Corollary 2.7. Let F ∈ Cr satisfy (2.4). Then F ∈ Cr0 where r0 is the
minimum of {Reαi}. Furthermore, for all continuous seminorms ̺0 on Cr0
there is a continuous seminorm ̺ on Cr, independent of F , such that

̺0(F ) ≤ ̺(F ).

Proof. That F ∈ Cr0 is automatic from Proposition 2.4. The statement
about seminorms follows easily from the inductive procedure used in con-
structing the asymptotic expansions in Theorem 2.5.
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The following result is immediately implied by Corollary 2.7 and the
non-inductive part of the proof of Theorem 2.5.

Proposition 2.8. Suppose that Reαi < r0 +1 where r0 is as in Corol-
lary 2.7. Then

F ∼r0+1 e
tQ0F (0)−

d∑

i=1

0\
−∞

pi(s)e
sβie(t−s)Q0QiF (s) ds.(2.12)

In particular , the lowest degree portion of F ’s asymptotic expansion is ob-
tained by expanding (2.12) in the decomposition (2.6).

The following proposition allows us to differentiate asymptotic expan-
sions term-by-term.

Proposition 2.9. Suppose that F ∈ Cr satisfies (2.4). Let the resulting
asymptotic expansion be as in (2.2). Then F (n) ∈ Cr for all n and

F (n)(t) ∼
∑

α∈I

eαtFnα (t),(2.13)

where

Fnα (t) = e
−αt d

n

dtn
(eαtFα)(t).

Proof. Let Ṽr be the space of all elements F ∈ Cr for which F (n) ∈ Cr
for all n ∈ N, topologized via the seminorms

F 7→ ‖F (n)‖s,m,

where m ∈ Λ, n ∈ N0 and s < r. It is easily seen that Ṽr is a locally convex
and complete topological linear space.
Now, let F ∈ Cr satisfy (2.4). Pointwise multiplication by the Qi and by

eβit define continuous mappings of Cr into itself. Hence, from (2.4), F ′ ∈ Cr.
It then follows by differentiation of (2.4) and induction that F (n) ∈ Cr for

all n. Hence, F ∈ Ṽr.
For F ∈ Ṽr, let M(F ) be the mapping of (−∞, 0] into Ṽr defined by

M(F )(t) : s 7→ F (t+ s)

for s ∈ (−∞, 0]. It is easily seen that in fact M(F ) ∈ Cr(Ṽr). Furthermore,
if F satisfies (2.4), then

M(F )′(t) = Q0M(F )(t) +

d∑

i=1

ni∑

j=1

eβitp̃j(t)Q̃i,jM(F )(t),

where

pi(s+ t) =

ni∑

j=1

p̃j(t)q̃j(s) and Q̃i,j = e
βisq̃j(s)Qi.
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It follows from Theorem 2.5 that M(F ) has an asymptotic expansion as

a Ṽr-valued map. It is easily seen that if F ’s asymptotic expansion is as in
(2.2), then

M(F )(t) ∼
∑

α∈I

M(eα·Fα)(t) =
∑

α∈I

eαteα·Fα(t+ ·).

Since d/ds is continuous on Ṽr, we have

dn

dsn
M(F )(t) ∼

∑

α∈I

eαt
dn

dsn
(eαsM(Fα)(t)).

Our result follows by letting t = 0 in the above formula.

It follows from Proposition 2.9 and Lemma 2.1 that we may formally
substitute F ’s asymptotic expansion (2.2) into (2.4) and equate coefficients
of eαt for α ∈ I. We find that for α ∈ I,

F ′α(t) + αFα(t) = Q0Fα(t) +

d∑

i=1

∑

β∈I
β+βi=α

pi(t)QiFβ(t).(2.14)

We put a partial ordering on I by saying that γ � α if γ − α ∈ I0.
Let F satisfy (2.4) and let its asymptotic expansion be denoted as in

(2.1). We say that Fα(t) is a leading term and α a leading exponent if α is
minimal in I with respect to the property that Fα(t) 6= 0.

