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ON SOME CLASS OF PSEUDOSYMMETRIC WARPED PRODUCTS
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RYSZARD DESZCZ and DOROTA KOWALCZYK (Wrocław)

Dedicated to the memory of Dr. Jan Anweiler

Abstract. We present curvature properties of pseudosymmetry type of some warped
products of semi-Riemannian spaces of constant curvature.

1. Introduction. The class of warped product manifolds, for short
warped products, is an extension of the class of products of semi-Riemannian
manifolds. Warped products play an important role in Riemannian geom-
etry (see e.g. [28], [29]) as well as in general relativity (see e.g. [2], [3],
[29]). Many well-known spacetimes of general relativity, i.e. solutions of
the Einstein equations, are warped products, e.g. the Schwarzschild space-
times, the Kottler spacetime, the Reissner–Nordström spacetime as well as
Robertson–Walker spacetimes. We recall that a warped product M ×F M̃
of a 1-dimensional manifold (M,g), g11 = −1, and a 3-dimensional Rieman-
nian space (M̃, g̃) of constant curvature, with a warping function F , is said
to be a Robertson–Walker spacetime (see e.g. [2], [3], [27], [29]). More gen-
erally, one also considers warped products M ×F M̃ of (M,g), dimM = 1,
g11 = −1, with a warping function F and an (n − 1)-dimensional Rieman-
nian manifold (M̃, g̃), n ≥ 4. Such warped products are called generalized
Robertson–Walker spacetimes ([1], [21], [31]).

It is known that every Robertson–Walker spacetime is conformally flat.
These manifolds also satisfy another curvature condition: the tensors R ·R
and Q(g,R) are linearly dependent at every point (see e.g. [9, Section 12.2]).
For precise definitions of the symbols used, we refer to Sections 2 and 3 of this
paper. In general, semi-Riemannian manifolds (M,g), n ≥ 3, satisfying this
condition are called pseudosymmetric ([9, Section 3.1]) A manifold (M,g) is
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pseudosymmetric if and only if on UR =
{
x ∈ M | R − κ

n(n−1)G 6= 0 at x
}

we have

R ·R = LRQ(g,R),(1)

where LR is some function on UR. It is clear that every semisymmetric man-
ifold (R ·R = 0) is pseudosymmetric. The converse is not true (see e.g. [10],
[11]). It is well known that the class of semisymmetric manifolds includes the
set of locally symmetric manifolds (∇R = 0) as a proper subset. Recently,
results on semisymmetric semi-Riemannian manifolds were obtained in [22]
and [25], among others.

A semi-Riemannian manifold (M,g), n ≥ 3, is said to be Ricci-semi-
symmetric if R · S = 0 on M . The class of Ricci-semisymmetric manifolds
includes the set of Ricci-symmetric manifolds (∇S = 0) as a proper subset.
Every semisymmetric manifold is Ricci-semisymmetric. The converse is not
true. But under some additional assumptions the conditions R · R = 0 and
R ·S = 0 are equivalent. For a review of recent results related to this subject
see [12] and [13] and the references therein.

(1) arose from the study of totally umbilical submanifolds of semisym-
metric manifolds ([9, Section 13]) as well as from considering geodesic map-
pings of semisymmetric manifolds (see e.g. [9, Section 10]). We mention that
the Schwarzschild spacetime, the Kottler spacetime as well as the Reissner–
Nordström spacetime are pseudosymmetric ([7], [20]).

In [5, Theorem 4.1] it was shown that on every 4-dimensional generalized
Robertson–Walker spacetime M ×F Ñ , the tensors R · R − Q(S,R) and
Q(g, C) are linearly dependent. This is equivalent on UC ⊂M × Ñ to

R ·R−Q(S,R) = LQ(g, C),(2)

where L is some function on UC . The last relation is a condition of pseu-
dosymmetry type. We refer to [4] for a review of results on semi-Riemannian
manifolds satisfying such conditions. Generalized Robertson–Walker space-
times satisfying some curvature conditions of pseudosymmetry type were
considered in [6] and [17]. We also mention that the Vaidya spacetime sat-
isfies (2) ([26], see also Example 3.2(ii)).

