COLLOQUIUM MATHEMATICUM

ON SOME CLASS OF PSEUDOSYMMETRIC WARPED PRODUCTS

BY
RYSZARD DESZCZ and DOROTA KOWALCZYK (Wrocław)

Dedicated to the memory of Dr. Jan Anweiler

Abstract

We present curvature properties of pseudosymmetry type of some warped products of semi-Riemannian spaces of constant curvature.

1. Introduction. The class of warped product manifolds, for short warped products, is an extension of the class of products of semi-Riemannian manifolds. Warped products play an important role in Riemannian geometry (see e.g. [28], [29]) as well as in general relativity (see e.g. [2], [3], [29]). Many well-known spacetimes of general relativity, i.e. solutions of the Einstein equations, are warped products, e.g. the Schwarzschild spacetimes, the Kottler spacetime, the Reissner-Nordström spacetime as well as Robertson-Walker spacetimes. We recall that a warped product $\bar{M} \times{ }_{F} \widetilde{M}$ of a 1-dimensional manifold $(\bar{M}, \bar{g}), \bar{g}_{11}=-1$, and a 3 -dimensional Riemannian space $(\widetilde{M}, \widetilde{g})$ of constant curvature, with a warping function F, is said to be a Robertson-Walker spacetime (see e.g. [2], [3], [27], [29]). More generally, one also considers warped products $\bar{M} \times{ }_{F} \widetilde{M}$ of $(\bar{M}, \bar{g}), \operatorname{dim} \bar{M}=1$, $\bar{g}_{11}=-1$, with a warping function F and an $(n-1)$-dimensional Riemannian manifold $(\widetilde{M}, \widetilde{g}), n \geq 4$. Such warped products are called generalized Robertson-Walker spacetimes ([1], [21], [31]).

It is known that every Robertson-Walker spacetime is conformally flat. These manifolds also satisfy another curvature condition: the tensors $R \cdot R$ and $Q(g, R)$ are linearly dependent at every point (see e.g. [9, Section 12.2]). For precise definitions of the symbols used, we refer to Sections 2 and 3 of this paper. In general, semi-Riemannian manifolds $(M, g), n \geq 3$, satisfying this condition are called pseudosymmetric ([9, Section 3.1]) A manifold (M, g) is

[^0]pseudosymmetric if and only if on $U_{R}=\left\{x \in M \left\lvert\, R-\frac{\kappa}{n(n-1)} G \neq 0\right.\right.$ at $\left.x\right\}$ we have
\[

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R), \tag{1}
\end{equation*}
$$

\]

where L_{R} is some function on U_{R}. It is clear that every semisymmetric manifold $(R \cdot R=0)$ is pseudosymmetric. The converse is not true (see e.g. [10], [11]). It is well known that the class of semisymmetric manifolds includes the set of locally symmetric manifolds $(\nabla R=0)$ as a proper subset. Recently, results on semisymmetric semi-Riemannian manifolds were obtained in [22] and [25], among others.

A semi-Riemannian manifold $(M, g), n \geq 3$, is said to be Ricci-semisymmetric if $R \cdot S=0$ on M. The class of Ricci-semisymmetric manifolds includes the set of Ricci-symmetric manifolds $(\nabla S=0)$ as a proper subset. Every semisymmetric manifold is Ricci-semisymmetric. The converse is not true. But under some additional assumptions the conditions $R \cdot R=0$ and $R \cdot S=0$ are equivalent. For a review of recent results related to this subject see [12] and [13] and the references therein.
(1) arose from the study of totally umbilical submanifolds of semisymmetric manifolds ($[9$, Section 13]) as well as from considering geodesic mappings of semisymmetric manifolds (see e.g. [9, Section 10]). We mention that the Schwarzschild spacetime, the Kottler spacetime as well as the ReissnerNordström spacetime are pseudosymmetric ([7], [20]).