Proposition 2.10. The leading exponents are all eigenvalues for Q0.
If αi is a leading exponent , then the degree of Fαi(t) is at most ni − 1,
where ni is defined in (b) after formula (2.6), and Fαi has values in V

i. In

particular , Fαi is constant if ni = 1.

Proof. Let α be a leading exponent. Then (2.14) implies that

F ′α(t) = (Q0 − αI)Fα(t).(2.15)

Thus
0 = F (n)α (t) = (Q0 − αI)

nFα(t).

Our proposition follows.

Corollary 2.11. Assume that there is an eigenvalue αi such that

Reαi < Reαj

for αj 6= αi, Fαj 6= 0. Let Fαi have degree n. Then

lim
t→−∞

e−αitt−nF (t) = Fnαi ,

where Fnαi is the coefficient of t
n in Fαi(t).

We say that an eigenvalue αi is redundant if there is an αj 6= αi such that
αi − αj ∈ I0. We say that the set of eigenvalues is non-redundant if there
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are no redundant eigenvalues. This implies that there are no non-minimal
exponents among the αi.

Proposition 2.12. Suppose that the set of eigenvalues is non-redun-
dant. Let F ∈ Cr satisfy (2.4). Then the asymptotic expansion is uniquely
determined by the elements Fαi(0).

Proof. Suppose first that α is a minimal exponent. Then, from (2.15),

Fα(t) = e
(Q0−αI)tFα(0).

It follows that Fα is determined by Fα(0).

If there is an α such that Fα(t) is not determined, then there is a minimal
such α. Formula (2.14) shows that

F ′α(t)
i + (α− αi)Fα(t)

i = H(t),

where H(t) is a known polynomial function and the superscript denotes
the ith component in the decomposition (2.6). If α = αi, then the non-
redundancy assumption implies that α is a leading exponent; hence Fα is
determined, contrary to the hypothesis. Hence α−αi 6= 0. Our result follows
from the observation that the operator d/dt − (α − αi) is injective on the
space of polynomials.

3. Explicit asymptotic expansions. We wish to apply the results
from the previous section to the differential equation LγF = 0 from the
Introduction. Let V be the space of distributions D′(N) given its usual
(strong) topology. We identify elements F ∈ C∞(G) with the C∞ mapping

F̃ : R→ V defined by

〈ϕ, F̃ (t)〉 =
\
N

ϕ(x)F (x, et) dn.

In this notation, Lγ is representable as a V-valued ordinary differential op-
erator of the form

Lγ =
d2

dt2
− γ
d

dt
+

d∑

i=1

eβitpi(t)Vi,

where the Vi are first or second order elements in the enveloping algebra
A(N ) of N , the pi are polynomials on R, and the βi are either eigenvalues
of ad(H) (if Vi is first order) or a sum of two eigenvalues (if Vi is second
order). (The Vi only differentiate the N variables.) Notice that from our
normalizations, Reβi ≥ 3. We assume that our ordering is such that (2.5)
holds.

Lemma 3.1. Suppose that F̃ satisfies LγF̃ = 0 and belongs to Cr(V) for

some r. Then F̃ ′ ∈ Cs(V) for some s.
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Proof. Let
H(t) = e−γtF̃ ′(t).

Then

H ′(t) = e−γt(F̃ ′′(t)− γF̃ ′(t)) = −e−γt
d∑

i=1

eβitpi(t)ViF̃ .

Hence,

H(t) = H(0)−
d∑

i=1

t\
0

e(βi−γ)spi(s)ViF̃ (s) ds.

If ‖ · ‖m is any continuous seminorm on V, and v < r, then

‖pi(t)F̃ (t)‖m < Cme
vt.

Our lemma follows easily from the continuity of the Vi on V.

We next transform the equation LγF̃ = 0 into the V × V-valued first
order equation

dY

dt
= Q0Y +

d∑

i=1

pi(t)e
βitQiY(3.1)

where

Y =

[
F̃
F̃ ′

]
, Q0 =

[
0 1
0 γ

]
, Qi =

[
0 0
−Vi 0

]
.