Investigations of generalized Robertson–Walker spacetimes as well as of
other classes of spacetimes (see e.g. [23], [24], [30]) lead to the following ex-
tension of the notion of a Robertson–Walker spacetime. The warped product
M ×F Ñ of (M,g), dimM ≥ 1, and (Ñ , g̃), dim Ñ ≥ 1, n = dimM + dim Ñ
≥ 4, is said to be a spacetime of Robertson–Walker type if it has signature
(1, n−1) and at least one of the manifolds (M,g) and (Ñ , g̃) is of dimension
1 or 2 or a space of constant curvature. In Section 3 we present examples of
such spacetimes. Clearly, the metric of a Robertson–Walker spacetime has
signature (1, 3).
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In Section 4 we investigate pseudosymmetric warped products of semi-
Riemannian spaces of constant curvature. In particular, we obtain a curva-
ture characterization of some class of Robertson–Walker type spacetimes.
Finally, we present an example of a warped product of spaces of constant
curvature which can be locally realized as a hypersurface in a space of con-
stant curvature.

2. Preliminaries. Let (M,g) be an n-dimensional, n ≥ 3, semi-Rie-
mannian connected manifold of class C∞. We denote by∇, S and κ the Levi-
Civita connection, Ricci tensor and scalar curvature of (M,g), respectively.
We define on M the endomorphisms X ∧A Y , R(X,Y ) and C(X,Y ) by

(X ∧A Y )Z = A(Y,Z)X − A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

C(X,Y ) = R(X,Y )− 1
n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
,

where A is a (0, 2)-tensor on M , X,Y,Z ∈ Ξ(M), Ξ(M) being the Lie
algebra of vector fields on M , and the Ricci operator S is defined by

g(X,SY ) = S(X,Y ).

The Riemann curvature tensor R and the Weyl tensor C are defined by
R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4).

Further, let T (X,Y ) be a skew symmetric endomorphism of Ξ(M). For it
we define a (0, 4)-tensor T by T (X1,X2,X3,X4) = g(T (X1,X2)X3,X4).

A (0, 4)-tensor T is said to be a generalized curvature tensor if

T (X1,X2,X3,X4) = T (X3,X4,X1,X2),

T (X1,X2,X3,X4) + T (X2,X3,X1,X4) + T (X3,X1,X2,X4) = 0.

For a generalized curvature tensor T , a symmetric (0, 2)-tensor field A and
a (0, k)-tensor field T1, k ≥ 1, we define the (0, k + 2)-tensor fields T · T1,
Q(A, T ) and A · T1 by

(T · T1)(X1, . . . ,Xk;X,Y ) = (T (X,Y ) · T1)(X1, . . .Xk)

= −T1(T (X,Y )X1,X2, . . . ,Xk)− . . .− T1(X1, . . . ,Xk−1, T (X,Y )Xk),

Q(A, T1)(X1, . . . ,Xk;X,Y ) = ((X ∧A Y ) · T1)(X1, . . . ,Xk)

= −T1((X ∧A Y )X1,X2, . . . ,Xk)− . . .− T1(X1, . . . ,Xk−1, (X ∧A Y )Xk),

(A · T1)(X1, . . . ,Xk) = −T1(AX1,X2, . . . ,Xk)− . . .− T1(X1,X2, . . . ,AXk),

where the endomorphism A is defined by g(AX,Y ) = A(X,Y ). Setting in
the above formulas T (X,Y ) = R(X,Y ) or C(X,Y ), T1 = R,C or S, and
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A = g or S we obtain the following tensors, among others: R · R, R · S,
Q(g,R), Q(g, C), Q(g, S) and Q(S,R).

Further, for (0, 2)-tensors A and B their Kulkarni–Nomizu product A∧B
is given by

(A ∧B)(X1,X2;X,Y ) = A(X1, Y )B(X2,X) + A(X2,X)B(X1, Y )

−A(X1,X)B(X2, Y )− A(X2, Y )B(X1,X).

In particular, for a (0, 2)-tensor A we define the (0, 4)-tensor A by A =
1
2A ∧ A. The (0, 4)-tensor G is defined by G = g. Let T1 and T2 be (0, k)-
tensors on M . According to [8] the tensors T1 and T2 are pseudosymmet-
rically related to a generalized curvature tensor T and a symmetric (0, 2)-
tensor A if at every point of M the tensors T · T1 and Q(A, T2) are linearly
dependent. In particular, when T1 = T2, we say that the tensor T1 is pseu-
dosymmetric with respect to the tensors T and A.

