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CONVERGENCE OF SEQUENCES OF ITERATES
OF RANDOM-VALUED VECTOR FUNCTIONS

BY

RAFAL KAPICA (Katowice)

Abstract. Given a probability space (§2,.4, P) and a closed subset X of a Banach

lattice, we consider functions f : X X 2 — X and their iterates f" : X x N o x
defined by fl(z,w) = f(z,w1), " (z,w) = f(f"(2,w),wni1), and obtain theorems on
the convergence (a.s. and in L") of the sequence (f™(z,)).

It is well known that iteration processes play an important role in math-
ematics and they are especially important in solving equations. However,
it may happen that instead of the exact value of a function at a point we
know only some parameters of this value. In [1] iterates of such functions
were defined and simple results on the behaviour of the iterates were ob-
tained for scalar-valued functions. It is the aim of the present paper to
consider such functions with values in Banach lattices. The basic theorem
on the convergence of iterates is obtained in [1] (see also [10; Chapter 12])
by using a submartingale convergence theorem. It is well known (see e.g. [5])
that for martingales with values in a Banach space the convergence theorem
holds only if the space has the Radon—Nikodym property. Hence beside a
direct use of submartingale convergence theorems we also apply some other
martingale methods to get the convergence of the sequence of iterates for
an arbitrary AL-space. Basic notions and facts connected with lattices and
used in this paper may be found in [4] and [14].

Fix a probability space (2,4, P), a separable Banach lattice E and its
closed subset X. Let B denote the og-algebra of all Borel subsets of X. We say
that f: X x 2 — X is a random-valued vector function if it is measurable
with respect to the product o-algebra B&®.A. The iterates of f are defined by

fl(mawth?‘ . ) = f((lf,u)l),
fn+1(x7wl)w2a .. ) = f(fn(fl“awlana .. ~)7wn+l)a

for z € X and (w1, ws,...) € 2% = ON. Note that f*: X x 2° — X is
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a random-valued function on the product probability space (£2°°, A%, P>°).
More exactly, the nth iterate f™ is B ® A,-measurable, where A,, denotes
the o-algebra of all sets of the form

{(wl,wg, .. ) € (wl,(,Ug, e ,wn) S A}

with A in the product o-algebra A™.
In what follows, f:Xxf2— X is a fixed random-valued function such that

(1) E||f*(x,-)]| < oo for x € X and n € N.
We also assume that the mean m : X — E defined by
m(z) = Ef(z,")

is continuous. Moreover we assume that xo € X is fixed and the sequence
(f™(xq,-)) is L'-bounded. Concerning this assumption consult the Remark,
Proposition 1, and Example below. It is easy to check that then

(2) B(f"(x,) [ An) =mo f"(z,)

forx € X and n € N.
Our first theorem shows that the limit of (f™ (o, -)) is a fixed point of m.

THEOREM 1. Assume that E does not contain isomorphic copies of cqg
and either

(3) m(z) >z forzeX
(4) m(z) <z forxze X.

If the sequence (f™(xo,-)) converges in measure to an integrable & : 2°° — E,
then mo & = €.

Proof. Applying Fatou’s lemma to a subsequence of (||m(f™(xg,w))||)
we get integrability of m o . Assume (3) and put ¢ = mo & — &, g, =
mo f(xo,-) — f"(xo,) and (pointwise) h,, = inf{g,, g} for n € N. Then the
sequence (h,,) converges to ¢g in measure, h,, < g, and h, < g for n € N.
Moreover, the sequence (Ef™(zo,-)) is bounded and (in view of (2) and (3))
increasing, whence, according to the theorem of Tzafriri ([18], see also [12;
Theorem 1.c.4]), convergent. Consequently,

0< FEg= lim Eh, < lim Eg, = lim E(f”+1(:v0,-) — f”(:vo,-)) =0. m
n—oo n—oo n—oo

In the next theorem, which is our main result, we assume additionally
that the Banach lattice considered is an AL-space, i.e. ||z +y| = ||z|| + ||y||
for all z,y > 0 in E (cf. [14], [16]).

THEOREM 2. Let E be an AL-space. Assume that either (3) or (4) holds.
If m is a contraction, then the sequence (f”(a:o, )) converges, both a.s. and
in L', to the unique fized point of m.
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Proof. Assume (3) and put X,, = f"(zo,-) for n € N. Since (X, A,,) is
an L'-bounded submartingale with values in an AL-space, we have

N N
> EIEXni1 [ An) = Xall = || 30 B(E(Xns1 | An) = X)
n=1 n=1
= |E(Xn1 — X1)|| < 2su§E|\Xn||
ne

for every N € N. Hence

() Y EIE(Xnt1]An) = Xa < 2sup B[ Xn]| < oo,
n—1 ne

which jointly with (2) shows that

(6) lim E||mo X, — X,| =0.