In [5, Theorem 4.1] it was shown that on every 4-dimensional generalized Robertson-Walker spacetime $\bar{M} \times_{F} \widetilde{N}$, the tensors $R \cdot R-Q(S, R)$ and $Q(g, C)$ are linearly dependent. This is equivalent on $U_{C} \subset \bar{M} \times \widetilde{N}$ to

$$
\begin{equation*}
R \cdot R-Q(S, R)=L Q(g, C) \tag{2}
\end{equation*}
$$

where L is some function on U_{C}. The last relation is a condition of pseudosymmetry type. We refer to [4] for a review of results on semi-Riemannian manifolds satisfying such conditions. Generalized Robertson-Walker spacetimes satisfying some curvature conditions of pseudosymmetry type were considered in [6] and [17]. We also mention that the Vaidya spacetime satisfies (2) ([26], see also Example 3.2(ii)).

Investigations of generalized Robertson-Walker spacetimes as well as of other classes of spacetimes (see e.g. [23], [24], [30]) lead to the following extension of the notion of a Robertson-Walker spacetime. The warped product $\bar{M} \times_{F} \widetilde{N}$ of $(\bar{M}, \bar{g}), \operatorname{dim} \bar{M} \geq 1$, and $(\widetilde{N}, \widetilde{g}), \operatorname{dim} \widetilde{N} \geq 1, n=\operatorname{dim} \bar{M}+\operatorname{dim} \widetilde{N}$ ≥ 4, is said to be a spacetime of Robertson-Walker type if it has signature $(1, n-1)$ and at least one of the manifolds (\bar{M}, \bar{g}) and $(\widetilde{N}, \widetilde{g})$ is of dimension 1 or 2 or a space of constant curvature. In Section 3 we present examples of such spacetimes. Clearly, the metric of a Robertson-Walker spacetime has signature $(1,3)$.

In Section 4 we investigate pseudosymmetric warped products of semiRiemannian spaces of constant curvature. In particular, we obtain a curvature characterization of some class of Robertson-Walker type spacetimes. Finally, we present an example of a warped product of spaces of constant curvature which can be locally realized as a hypersurface in a space of constant curvature.
2. Preliminaries. Let (M, g) be an n-dimensional, $n \geq 3$, semi-Riemannian connected manifold of class C^{∞}. We denote by ∇, S and κ the LeviCivita connection, Ricci tensor and scalar curvature of (M, g), respectively. We define on M the endomorphisms $X \wedge_{A} Y, \mathcal{R}(X, Y)$ and $\mathcal{C}(X, Y)$ by

$$
\begin{aligned}
\left(X \wedge_{A} Y\right) Z & =A(Y, Z) X-A(X, Z) Y \\
\mathcal{R}(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
\mathcal{C}(X, Y) & =\mathcal{R}(X, Y)-\frac{1}{n-2}\left(X \wedge_{g} \mathcal{S} Y+\mathcal{S} X \wedge_{g} Y-\frac{\kappa}{n-1} X \wedge_{g} Y\right)
\end{aligned}
$$

where A is a $(0,2)$-tensor on $M, X, Y, Z \in \Xi(M), \Xi(M)$ being the Lie algebra of vector fields on M, and the Ricci operator \mathcal{S} is defined by

$$
g(X, \mathcal{S} Y)=S(X, Y)
$$

The Riemann curvature tensor R and the Weyl tensor C are defined by

$$
\begin{aligned}
& R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{R}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right) \\
& C\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{C}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)
\end{aligned}
$$

Further, let $\mathcal{T}(X, Y)$ be a skew symmetric endomorphism of $\Xi(M)$. For it we define a $(0,4)$-tensor T by $T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{T}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)$.