If F̃ belongs to Cr(V) for some r, then it follows from Lemma 3.1 that
Y ∈ Cs(V × V) for some s and Theorem 2.5 proves the existence of an
asymptotic expansion for Y . Projection onto the first component in V × V
shows the existence of an asymptotic expansion for F̃ .
We note that the eigenvalues of Q0 are γ and 0. For 0 < γ ≤ 1, the

eigenvalues are non-redundant since Reβi ≥ 3. Hence, Proposition 2.12
yields the following important corollary.

Corollary 3.2. Suppose that for some 1 ≥ γ ≥ 0 we have LγF̃ = 0,
where F̃ ∈ Cr(V) for some r. Let

I =
{∑

j

βjkj

∣∣∣ kj ∈ N0

}
.

Then F̃ has an asymptotic expansion

F̃ (t) ∼





∑

α∈I

eαtFα(t) + e
γt
∑

α∈I

eαtGα(t), 1 ≥ γ > 0,

∑

α∈I

eαtFα(t), γ = 0,

where Fα(t) and Gα(t) are polynomials on R with coefficients from V. For
γ > 0, F0, G0 ∈ V while for γ = 0, F0 = F 00 + tF

1
0 where F

i
0 ∈ V.
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We note the following uniqueness result:

Corollary 3.3. Suppose that F̃ 1 and F̃ 2 both satisfy the hypotheses of
Corollary 3.2. For i = 1, 2, let F iα(t) and G

i
α(t) be the corresponding terms

of the asymptotic expansions. (If γ = 0, then we set Giα(t) = 0.) Then

F̃ 1 = F̃ 2 if and only if F 10 (t) = F
2
0 (t) and G

1
0 = G

2
0.

Proof. Formula (2.13), with n = 1, shows that the leading terms of F

determine those of Y where Y is as in 3.1. Thus, from Proposition 2.12, F̃ 1

and F̃ 2 have the same asymptotic expansion. Let

F 0(x, a) = F̃ 1(lna)(x)− F̃ 2(lna)(x).

Then F 0 vanishes to infinite order at a = 0 and satisfies LγF 0 = 0. We
define F 0(a) = 0 for a < 0.

We would like to apply Theorem 2 of [2] with P = Lγ , m = k = 2, p = 0,
and t = a. Comparison with equation (1) in [2] shows that the hypotheses
of [2] are met since Reβi − 1 ≥ 2 implies that the functions ap,β from [2]
will be at least C2 in t. It follows, then, that F 0 is zero on a neighborhood
of e in N ×s A. Since Lγ is analytic-hypoelliptic, it follows that F 0 is zero,
proving our result.

Remark. Since the solution is uniquely determined by F0 and G0, there
is an inverse mapping (F0, G0) 7→ F . We can consider this transformation
as an abstract Poisson transformation.

We may use formula (2.12) from Proposition 2.8 to compute the leading

terms in the expansion of Y and therefore for F̃ .

Proposition 3.4. Let F̃ satisfy the hypotheses of Corollary 3.2. Then
for 1 ≥ γ > 0,

F0 = F̃ (0)− γ
−1F̃ ′(0)− γ−1

d∑

i=1

0\
−∞

pi(s)e
βisViF̃ (s) ds,

G0 = γ
−1F̃ ′(0) + γ−1

d∑

i=1

0\
−∞

pi(s)e
(βi−γ)sViF̃ (s) ds.

If γ = 0, we set F0(t) = F
0
0 + tF

1
0 where F

i
0 ∈ V, and we have

F 00 = F̃ (0)−
d∑

i=1

0\
−∞

spi(s)e
βisViF̃ (s) ds,

F 10 = F̃
′(0) +

d∑

i=1

0\
−∞

pi(s)e
βisViF̃ (s) ds.
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Proof. It is easily computed that for γ 6= 0,

etQ0 =

[
1 (etγ − 1)/γ
0 etγ

]

=

[
1 −1/γ
0 0

]
+ etγ

[
0 1/γ
0 1

]
.

Moreover, the first component of e(t−s)Q0QiY (s) is −γ−1(eγ(t−s)−1)ViF̃ (s).
The first pair of formulas now follows directly from Proposition 2.8. For
γ = 0,

etQ0 =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
.

Now the first component of e(t−s)Q0QiY is −(t− s)ViF̃ (s). Our second pair
of formulas then follows again from Proposition 2.8.