On the other hand, if L denotes the Lipschitz constant of m, then
1
Bl X, — Xl < 1-1L (Ellmo X, — Xpll 4+ Eljm o Xq — Xgl])

for all positive integers p, g. From this and (6) we infer that (X,,) converges
in L' to a £ : 2°° — E. According to Theorem 1 (see also [14; Example 7,
p. 92]) we have m o £ = . In particular, m has a fixed point, and being a
contraction, it has at most one fixed point. Consequently, (X,,) converges
in L! to the unique fixed point of m. Hence, applying (5) and [11; Theorem
1.3] (cf. also [2]), we obtain the a.s. convergence of (X,,) as well. m

The following shows a possible realization of the assumptions of The-
orems 1 and 2 in the simplest non-deterministic (vector) case, viz. 2 =

{wl,wg}.

ExXAMPLE. Let p1,p2 be positive reals with p; + ps = 1 and hq, ho :
[0,00) — [0,00) be continuous functions such that

prhi(t) + paha(t) <t for every ¢t > 0.

Given a finite separable measure pu put E = L!(u), consider the subset X
of E of all positive elements of E and define f: X X {w1,w2} — X by

flx,w;) = h;ox.
Then
m(z) =prhiox+phgox <z and E[f"(z, )| < |z

for x € X and n € N. Moreover, m is continuous. Hence all the assumptions
of Theorem 1 are satisfied. If additionally p1hi + p2ho is a contraction,
then so is m (with zero as its only fixed point) and all the assumptions of
Theorem 2 hold.
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Of course, the convergence in L! implies the uniform integrability of
the sequence. Concerning the uniform integrability of ( f™(xo, )) note the
following simple fact.

PROPOSITION 1. If there exists an integrable @ : {2 — [0,00) such that
|f(z,w)|| < P(w) forzeX andw € 12,

then the sequence (f” (z, )) is L' -bounded and uniformly integrable for every

rzeX.

Proof. Clearly || f™(z,w)| < ®(wy,) for x € X and w € 2°°. In particular
(f™(z,-)) is L'-bounded for z € X. Moreover, if # € X and n € N are fixed,
then for every A € A> with P>*(A4) < N™ & dP we have

' S{¢>N}
VI (@,w)| dP=(w) < | @(wn) AP (w)
A A
< | ®(w,) dP™(w) + NP®(A)
{weN>® : d(wy,)>N}
<2 | &dP =
{#>N}
In the case where the function f considered has the form
(7) f(z,w) =2P(w) forxze X and w € 12,
we have the following observation.

PROPOSITION 2. If f has the form (7) with & : 2 — R integrable,
(f™(zo,)) is uniformly integrable and xy # 0, then either E|®| < 1 or
|2 =1 a.s.

Proof. Clearly
™ (wo,w) = mo [ ] lwr)
k=1
on {2°°, whence
E|f"(zo, )|l = [lzoll (E]2))"
for every n € N. Consequently, E|®| < 1. Assume E|®| = 1 and define a
probability measure p on A by
u(A) = | |o|apP
A

and a sequence (i) of probability measures on A by

pn(4) = { | I B(wp)| P> (w).
k=1

A
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If NeN, Ae Ay and n > N, then pu,(A) = p*°(A). Hence the sequence
(pn) is pointwise convergent on |J)~ ; A, to u>°. Applying the uniform in-
tegrability of (f™(xo,-)) we get
lim  sup u,(A) =0.
PDO(A)HOnEII\)IM ( )
This allows us to check that the union of every increasing sequence of sets
of the family

(8) {Ae A% lim p,(A) = p>(A)}

belongs to this family. According to the Dynkin lemma ([8], see also [3;
Theorem 1.3.2]), the family (8) coincides with A°°. In particular, 4> is ab-
solutely continuous with respect to P°°. Hence, by the theorem of Kakutani
[13; Proposition 111.2.6], E+/|®] > 1. But E\/|®| < \/E|®| < 1, and so
E./|®| =1 = E|®|. Consequently, || =1 a.s. m

Now we proceed to the case where E has the Radon-Nikodym property.
Since such a lattice does not contain isomorphic copies of ¢q (see [6]), our
Theorem 1 and the theorem of Heinich [9] (cf. also [7] and [15]) imply what
follows.

THEOREM 3. Assume that E has the Radon—Nikodym property. If either
f is lattice bounded from below and (3) holds, or f is lattice bounded from
above and (4) holds, then the sequence (f"(xo,-)) converges a.s. to an inte-
grable £ : 2° — E and mo & = &.

Note that [16; Proposition 3 and Theorem 1] and [14; Example 7, p. 92]
imply the following.

REMARK. Assume that E is an AL-space and f satisfies (1). If either f
is lattice bounded from above and (3) holds, or f is lattice bounded from
below and (4) holds, then the sequence (f"(zo,-)) is Li-bounded for any
xo € X.

We finish with some special cases of F.

THEOREM 4. Assume that E =1y or E is finite-dimensional. If (3) or

(4) holds, then the sequence (f™(xo,-)) converges a.s. to an integrable £ :
N*° - FEand mo& =¢&.

Proof. Assume (2) and let
fn(ﬂfo,-) =M, + A,, n €N,

be the Doob decomposition [17]. Since (f™(zo,)) is Li-bounded, it is easy
to check that sup,,cy E||M,, || < co. Applying the theorem of J. Szulga and
W. A. Woyczynski [17; Theorem 4.1] we obtain the desired limit. m
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