Let Thijk, Vhijk, and Aij be the local components of generalized curva-
ture tensors T and V and a symmetric (0, 2)-tensor A on M , respectively,
where h, i, j, k, l,m ∈ {1, . . . , n}. The local components (T · V )hijklm and
Q(A, V )hijklm of the tensors T · V and Q(A, V ) are

(T · V )hijklm = gpq(TpijkVqhlm + ThpjkVqilm + ThipkVqjlm + ThijpVqklm),

Q(A, V )hijklm = AhlVmijk + AilVhmjk + AjlVhimk + AklVhijm

−AhmVlijk − AimVhljk − AjmVhilk − AkmVhijl.
Let T be a generalized curvature tensor on a semi-Riemannian manifold

(M,g), n ≥ 4. We denote by Ric(T ), Weyl(T ) and κ(T ) the Ricci tensor,
Weyl tensor and scalar curvature of T , respectively. The subsets UT , URic(T )
and UWeyl(T ) of M are defined in the same manner as the subsets UR, US
and UC of M , respectively. Let us consider generalized curvature tensors T
having on U = URic(T ) ∩ UWeyl(T ) ⊂M a decomposition

T =
L1

2
A ∧ A+ L2g ∧A+ L3G,(3)

where L1, L2 and L3 are some functions on U and A is a (0, 2)-symmetric
tensor on U ; such tensors were investigated in [26].

Proposition 2.1 ([22, Lemma 3.1]). Let B be a symmetric (0, 2)-tensor
on a semi-Riemannian manifold (M,g), n ≥ 3, and let UB be the set of
all points of M at which B is not proportional to g. If on UB we have
1
2B ∧B = L2g ∧B + L3G then L3 = −L2

2 and rank(B − L2g) = 1 on UB.

Proposition 2.2 ([26, Proposition 3.3]). Let (M,g), n ≥ 4, be a semi-
Riemannian manifold admitting a generalized curvature tensor T having
on U = URic(T ) ∩ UWeyl(T ) ⊂ M a decomposition of the form (3). Then
T ·T −Q(Ric(T ), T ) = LQ(g,Weyl(T )) and L = (n−2)(L−1

1 L2
2−L3) on U .
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We also have

Theorem 2.1 ([15, Theorem 4.2]). If the curvature tensor R of a semi-
Riemannian manifold (M,g), n ≥ 4, has on U = US ∩UC ⊂M a decompo-
sition of the form (3) with A = S then on U we have

R ·R = LRQ(g,R), LR = (n− 2)(L−1
1 L2

2 − L3)− L−1
1 L2,(4)

R ·R−Q(S,R) = (LR + L−1
1 L2)Q(g, C).(5)

In the same manner we can prove

Proposition 2.3. Let (M,g), n ≥ 4, be a semi-Riemannian mani-
fold admitting a generalized curvature tensor T having on U = URic(T ) ∩
UWeyl(T ) ⊂ M a decomposition of the form (3) with A = Ric(T ). Then
T · T = LTQ(g, T ) and LT = (n− 2)(L−1

1 L2
2 − L3)− L−1

1 L2 on U .

We also have the following converse statement.

Corollary 2.1 ([14, Corollary 6.1]). Let (M,g), n ≥ 4, be a semi-Rie-
mannian manifold admitting a generalized curvature tensor T and suppose

T · T = Q(Ric(T ), T ) + LQ(g,Weyl(T )) and T · T = LTQ(g, T )

on U = URic(T ) ∩ UWeyl(T ) ⊂ M . If at x ∈ U the tensor Ric(T ) has no
decomposition into a metrical part and a part of rank at most one then at x
we have

T =
L1

2
Ric(T ) ∧Ric(T ) + L2g ∧Ric(T ) + L3G(6)

for some L1, L2, L3 ∈ R.

3. Warped products. Let now (M,g) and (Ñ , g̃), dimM = p, dim Ñ =
n−p, 1 ≤ p < n, be semi-Riemannian manifolds covered by systems of charts
{U ;xa} and {Ṽ ; yα}, respectively. Let F : M → R+ be a positive smooth
function on M . The warped product M ×F Ñ of (M,g) and (Ñ , g̃) is the
product manifold M × Ñ with the metric g = g ×F g̃ defined by

g ×F g̃ = π∗1g + (F ◦ π1)π∗2 g̃,

where π1 : M × Ñ →M and π2 : M × Ñ → Ñ are the natural projections.
Let {U × Ṽ ;x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p} be a product chart for
M × Ñ . The local components of the metric g in this chart are: ghk = gab
if h = a and k = b, ghk = F g̃αβ if h = α and k = β, and ghk = 0
otherwise, where a, b, c, . . . ∈ {1, . . . , p}, α, β, γ, . . . ∈ {p + 1, . . . , n} and
h, i, j, k . . . ∈ {1, . . . , n}. We will denote by bars (resp., by tildes) tensors
formed from g (resp., g̃). It is known that the local components Γ hij of the

Levi-Civita connection ∇ of M ×F Ñ are:
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Γ abc = Γ abc, Γαβγ = Γ̃αβγ , Γ aαβ = −1
2
gabFbg̃αβ,

Γαaβ =
1

2F
Faδ

α
β , Γ aαb = Γαab = 0,(7)

Fa = ∂aF, ∂a = ∂/∂xa.