4. Proofs of the main results. Notice that Theorem 1.1 has actually
been proved in the previous section.

The first goal of this section is to prove Theorem 1.5. For γ ≥ 0, let
{µγt }t>0 denote the (unique) one-parameter strongly continuous semigroup
of probability measures on G generated by Lγ , i.e. for all f ∈ C∞c (G),

d

dt
(f ∗ µγt ) = L

γ(f ∗ µγt ), lim
t→0+
‖f ∗ µγt − f‖∞ = 0.

The µγt have smooth densities, which we denote by h
γ
t . The following

lemma is a simple consequence of the observation that

Lγf = aγ/2(L0 − γ2/4)(a−γ/2f).

Lemma 4.1. For γ ≥ 0, one has

hγt (x, a) = e
−tγ2/4aγ/2h0t (x, a).

We identify N with G/A. For probability measures µ and ν on G and N
respectively, we define their convolution (which is a measure on N) by

(f, µ ∗ ν) =
\
f(g · x) dµ(g) dν(x),

where “·” denotes the action of G on N given by g · x = (y, a) · x := yxa.
It is well known that if µ is a probability measure, then convolution with µ
defines a continuous operator on L2(N) with the operator norm at most 1.

It follows from (1.4) that P γ ∈ L2(N) for all γ ∈ [0, 1]. Therefore
µγt ∗ P

γ ∈ L2(N). It is known (see [3, 4]) that P γ is uniquely determined
by the stipulations that

(a) P γ(e) = 1,

(b) µ̌γt ∗ P
γ = P γ .
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Proof of Theorem 1.5. It follows from the second form of (1.2) that the
function

F γ(x, a) = a−QP γ((x−1)a
−1

)(4.1)

is Lγ-harmonic. We require an estimate on the derivatives of F γ . Let Yi,
i = 1, . . . , n, be a basis for N . For each multi-index I = (i0, . . . , in) of length
n+ 1 we define

Y I = H i0Y i11 . . . Y
in
n .

We apply the Harnack inequality to F γ concluding that for each compact
set K ⊂ G, and for each multi-index I, there is a constant CI,K such that

‖Y IF γ‖K,∞ ≤ CI,K‖F
γ‖K,∞,(4.2)

where ‖ · ‖K,∞ is the sup norm over K. As noted in Theorem III.2.4 of [11],
CI,K may be chosen to be independent of γ for 0 ≤ γ ≤ 1.

From (1.4), ‖F γ‖K,∞ is bounded independently of γ. It follows that for
every sequence γn ∈ (0, 1] where limn→∞ γn = 0, there is a subsequence δk
and an element F0 ∈ C∞(G) such that

F δk → F0

in the topology of C∞(G). Restriction to N shows that

P δk → P0,(4.3)

where P0 = F0|N .

If we can show that P0 = P
0, Theorem 1.5 will follow from the comments

immediately preceding Theorem 9 in Chapter 2 (p. 74) of [8].

Clearly, P0(e) = 1, so it suffices to show that condition (b) stated after
Lemma 4.1 holds for P0 with γ = 0. From (1.4), (4.3) holds in L

2(N). Note
that

µ̌δnt ∗ P
δn − µ̌0t ∗ P0 = (µ̌

δn
t ∗ P

δn − µ̌δnt ∗ P0) + (µ̌
δn
t ∗ P0 − µ̌

0
t ∗ P0).

As n→∞, the term in the first pair of parentheses goes to 0 in L2(N) be-
cause convolution with a probability measure defines an operator of operator
norm at most 1, while Lemma 4.1 shows that the term in the second pair of
parentheses goes to zero as well. Condition (b) follows from the observation
that µ̌γt ∗ P

γ = P γ .

Now, we would like to apply the results of the previous section to the
harmonic function (4.1). As before, we set

F̃ γ(t)(x) = F γ(x, et).

It is clear from (1.4) that there is a constant C such that in L2(N),

‖P γ‖2 ≤ C
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for 0 ≤ γ ≤ 1. Hence, from formula (4.1), for t ∈ (−∞, 0],

‖F̃ γ(t)‖2 ≤ Ce
−Qt,(4.4)

showing that the hypotheses of Corollary 3.2 are met where V = D′(N). We
denote the resulting asymptotic expansion as in Corollary 3.2, except that,
for γ 6= 0, we append γ as a superscript.