A (0,4)-tensor T is said to be a generalized curvature tensor if

$$
\begin{aligned}
& T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T\left(X_{3}, X_{4}, X_{1}, X_{2}\right) \\
& T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+T\left(X_{2}, X_{3}, X_{1}, X_{4}\right)+T\left(X_{3}, X_{1}, X_{2}, X_{4}\right)=0
\end{aligned}
$$

For a generalized curvature tensor T, a symmetric (0,2)-tensor field A and a ($0, k$)-tensor field $T_{1}, k \geq 1$, we define the $(0, k+2)$-tensor fields $T \cdot T_{1}$, $Q(A, T)$ and $A \cdot T_{1}$ by

$$
\begin{aligned}
& \left(T \cdot T_{1}\right)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=\left(\mathcal{T}(X, Y) \cdot T_{1}\right)\left(X_{1}, \ldots X_{k}\right) \\
& \quad=-T_{1}\left(\mathcal{T}(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-\ldots-T_{1}\left(X_{1}, \ldots, X_{k-1}, \mathcal{T}(X, Y) X_{k}\right) \\
& Q\left(A, T_{1}\right)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=\left(\left(X \wedge_{A} Y\right) \cdot T_{1}\right)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=-T_{1}\left(\left(X \wedge_{A} Y\right) X_{1}, X_{2}, \ldots, X_{k}\right)-\ldots-T_{1}\left(X_{1}, \ldots, X_{k-1},\left(X \wedge_{A} Y\right) X_{k}\right) \\
& \left(A \cdot T_{1}\right)\left(X_{1}, \ldots, X_{k}\right)=-T_{1}\left(\mathcal{A} X_{1}, X_{2}, \ldots, X_{k}\right)-\ldots-T_{1}\left(X_{1}, X_{2}, \ldots, \mathcal{A} X_{k}\right)
\end{aligned}
$$

where the endomorphism \mathcal{A} is defined by $g(\mathcal{A} X, Y)=A(X, Y)$. Setting in the above formulas $\mathcal{T}(X, Y)=\mathcal{R}(X, Y)$ or $\mathcal{C}(X, Y), T_{1}=R, C$ or S, and
$A=g$ or S we obtain the following tensors, among others: $R \cdot R, R \cdot S$, $Q(g, R), Q(g, C), Q(g, S)$ and $Q(S, R)$.

Further, for (0,2)-tensors A and B their Kulkarni-Nomizu product $A \wedge B$ is given by

$$
\begin{aligned}
(A \wedge B)\left(X_{1}, X_{2} ; X, Y\right)= & A\left(X_{1}, Y\right) B\left(X_{2}, X\right)+A\left(X_{2}, X\right) B\left(X_{1}, Y\right) \\
& -A\left(X_{1}, X\right) B\left(X_{2}, Y\right)-A\left(X_{2}, Y\right) B\left(X_{1}, X\right) .
\end{aligned}
$$

In particular, for a (0,2)-tensor A we define the (0,4)-tensor \bar{A} by $\bar{A}=$ $\frac{1}{2} A \wedge A$. The $(0,4)$-tensor G is defined by $G=\bar{g}$. Let T_{1} and T_{2} be $(0, k)$ tensors on M. According to [8] the tensors T_{1} and T_{2} are pseudosymmetrically related to a generalized curvature tensor T and a symmetric (0,2)tensor A if at every point of M the tensors $T \cdot T_{1}$ and $Q\left(A, T_{2}\right)$ are linearly dependent. In particular, when $T_{1}=T_{2}$, we say that the tensor T_{1} is pseudosymmetric with respect to the tensors T and A.

Let $T_{h i j k}, V_{h i j k}$, and $A_{i j}$ be the local components of generalized curvature tensors T and V and a symmetric (0,2)-tensor A on M, respectively, where $h, i, j, k, l, m \in\{1, \ldots, n\}$. The local components $(T \cdot V)_{h i j k l m}$ and $Q(A, V)_{h i j k l m}$ of the tensors $T \cdot V$ and $Q(A, V)$ are

$$
\begin{aligned}
(T \cdot V)_{h i j k l m}= & g^{p q}\left(T_{p i j k} V_{q h l m}+T_{h p j k} V_{q i m}+T_{h i p k} V_{q j l m}+T_{h i j p} V_{q k l m}\right), \\
Q(A, V)_{h i j k l m}= & A_{h l} V_{m i j k}+A_{i l} V_{h m j k}+A_{j l} V_{h i m k}+A_{k l} V_{h i j m} \\
& -A_{h m} V_{l i j k}-A_{i m} V_{h l j k}-A_{j m} V_{h i l k}-A_{k m} V_{h i j l} .
\end{aligned}
$$