The local components Rhijk of the curvature tensor R and the local compo-
nents Shk of the Ricci tensor S of M ×F Ñ which may not vanish identically
are the following (see e.g. [11], [17]):

Rabcd = Rabcd, Rαbcβ = −1
2
Tbcg̃αβ,

(8)

Rαβγδ = F

(
R̃αβγδ −

∆1F

4F
G̃αβγδ

)
,

Sab = Sab −
n− p
2F

Tab,

(9)

Sαβ = S̃αβ −
(

trT
2

+ (n− p− 1)
∆1F

4F

)
g̃αβ,

Tab = ∇bFa −
1

2F
FaFb, ∆1F = ∆1gF = gabFaFb,(10)

where T denotes the (0, 2)-tensor with local components Tab and trT =
trg T = gabTab. The scalar curvature κ of M ×F Ñ satisfies

κ = κ+
κ̃

F
− n− p

F

(
trT + (n− p− 1)

∆1F

4F

)
.(11)

Let M ×F Ñ be the warped product of semi-Riemannian spaces of con-
stant curvature (M,g), p ≥ 2, and (Ñ , g̃), n − p ≥ 2, with T = 1

p trTg on

U = US ∩UC ⊂M × Ñ . Examples of such warped products are given in [11]
and [20]. Under the above assumptions, (8), (9) and (11) turn into

Rabcd = %1Gabcd, %1 =
κ

(p− 1)p
,(12)

Rαbcβ = %2Gαbcβ, %2 = − trT
2pF

,(13)

Rαβγδ = %3Gαβγδ, %3 =
1
F

(
κ̃

(n− p)(n− p− 1)
− ∆1F

4F

)
,(14)

Sab = µ1gab, µ1 =
1

2pF
(2Fκ− (n− p) trT ),(15)

Sαβ = µ2gαβ, µ2 =
1
F

(
κ̃

n− p −
trT

2
− (n− p− 1)

∆1F

4F

)
,(16)

κ = pµ1 + (n− p)µ2.(17)
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Evidently, if (15) and (16) hold at every point of US⊂M×Ñ then µ1−µ2 6=0
on US. Next, using (12)–(16), we get

Cabcd =
(
%1 −

2µ1

n− 2
+

κ

(n− 2)(n− 1)

)
Gabcd,

Cαbcβ =
(
%2 −

µ1 + µ2

n− 2
+

κ

(n− 2)(n− 1)

)
Gαbcβ,(18)

Cαβγδ =
(
%3 −

2µ2

n− 2
+

κ

(n− 2)(n− 1)

)
Gαβγδ.

As a conclusion, the Weyl tensor C of M ×F Ñ vanishes at a point if and
only if

%1 =
1

n− 2

(
2µ1 −

κ

n− 1

)
,

%2 =
1

n− 2

(
µ1 + µ2 −

κ

n− 1

)
,(19)

%3 =
1

n− 2

(
2µ2 −

κ

n− 1

)
.

It follows that %1 − 2%2 + %3 = 0 at every point at which the tensor C
vanishes. Thus if %1 − 2%2 + %3 6= 0 at x ∈M × Ñ then x ∈ UC ⊂M × Ñ .

Example 3.1. (i) (see [23, (3.2)]) Let M ⊂ {(y, t) ∈ R2 : y > 0} be an
open connected nonempty subset of R2 with the metric tensor g = dy2 −
sinh2ydt2. Define F (y, t) = sinh2 y cosh2 t. Further, let (Ñ , g̃), dim Ñ ≥ 3,
be a Riemannian space of constant curvature. Then M ×F Ñ is a spacetime
of Robertson–Walker type. We have Tab = 2Fgab. In view of Corollary 2.1
of [11], M ×F Ñ is a pseudosymmetric manifold.