Corollary 4.2. The following limits exist as limits in V and equal the
stated quantity :

lim
γ→0+
(F γ0 +G

γ
0) = F

0
0 , lim

γ→0+
γGγ0 = F

1
0 .

Proof. Formally, our corollary is a simple consequence of Proposition 3.4
since from Theorem 1.5, F̃ γ(t)→ F̃ 0(t) as γ → 0. We need only show that
we can exchange the integrals and the limits.
Let ̺ be a continuous seminorm on V. From (4.4), F̃ γ ∈ C−Q. In fact,

it follows from (4.2) with Y I = Hn, n ∈ N0, that γ 7→ F̃ γ is uniformly
bounded as a map of [0, 1] into C−Q. Corollary 2.7 (with r0 = 0) then shows

that ̺(F̃ γ(t)) is uniformly bounded for (γ, t) ∈ [0, 1] × (−∞, 0]. Hence,

̺(ViF̃
γ(s)−ViF̃ 0(s)) is uniformly bounded. The desired convergence follows

from the dominated convergence theorem together with the observation that
Reβi > 1 ≥ γ.

Notice that it follows from Corollary 4.2 that

0 = lim
γ→0
γ(F γ0 +G

γ
0) = limγ→0

γF γ0 + limγ→0
γGγ0 = limγ→0

γF γ0 + F
1
0 .

On the other hand, for γ > 0, Proposition 2.10 shows that F γ0 is inde-
pendent of t and

F γ0 = limt→−∞
F̃ γ(t).

Then (1.5) shows that
F γ0 = ‖P

γ‖1δe.(4.5)

Corollary 4.3. F 10 = −limγ→0 γ‖P
γ‖1δe.

To prove Theorem 1.3 we will need the following simple lemma:

Lemma 4.4. For all K ⊂ N , K compact , there are positive constants
CK and C

′
K such that

C ′K(1 + |yx|) ≤ 1 + |x| ≤ CK(1 + |yx|)(4.6)

for all x ∈ N and y ∈ K.

Proof. The first inequality is a direct consequence of the triangle inequal-
ity and is left to the reader. For the second, we note that from the triangle
inequality, there is a constant C ≥ 1 such that

|x| = |y−1(yx)| ≤ C(|y|+ |yx|).
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Hence,
|yx| ≥ C−1|x| − |y|.

Let K ⊂ N be given and let m be the max of | · | on K. From compactness,
we may find CK such that (4.6) holds for |x| ≤ 2Cm. For |x| > 2Cm,

1 + |yx| ≥ 1 +
|x|

C
−m ≥ 1 +

|x|

2C
> (2C)−1(1 + |x|).

Our lemma follows.

Proof of Theorem 1.3. Let f ∈ L1((1 + |x|)−Q−γdx). It follows from
Lemma 4.4, (1.4) and formula (1.2) that P γ(f) satisfies (1.1) with r = Q.
Hence P γ(f) has an asymptotic expansion. It follows from Theorem 1.1 that
the limits in the statement of Theorem 1.3 compute the lowest order terms
in the asymptotic expansion. For γ > 0, the map f 7→ F0-term of P γ(f)
is continuous from L1((1 + |x|)−Q−γdx) into D′(N). Formula (4.5) and a
density argument show that this mapping is just ‖P γ‖1I. Similar comments
prove the γ = 0 part of Theorem 1.3.

Proof of Theorem 1.4. The next lemma proves one implication of The-
orem 1.4.

Lemma 4.5. Let f ∈ L∞(N) be compactly supported. Then there is a
compact set K ⊂ N such that P 0(f) is uniformly bounded on G\(K×(0, 1]).

Proof. Let the support of f be contained in |y| ≤M . From (1.2),

|F (xa)| ≤
\

|y|≤M

|f(y)|P 0((x−1y)a
−1

)a−Q dy

≤ C
\

|y|≤M

|f(y)|(1 + a−1|x−1y|)−Qa−Q dy

= C
\

|y|≤M

|f(y)|(a+ |x−1y|)−Q dy.