Let T be a generalized curvature tensor on a semi-Riemannian manifold $(M, g), n \geq 4$. We denote by $\operatorname{Ric}(T), \operatorname{Weyl}(T)$ and $\kappa(T)$ the Ricci tensor, Weyl tensor and scalar curvature of T, respectively. The subsets $U_{T}, U_{\operatorname{Ric}(T)}$ and $U_{\mathrm{Weyl}(T)}$ of M are defined in the same manner as the subsets U_{R}, U_{S} and U_{C} of M, respectively. Let us consider generalized curvature tensors T having on $U=U_{\operatorname{Ric}(T)} \cap U_{\mathrm{Weyl}(T)} \subset M$ a decomposition

$$
\begin{equation*}
T=\frac{L_{1}}{2} A \wedge A+L_{2} g \wedge A+L_{3} G \tag{3}
\end{equation*}
$$

where L_{1}, L_{2} and L_{3} are some functions on U and A is a (0,2)-symmetric tensor on U; such tensors were investigated in [26].

Proposition 2.1 ([22, Lemma 3.1]). Let B be a symmetric (0,2)-tensor on a semi-Riemannian manifold $(M, g), n \geq 3$, and let \mathcal{U}_{B} be the set of all points of M at which B is not proportional to g. If on \mathcal{U}_{B} we have $\frac{1}{2} B \wedge B=L_{2} g \wedge B+L_{3} G$ then $L_{3}=-L_{2}^{2}$ and $\operatorname{rank}\left(B-L_{2} g\right)=1$ on \mathcal{U}_{B}.

Proposition 2.2 ([26, Proposition 3.3]). Let (M, g), $n \geq 4$, be a semiRiemannian manifold admitting a generalized curvature tensor T having on $U=U_{\operatorname{Ric}(T)} \cap U_{\mathrm{Weyl}(T)} \subset M$ a decomposition of the form (3). Then $T \cdot T-Q(\operatorname{Ric}(T), T)=L Q(g, \operatorname{Weyl}(T))$ and $L=(n-2)\left(L_{1}^{-1} L_{2}^{2}-L_{3}\right)$ on U.

We also have
Theorem 2.1 ([15, Theorem 4.2]). If the curvature tensor R of a semiRiemannian manifold (M, g), $n \geq 4$, has on $U=U_{S} \cap U_{C} \subset M$ a decomposition of the form (3) with $A=S$ then on U we have

$$
\begin{gather*}
R \cdot R=L_{R} Q(g, R), \quad L_{R}=(n-2)\left(L_{1}^{-1} L_{2}^{2}-L_{3}\right)-L_{1}^{-1} L_{2}, \tag{4}\\
R \cdot R-Q(S, R)=\left(L_{R}+L_{1}^{-1} L_{2}\right) Q(g, C) . \tag{5}
\end{gather*}
$$

In the same manner we can prove
Proposition 2.3. Let $(M, g), n \geq 4$, be a semi-Riemannian manifold admitting a generalized curvature tensor T having on $U=U_{\operatorname{Ric}(T)} \cap$ $U_{\mathrm{Weyl}(T)} \subset M$ a decomposition of the form (3) with $A=\operatorname{Ric}(T)$. Then $T \cdot T=L_{T} Q(g, T)$ and $L_{T}=(n-2)\left(L_{1}^{-1} L_{2}^{2}-L_{3}\right)-L_{1}^{-1} L_{2}$ on U.