(ii) (see [24, (2)]) Let M be an open connected nonempty subset of R2

with the metric tensor g = exp 2f(−dy2 + dt2), where f = f(y, t). De-
fine F (y, t) = exp 2h, where h = h(y, t), and suppose f and h are smooth
functions on M . Further, let (Ñ , g̃), dim Ñ ≥ 3, be a Riemannian space of
constant curvature. Then M×F Ñ is a spacetime of Robertson–Walker type.

(iii) From formulas (2.1), (2.8) and (2.9) of [30] it follows that the space-
times considered in [30] are of Robertson–Walker type.

Example 3.2. (i) Let M ⊂ {(u, r) ∈ R2 : r > 0} be an open connected
nonempty subset of R2 with the metric tensor

g = −2hdu2 − 2dudr,(20)

where h = h(u, r) is a smooth function on M . Consider the warped product
M ×F Ñ with the 2-dimensional standard unit sphere (Ñ , g̃) and a warping
function F = F (u, r).
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(ii) According to [27, Section 13.4], the warped product in (i) with F (r) =
r2 is said to be the Kottler spacetime, resp., the Schwarzschild spacetime, if
2h(r) = 1−2m/r+ 1

3Λr
2, resp., 2h(r) = 1−2m/r, where m = const > 0 and

Λ = const 6= 0. It is well known that the Kottler spacetime is a non-Ricci flat
Einstein manifold. The Schwarzschild spacetime is a Ricci flat manifold. The
warped product M ×F Ñ is said to be the Reissner–Nordström spacetime if
2h(r) = 1− 2m/r+ e2/r2, where m = const > 0 and e = const. It is known
that the spacetimes defined above are nonsemisymmetric pseudosymmetric
manifolds ([20]).

(iii) The warped product in (i) is called a Vaidya spacetime ([27, Section
13.4]) if 2h(u, r) = 1 − 2m(u)/r. The Ricci tensor S of a Vaidya spacetime
satisfies rank(S) ≤ 1. We can check that a Vaidya spacetime is a nonpseu-
dosymmetric manifold satisfying (2) with L = −m(u)/r3 ([26]).

4. Some Robertson–Walker type spacetimes. In this section we
consider warped products M ×F Ñ such that on US ⊂M × Ñ the curvature
tensor R has the form

R =
L1

2
S ∧ S + L2g ∧ S + L3G,(21)

where L1, L2 and L3 are some functions on US . We note that L1 is nonzero
at a point of US if and only if the Weyl tensor C of M ×F Ñ is nonzero at
this point.

Theorem 4.1. Let M ×F Ñ be the warped product of semi-Riemannian
spaces of constant curvature (M,g), p ≥ 2, and (Ñ , g̃), n − p ≥ 2, with
T = 1

p trTg on US. Define

L1 = µ(%1 − 2%2 + %3),

L2 = µ((%2 − %3)µ1 + (%2 − %1)µ2),(22)

L3 = µ(%1µ
2
2 − 2%2µ1µ2 + %3µ

2
1), µ = (µ1 − µ2)−2,

where %1, %2, %3, µ1 and µ2 are defined by (12)–(16). Then (21) is satisfied
on US. Such a decomposition is unique on US ∩ UC .

Proof. First of all we note that

%1 = µ2
1L1 + 2µ1L2 + L3,

%2 = µ1µ2L1 + (µ1 + µ2)L2 + L3,(23)

%3 = µ2
2L1 + 2µ2L2 + L3.

Now using (12)–(16) and (23) we can easily check that R − L1
2 S ∧ S −

L2g∧S−L3G = 0 on US . Lemma 3.2 of [16] implies that the decomposition
(21) is unique. But this completes the proof.
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Let M ×F Ñ be the warped product of semi-Riemannian spaces of con-
stant curvature (M,g), p ≥ 2, and (Ñ , g̃), n− p ≥ 2, such that

1
2
T = −FLRg + γw ⊗ w(24)

on US ⊂ M × Ñ , where γ and LR are some functions on US and w is a
covector field on US. Now from (8), (9) and (11) we obtain (12), (14), (16)
and

Rαbcβ =
(
LRgbc −

γ

F
wbwc

)
gαβ,(25)

Sab = µ1gab − (n − p) γ
F
wawb, µ1 =

κ

p
+ (n− p)LR.(26)

Proposition 4.1. Let M ×F Ñ be the warped product of semi-Rieman-
nian spaces of constant curvature (M,g), p ≥ 2, and (Ñ , g̃), n− p ≥ 2, such
that (24) holds on US , with γ and w nonzero at every point of US. Then
(21) is satisfied on US if and only if on US we have