We note that
(a+ |x−1y|)−Q ≤ min{a−Q, |x−1y|−Q}.

The boundedness for large a is automatic. The boundedness for large x
follows from Lemma 4.4.

The other implication of Theorem 1.4 is proved as follows.
We see from Theorem 1.1 that F 10 is supported in K. Specifically, if

x 6∈ K, then

F 10 (x) = lim
a→0+

F (x, a)

ln a
= 0

from our boundedness assumption. Let

H = −C−10 P
0(F 10 ),
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where C0 is as in Theorem 1.3. From Lemma 4.5, there is a compact set
K ′ ⊂ N such that M = F −H is uniformly bounded on G \ (K ′ × (0, 1]).

On the other hand, it follows from Theorem 1.3 and Corollary 4.2 that
M10 = 0. Hence, from Corollary 2.11 with αi = 0 and n = 0, M̃(t) is bounded
independently of t for t ∈ (−∞, 0] in the sense of distributions. Hence, for
all ϕ ∈ C∞c (G), the function

Mϕ(g) = 〈ϕ,M(·g)〉

is a uniformly bounded L0-harmonic function on G, which, from the results
of [3], must therefore be constant. This constant is 0 since the first boundary
function of M is zero.

Proof of Theorem 1.6. Let F γ be as in (4.1). It follows from Theorem
1.1 and formula (4.5) that as a distribution

lim
a→0+

a−γ(F γ(·, a)− ‖P γ‖1δe) = G
γ
0 .

Hence the limit statement in Theorem 1.6 is valid in the sense of distributions
on N \ U(ε), where for ε > 0,

U(ε) = {x ∈ N | |x| < ε}.

It follows easily from Lemma 1.2 and (1.4) that the L2 norms of a−γF γ(·, a)
on N \ U(ε) are bounded independently of a. The convergence of our limit
in the sense of measures follows from the weak compactness of the unit ball
in L2, proving Theorem 1.6.

In order to prove Theorem 1.7, we will need the following lemma.

Lemma 4.6. Let f ∈ C∞c (N) be supported in a compact set K ⊂ N .
Then for every x ∈ N , there are constants Cx > 0 and α > 1 such that for
all y ∈ N ,

|f(xy)− f(x)| ≤ Cx|y|
α.

Proof. Since f is compactly supported, it suffices to prove the lemma for
|y| < 1. We identify N with N via the exponential mapping and let ‖ · ‖ be
a norm on N . Since f is compactly supported and differentiable, there is a
constant Cx such that

|f(xy)− f(x)| ≤ Cx‖y‖

for all |y| < 1.

For a ∈ R+, Ad(a) is linear and its matrix elements are polynomials
in ln a times aβi . Hence, for any norm, there are constants C > 0 and
1 < α < min{Reβi} such that

‖xa‖ ≤ Caα‖x‖
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for all a ∈ (0, 1]. For y ∈ N , we may write y = x
|y|
0 , where |x0| = 1. It follows

that for |y| < 1,
‖y‖ ≤ C0|y|

α,

proving the lemma.

Proof of Theorem 1.7. We note that from Lemma 4.6, Lemma 1.2, (1.4),
and the compact support of f , the following functions have L1 norm bounded
independently of a for a ∈ (0, 1]:

y 7→ (f(xy)− f(x))a−Q−γP γ(ya
−1

).

Furthermore, if f(x·) is supported in the compact set K ⊂ N , then

a−γ(P γ(f)(x, a)− ‖P γ‖1f(x)) =
\
K

(f(xy)− f(x))a−Q−γP γ(ya
−1

) dy

−
\
N\K

f(x)a−Q−γP γ(ya
−1

) dy.

Let ̺γ be the almost homogeneous norm defined in (1.6). From the domi-
nated convergence theorem and Theorem 1.6 the above expression converges
to \

K

(f(xy)− f(x))̺γ(y)
−Q−γ dy −

\
N\K

f(x)a−Q−γ̺γ(y)
−Q−γ dy

=
\
N

(f(xy)− f(x))̺γ(y)
−Q−γ dy.

proving our theorem.
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