We also have the following converse statement.
Corollary 2.1 ([14, Corollary 6.1]). Let $(M, g), n \geq 4$, be a semi-Riemannian manifold admitting a generalized curvature tensor T and suppose

$$
T \cdot T=Q(\operatorname{Ric}(T), T)+L Q(g, \operatorname{Weyl}(T)) \quad \text { and } \quad T \cdot T=L_{T} Q(g, T)
$$

on $U=U_{\operatorname{Ric}(T)} \cap U_{\operatorname{Weyl}(T)} \subset M$. If at $x \in U$ the tensor $\operatorname{Ric}(T)$ has no decomposition into a metrical part and a part of rank at most one then at x we have

$$
\begin{equation*}
T=\frac{L_{1}}{2} \operatorname{Ric}(T) \wedge \operatorname{Ric}(T)+L_{2} g \wedge \operatorname{Ric}(T)+L_{3} G \tag{6}
\end{equation*}
$$

for some $L_{1}, L_{2}, L_{3} \in \mathbb{R}$.
3. Warped products. Let now (\bar{M}, \bar{g}) and $(\widetilde{N}, \widetilde{g}), \operatorname{dim} \bar{M}=p, \operatorname{dim} \widetilde{N}=$ $n-p, 1 \leq p<n$, be semi-Riemannian manifolds covered by systems of charts $\left\{\bar{U} ; x^{a}\right\}$ and $\left\{\tilde{V} ; y^{\alpha}\right\}$, respectively. Let $F: \bar{M} \rightarrow \mathbb{R}^{+}$be a positive smooth function on \bar{M}. The warped product $\bar{M} \times_{F} \widetilde{N}$ of (\bar{M}, \bar{g}) and $(\widetilde{N}, \widetilde{g})$ is the product manifold $\bar{M} \times \widetilde{N}$ with the metric $g=\bar{g} \times{ }_{F} \widetilde{g}$ defined by

$$
\bar{g} \times_{F} \widetilde{g}=\pi_{1}^{*} \bar{g}+\left(F \circ \pi_{1}\right) \pi_{2}^{*} \widetilde{g},
$$

where $\pi_{1}: \bar{M} \times \widetilde{N} \rightarrow \bar{M}$ and $\pi_{2}: \bar{M} \times \widetilde{N} \rightarrow \widetilde{N}$ are the natural projections. Let $\left\{\bar{U} \times \widetilde{V} ; x^{1}, \ldots, x^{p}, x^{p+1}=y^{1}, \ldots, x^{n}=y^{n-p}\right\}$ be a product chart for $\bar{M} \times \tilde{N}$. The local components of the metric g in this chart are: $g_{h k}=\bar{g}_{a b}$ if $h=a$ and $k=b, g_{h k}=F \widetilde{g}_{\alpha \beta}$ if $h=\alpha$ and $k=\beta$, and $g_{h k}=0$ otherwise, where $a, b, c, \ldots \in\{1, \ldots, p\}, \alpha, \beta, \gamma, \ldots \in\{p+1, \ldots, n\}$ and $h, i, j, k \ldots \in\{1, \ldots, n\}$. We will denote by bars (resp., by tildes) tensors formed from \bar{g} (resp., \widetilde{g}). It is known that the local components $\Gamma_{i j}^{h}$ of the Levi-Civita connection ∇ of $\bar{M} \times_{F} \widetilde{N}$ are:

$$
\begin{align*}
& \Gamma_{b c}^{a}=\bar{\Gamma}_{b c}^{a}, \quad \Gamma_{\beta \gamma}^{\alpha}=\widetilde{\Gamma}_{\beta \gamma}^{\alpha}, \quad \Gamma_{\alpha \beta}^{a}=-\frac{1}{2} \bar{g}^{a b} F_{b} \widetilde{g}_{\alpha \beta}, \\
& \Gamma_{a \beta}^{\alpha}=\frac{1}{2 F} F_{a} \delta_{\beta}^{\alpha}, \quad \Gamma_{\alpha b}^{a}=\Gamma_{a b}^{\alpha}=0, \tag{7}\\
& F_{a}=\partial_{a} F, \quad \partial_{a}=\partial / \partial x^{a} .
\end{align*}
$$