µ1 = µ2, L2 = −µ1L1, %1 = L3,

%2 = µ2
1L1, µ1LR = −µ2

1L1 + L3, %3 = µ1LR.
(27)

Proof. Applying (12), (14), (16), (25) and (26) to (21) we find that (21)
holds on US if and only if on US we have

(%1 − µ2
1L1 − µ1L2 − L3)Gabcd = −(n− p) γ

F
(L2 + µ1L1)

× (gadwbwc + gbcwawd − gacwbwd − gbdwawc),
(28) (%2 − µ1µ2L1 − µ1L2 − µ2L2 − L3)Gαbcβ

= −(n− p) γ
F

(µ2L1 + L2)wawbgαβ,

(%3 − µ2
2L1 − 2µ2L2 − L3)Gαβδγ = 0.

From this we obtain our assertion easily.

As an immediate consequence of the above result and Lemma 3.1 of [16]
we have the following

Theorem 4.2. Let M ×F Ñ be the warped product of semi-Riemannian
spaces of constant curvature (M,g), p ≥ 2, and (Ñ , g̃), n− p ≥ 2, such that
(24) holds on US, with γ and w nonzero at every point of US. In addition,
suppose that µ1 = µ2 6= 0 and µ1LR = %3 on US. Define

L1 = µ−2
1 (%1 − µ1LR), L2 = −µ−1

1 (%1 − µ1LR), L3 = %1.(29)

Then (21) is satisfied on US. Such a decomposition is unique on US ∩ UC .

From Proposition 2.3 we obtain
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Corollary 4.1. If M ×F Ñ is the warped product of semi-Riemannian
manifolds of constant curvature (M,g), p ≥ 2, and (Ñ , g̃), n − p ≥ 2,
satisfying (21) on US ∩ UC , then on US ∩ UC we have (4), (5) and

L3 − L−1
1 L2

2 =
%1%3 − %2

2

%1 − 2%2 + %3
.(30)

Applying (8) and (9) in (21) we find

1
2

(
κ

p
g − n− p

2F
T

)
∧
(
κ

p
g − n− p

2F
T

)

= −L2

L1
g ∧

(
κ

p
g − n− p

2F
T

)
+

1
L1

(
κ

(p− 1)p
− L3

)
G.

In view of the last relation, we now consider on US ∩UC the following three
cases:

(a) T =
2Fκ

p(n− p) g,

(b) L3 =
κ

(p− 1)p
,

(31)

(a) T =
2F (κ− pλ)
p(n− p) g, λ ∈ R− {0},

(b) L3 =
κ

(p− 1)p
− λ2L1 − 2λL2,

(32)

(a) rank
(
κ

p
g − n− p

2F
T

)
= 1,

(b) L3 =
κ

(p− 1)p
+ L−1

1 L2
2.

(33)

We note that (33) is an immediate consequence of Proposition 2.1.

Proposition 4.2. Let M×F Ñ be a warped product of semi-Riemannian
manifolds of constant curvature (M,g), p ≥ 2, and (Ñ , g̃), n− p ≥ 2, satis-
fying (21) on US.

(i) If (31) holds at x ∈ US then at x we have κ 6= 0 and

R ·R = − κ

p(n− p) Q(g,R),(34)

L1 =
n− p

n− p− 1
1
κ

(
1 +

(n− 2)(n− 1)
(p− 1)p

κ

κ

)
,(35)

L2 = − n− 1
p(p− 1)

κ

κ
.(36)
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(ii) If (32) holds at x ∈ US then at x we have κ− nλ 6= 0 and

R ·R =
pλ− κ
p(n− p) Q(g,R),(37)

L1 =
n− p

n− p− 1
1

κ− nλ

(
1− (n− 2)λ

κ− nλ(38)

+
(n− 2)(n− 1)

(p− 1)p
κ

κ− nλ

)
,

L2 =
n− p

n− p− 1
1

(κ− nλ)2

(
λ(2pλ− κ)(39)

+
(n− 1)κ((n− 2p)λ− (n− p− 1)κ)

p(p− 1)(n− p)

)
.