The local components $R_{h i j k}$ of the curvature tensor R and the local components $S_{h k}$ of the Ricci tensor S of $\bar{M} \times_{F} \widetilde{N}$ which may not vanish identically are the following (see e.g. [11], [17]):

$$
R_{a b c d}=\bar{R}_{a b c d}, \quad R_{\alpha b c \beta}=-\frac{1}{2} T_{b c} \widetilde{g}_{\alpha \beta}
$$

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=F\left(\widetilde{R}_{\alpha \beta \gamma \delta}-\frac{\Delta_{1} F}{4 F} \widetilde{G}_{\alpha \beta \gamma \delta}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
S_{a b}=\bar{S}_{a b}-\frac{n-p}{2 F} T_{a b} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
T_{a b}=\bar{\nabla}_{b} F_{a}-\frac{1}{2 F} F_{a} F_{b}, \quad \Delta_{1} F=\Delta_{1 \bar{g}} F=\bar{g}^{a b} F_{a} F_{b} \tag{10}
\end{equation*}
$$

where T denotes the (0,2)-tensor with local components $T_{a b}$ and $\operatorname{tr} T=$ $\operatorname{tr}_{\bar{g}} T=\bar{g}^{a b} T_{a b}$. The scalar curvature κ of $\bar{M} \times{ }_{F} \widetilde{N}$ satisfies

$$
\begin{equation*}
\kappa=\bar{\kappa}+\frac{\widetilde{\kappa}}{F}-\frac{n-p}{F}\left(\operatorname{tr} T+(n-p-1) \frac{\Delta_{1} F}{4 F}\right) \tag{11}
\end{equation*}
$$

Let $\bar{M} \times{ }_{F} \widetilde{N}$ be the warped product of semi-Riemannian spaces of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, with $T=\frac{1}{p} \operatorname{tr} T \bar{g}$ on $U=U_{S} \cap U_{C} \subset \bar{M} \times \widetilde{N}$. Examples of such warped products are given in [11] and [20]. Under the above assumptions, (8), (9) and (11) turn into

$$
\begin{gather*}
R_{a b c d}=\varrho_{1} G_{a b c d}, \quad \varrho_{1}=\frac{\bar{\kappa}}{(p-1) p}, \tag{12}\\
R_{\alpha b c \beta}=\varrho_{2} G_{\alpha b c \beta}, \quad \varrho_{2}=-\frac{\operatorname{tr} T}{2 p F}, \tag{13}\\
R_{\alpha \beta \gamma \delta}=\varrho_{3} G_{\alpha \beta \gamma \delta}, \quad \varrho_{3}=\frac{1}{F}\left(\frac{\widetilde{\kappa}}{(n-p)(n-p-1)}-\frac{\Delta_{1} F}{4 F}\right) \tag{14}\\
S_{a b}=\mu_{1} g_{a b}, \quad \mu_{1}=\frac{1}{2 p F}(2 F \bar{\kappa}-(n-p) \operatorname{tr} T) \tag{15}\\
S_{\alpha \beta}=\mu_{2} g_{\alpha \beta}, \quad \mu_{2}=\frac{1}{F}\left(\frac{\widetilde{\kappa}}{n-p}-\frac{\operatorname{tr} T}{2}-(n-p-1) \frac{\Delta_{1} F}{4 F}\right) \tag{16}\\
\kappa=p \mu_{1}+(n-p) \mu_{2} \tag{17}
\end{gather*}
$$

Evidently, if (15) and (16) hold at every point of $U_{S} \subset \bar{M} \times \widetilde{N}$ then $\mu_{1}-\mu_{2} \neq 0$ on U_{S}. Next, using (12)-(16), we get

$$
\begin{align*}
C_{a b c d} & =\left(\varrho_{1}-\frac{2 \mu_{1}}{n-2}+\frac{\kappa}{(n-2)(n-1)}\right) G_{a b c d}, \\
C_{\alpha b c \beta} & =\left(\varrho_{2}-\frac{\mu_{1}+\mu_{2}}{n-2}+\frac{\kappa}{(n-2)(n-1)}\right) G_{\alpha b c \beta}, \tag{18}\\
C_{\alpha \beta \gamma \delta} & =\left(\varrho_{3}-\frac{2 \mu_{2}}{n-2}+\frac{\kappa}{(n-2)(n-1)}\right) G_{\alpha \beta \gamma \delta} .
\end{align*}
$$

As a conclusion, the Weyl tensor C of $\bar{M} \times_{F} \widetilde{N}$ vanishes at a point if and only if

$$
\begin{align*}
& \varrho_{1}=\frac{1}{n-2}\left(2 \mu_{1}-\frac{\kappa}{n-1}\right), \\
& \varrho_{2}=\frac{1}{n-2}\left(\mu_{1}+\mu_{2}-\frac{\kappa}{n-1}\right), \tag{19}\\
& \varrho_{3}=\frac{1}{n-2}\left(2 \mu_{2}-\frac{\kappa}{n-1}\right) .
\end{align*}
$$

It follows that $\varrho_{1}-2 \varrho_{2}+\varrho_{3}=0$ at every point at which the tensor C vanishes. Thus if $\varrho_{1}-2 \varrho_{2}+\varrho_{3} \neq 0$ at $x \in \bar{M} \times \widetilde{N}$ then $x \in U_{C} \subset \bar{M} \times \widetilde{N}$.

Example 3.1. (i) (see [23, (3.2)]) Let $\bar{M} \subset\left\{(y, t) \in \mathbb{R}^{2}: y>0\right\}$ be an open connected nonempty subset of \mathbb{R}^{2} with the metric tensor $\bar{g}=d y^{2}-$ $\sinh ^{2} y d t^{2}$. Define $F(y, t)=\sinh ^{2} y \cosh ^{2} t$. Further, let $(\widetilde{N}, \widetilde{g}), \operatorname{dim} \widetilde{N} \geq 3$, be a Riemannian space of constant curvature. Then $\bar{M} \times_{F} \widetilde{N}$ is a spacetime of Robertson-Walker type. We have $T_{a b}=2 F \bar{g}_{a b}$. In view of Corollary 2.1 of [11], $\bar{M} \times{ }_{F} \widetilde{N}$ is a pseudosymmetric manifold.
(ii) (see $[24,(2)])$ Let \bar{M} be an open connected nonempty subset of \mathbb{R}^{2} with the metric tensor $\bar{g}=\exp 2 f\left(-d y^{2}+d t^{2}\right)$, where $f=f(y, t)$. Define $F(y, t)=\exp 2 h$, where $h=h(y, t)$, and suppose f and h are smooth functions on \bar{M}. Further, let $(\widetilde{N}, \widetilde{g}), \operatorname{dim} \widetilde{N} \geq 3$, be a Riemannian space of constant curvature. Then $\bar{M} \times{ }_{F} \widetilde{N}$ is a spacetime of Robertson-Walker type.
(iii) From formulas (2.1), (2.8) and (2.9) of [30] it follows that the spacetimes considered in [30] are of Robertson-Walker type.

Example 3.2. (i) Let $\bar{M} \subset\left\{(u, r) \in \mathbb{R}^{2}: r>0\right\}$ be an open connected nonempty subset of \mathbb{R}^{2} with the metric tensor