(iii) If (33) holds at x ∈ U then at x we have

R ·R = 0, R =
L1

2
S ∧ S, rank(T ) = 1, L2 = L3 = κ = 0.

Proof. (i) From (31)(a) we have

trT =
2Fκ
n− p.(40)

Next, applying (31)(a) and (40) to (8), (9) and (11) we find

Raαβb = − κ

p(n− p) gabgαβ,(41)

(a) Sad = 0, (b) Sαβ =
κ

n− p gαβ,(42)

κ =
1
F

(
κ̃− Fκ− (n− p− 1)(n− p) ∆1F

4F

)
.(43)

We note that κ is nonzero at x. Indeed, κ = 0 implies S = 0, i.e. x ∈M−US ,
a contradiction. Further, we set

H =
1
2
T + FLRg, LR = − κ

p(n− p) .(44)

Evidently, H = 0. Now, in view of Theorem 2.1 of [11], (34) holds at x.
Next, combining (40)–(43) with (22), we obtain (36). Similarly, using (22)
and (40)–(43) we get (35).

(ii) From (32) we have

trT =
2F (κ− pλ)

n− p .(45)

Substituting (32)(a) and (45) into (8), (9) and (11) we find

Raαβb = − κ− pλ
p(n− p) gabgαβ,(46)



18 R. DESZCZ AND D. KOWALCZYK

(a) Sad = λgad, (b) Sαβ =
κ− pλ
n− p gαβ,(47)

κ =
1
F

(
κ̃− Fκ+ 2pλF − (n− p− 1)(n− p) ∆1F

4F

)
.(48)

We note that κ − nλ is nonzero at x. Indeed, κ − nλ = 0 implies S = κ
ng,

i.e. x ∈M − US, a contradiction. Further, we set

H =
1
2
T + FLRg, LR =

pλ− κ
p(n− p) .(49)

Evidently, H = 0. Now, in view of Theorem 2.1 of [11], (37) holds at x.
Next, putting (45)–(48) into (22), we obtain (39). Similarly, using (22) and
(45)–(48) we get (38).

(iii) From (4), by (33)(b), we obtain

LR = −(n− 2)κ
p(p− 1)

− L2

L1
.(50)

Further, from (33)(a) at x we have

1
2
T =

Fκ

p(n− p) g + βw ⊗ w, β ∈ R,(51)

where w is a covector at x. Next, we set

H =
1
2
T + FLRg.(52)

Applying (50) and (51) in (52) we find

H = −
(

(n− p− 1)(n− 1)κ
p(p− 1)(n− p) +

L2

L1

)
Fg + βw ⊗ w.(53)

From Theorem 2.2 of [11] it follows that rank(H) ≤ 1. Hence, in view of our
assumptions, rank(H) = 1. Thus at x we have

L2

L1
= −(n− p− 1)(n− 1)κ

p(p− 1)(n− p) .(54)

Inserting now (54) in (50) we get

LR = − κ

p(n− p) .(55)

We also have the following relation ([11, Corollary 2.1]):

2Fκ
p(p− 1)

(gabHcd − gacHbd) = TacHbd − TabHcd.(56)

Since H = βw ⊗ w, (56) turns into

2Fκ
p(p− 1)

(wcgab − wbgac) = wbTac − wcTab,(57)
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where wb are the local components of the covector w. This, by (51), yields

κ(wcgab − wbgac) = 0,(58)

and, in consequence, κ = 0 at x. Thus (55) yields LR = 0 and R ·R = 0. In
addition, from (57) we get rank(T ) = 1. Further, by (54), L2 = 0. Similarly,
(33)(b) gives L3 = 0. Now (21) reduces at x to R = L1

2 S∧S. Our proposition
is thus proved.

Remark 4.1. Necessary and sufficient conditions for a warped product
to satisfy R = L1

2 S ∧ S were found in [25, Proposition 2.2].

Example 4.1. Let (M,g), p = dimM ≥ 2, be the manifold defined
in Example 2.1 of [10] and let F be the function on M defined by (9) of
[10]. Further, let (Ñ , g̃), n− p = dim Ñ ≥ 2, be a semi-Riemannian space of
constant curvature l. We consider the warped product M×F Ñ (see Example
3.2 of [10]). It satisfies the following relations, among others (see formulas
(15)–(17) of [10]):

Rabcd = %1Gabcd, Raαβb = %2Gaαβb, Rαβγδ = %3Gαβγδ,

%1 = k, %2 = k(1− cτ), %3 = (l − c1)τ2 − 2kcτ + k,
(59)

k =
κ

(p− 1)p
> 0, l =

κ̃

(n− p− 1)(n− p) , τ =
1√
F
, c, c1 ∈ R.(60)

In the following we will assume that l > c1 and c 6= 0. This, together with
the formulas (21) and (25) of [10], implies that US ∩UC = M × Ñ . Further,
T = −2k(1− cτ)Fg, whence

T = −2FLRg, LR = k(1− cτ).(61)

From Theorem 4.1 it follows that the curvature tensor R of M ×F Ñ has a
decomposition of the form (21), with L1, L2 and L3 defined by (22). From
Proposition 2.3, by making use of (4), (5), (30), (60) and (61), we obtain

R ·R = k(1− cτ)Q(g,R),(62)

R ·R−Q(S,R) = −(n− 2)k
(

1− kc2

l − c1

)
Q(g, C).(63)

We now prove that M ×F Ñ can be (locally) realized as a hypersurface
in a semi-Riemannian space of constant curvature. We set

µ

n(n+ 1)
= k

(
1− kc2

l − c1

)
, µ2

1 =
k2c2

l − c1
, µ2 = µ1 −

kcτ

µ1
,(64)

which yields

µ1µ2 = µ2
1 − kcτ, µ2

2 = µ2
1 − 2kcτ + (l − c1)τ2.(65)
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Further, we define on M × Ñ a symmetric (0, 2)-tensor H by

Hab = µ1gab, Haα = 0, Hαβ = µ2gαβ.(66)

Now, using (59), (60) and (64)–(66) we get

Rabcd =
(
k2c2

l − c1
+

µ

n(n+ 1)

)
Gabcd =

(
µ2

1 +
µ

n(n+ 1)

)
Gabcd

=
1
2

(H ∧H)abcd +
µ

n(n+ 1)
Gabcd,

Raαβd = (k + µ1µ2 − µ2
1)Gaαβd =

(
µ1µ2 +

µ

n(n+ 1)

)
Gaαβd

=
1
2

(H ∧H)aαβd +
µ

n(n+ 1)
Gaαβd,

Rαβγδ = ((l − c1)τ2 − 2kcτ + k)Gαβγδ = (k + %2
2 − %2

1)Gαβγδ

=
(
µ2

2 +
µ

n(n+ 1)

)
Gαβγδ =

1
2

(H ∧H)αβγδ +
µ

n(n+ 1)
Gαβγδ.

Other local components of R, H ∧H and G are zero. Thus R = 1
2H ∧H +

µ
n(n+1)G. In addition, using (7) and (66) we can check that H is a Codazzi

tensor. Therefore M ×F Ñ can be realized locally as a hypersurface in a
semi-Riemannian space of constant curvature.

We finish the paper with some corrections to [10]. Namely, formula (34)
of [10] should have the form

Q(S,R)αabcdβ = −(SdαRβabc + SdaRαβbc + SdbRαaβc + SdcRαabβ(67)

−SβαRdabc − SβaRαdbc − SβbRαadc − SβcRαabd)
= SdbRaαβc − SdcRaαβb + SβαRdabc

= kτ2(kc− (n− p)kc2 + (n− p− 1)(l − c1))gαβGabcd.

We note that the definitions of R · R, Q(S,R) and Q(g, C) and of other
similar tensors in [10] and in the present paper differ in sign. Using [10,
(26), (27), (32), (33), (35)] and (67) we obtain (63). Therefore assertion
(v) of Theorem 4.1 of [10] should read: (v) R · R − Q(S,R) and Q(g, C)
are linearly dependent on N . This statement, together with Example 4.1,
leads to the corrected version of the second part of Corollary 4.1 of [10]: the
warped product Sp(1/

√
k) ×F Sn−p(1/

√
l), p ≥ 2, n − p ≥ 2, k > 0, l > 0,

can be locally realized as a hypersurface in a space of constant curvature.
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13–24.

[7] F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken, On pseudosymmetric space-
times, J. Math. Phys. 35 (1994), 5908–5921.

[8] R. Deszcz, Certain curvature characterizations of affine hypersurfaces, Colloq.
Math. 63 (1992), 21–39.

[9] —, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34.
[10] —, Curvature properties of certain compact pseudosymmetric manifolds, Colloq.

Math. 65 (1993), 139–147.
[11] —, On pseudosymmetric warped product manifolds, in: Geometry and Topology of

Submanifolds, V, World Sci., River Edge, NJ, 1993, 132–146.
[12] R. Deszcz and M. Głogowska, Examples of nonsemisymmetric Ricci-semisymmetric

hypersurfaces, Colloq. Math. 94 (2002), 87–101.
[13] —, —, Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces,

Publ. Inst. Math. (Beograd) (N.S.) 72 (86) (2002), 81–94.
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