$$
\begin{equation*}
\bar{g}=-2 h d u^{2}-2 d u d r, \tag{20}
\end{equation*}
$$

where $h=h(u, r)$ is a smooth function on \bar{M}. Consider the warped product $\bar{M} \times{ }_{F} \widetilde{N}$ with the 2-dimensional standard unit sphere ($\widetilde{N}, \widetilde{g}$) and a warping function $F=F(u, r)$.
(ii) According to [27, Section 13.4], the warped product in (i) with $F(r)=$ r^{2} is said to be the Kottler spacetime, resp., the Schwarzschild spacetime, if $2 h(r)=1-2 m / r+\frac{1}{3} \Lambda r^{2}$, resp., $2 h(r)=1-2 m / r$, where $m=$ const >0 and $\Lambda=$ const $\neq 0$. It is well known that the Kottler spacetime is a non-Ricci flat Einstein manifold. The Schwarzschild spacetime is a Ricci flat manifold. The warped product $\bar{M} \times{ }_{F} \widetilde{N}$ is said to be the Reissner-Nordström spacetime if $2 h(r)=1-2 m / r+e^{2} / r^{2}$, where $m=$ const >0 and $e=$ const. It is known that the spacetimes defined above are nonsemisymmetric pseudosymmetric manifolds ([20]).
(iii) The warped product in (i) is called a Vaidya spacetime ([27, Section 13.4]) if $2 h(u, r)=1-2 m(u) / r$. The Ricci tensor S of a Vaidya spacetime satisfies $\operatorname{rank}(S) \leq 1$. We can check that a Vaidya spacetime is a nonpseudosymmetric manifold satisfying (2) with $L=-m(u) / r^{3}([26])$.
4. Some Robertson-Walker type spacetimes. In this section we consider warped products $\bar{M} \times{ }_{F} \widetilde{N}$ such that on $U_{S} \subset \bar{M} \times \widetilde{N}$ the curvature tensor R has the form

$$
\begin{equation*}
R=\frac{L_{1}}{2} S \wedge S+L_{2} g \wedge S+L_{3} G \tag{21}
\end{equation*}
$$

where L_{1}, L_{2} and L_{3} are some functions on U_{S}. We note that L_{1} is nonzero at a point of U_{S} if and only if the Weyl tensor C of $\bar{M} \times_{F} \widetilde{N}$ is nonzero at this point.

THEOREM 4.1. Let $\bar{M} \times{ }_{F} \widetilde{N}$ be the warped product of semi-Riemannian spaces of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, with $T=\frac{1}{p} \operatorname{tr} T \bar{g}$ on U_{S}. Define

$$
\begin{align*}
& L_{1}=\mu\left(\varrho_{1}-2 \varrho_{2}+\varrho_{3}\right) \\
& L_{2}=\mu\left(\left(\varrho_{2}-\varrho_{3}\right) \mu_{1}+\left(\varrho_{2}-\varrho_{1}\right) \mu_{2}\right) \tag{22}\\
& L_{3}=\mu\left(\varrho_{1} \mu_{2}^{2}-2 \varrho_{2} \mu_{1} \mu_{2}+\varrho_{3} \mu_{1}^{2}\right), \quad \mu=\left(\mu_{1}-\mu_{2}\right)^{-2}
\end{align*}
$$

where $\varrho_{1}, \varrho_{2}, \varrho_{3}, \mu_{1}$ and μ_{2} are defined by (12)-(16). Then (21) is satisfied on U_{S}. Such a decomposition is unique on $U_{S} \cap U_{C}$.

Proof. First of all we note that

$$
\begin{align*}
& \varrho_{1}=\mu_{1}^{2} L_{1}+2 \mu_{1} L_{2}+L_{3} \\
& \varrho_{2}=\mu_{1} \mu_{2} L_{1}+\left(\mu_{1}+\mu_{2}\right) L_{2}+L_{3} \tag{23}\\
& \varrho_{3}=\mu_{2}^{2} L_{1}+2 \mu_{2} L_{2}+L_{3}
\end{align*}
$$

Now using (12)-(16) and (23) we can easily check that $R-\frac{L_{1}}{2} S \wedge S-$ $L_{2} g \wedge S-L_{3} G=0$ on U_{S}. Lemma 3.2 of [16] implies that the decomposition (21) is unique. But this completes the proof.

Let $\bar{M} \times_{F} \widetilde{N}$ be the warped product of semi-Riemannian spaces of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, such that

$$
\begin{equation*}
\frac{1}{2} T=-F L_{R} \bar{g}+\gamma w \otimes w \tag{24}
\end{equation*}
$$

on $U_{S} \subset \bar{M} \times \tilde{N}$, where γ and L_{R} are some functions on U_{S} and w is a covector field on U_{S}. Now from (8), (9) and (11) we obtain (12), (14), (16) and

$$
\begin{gather*}
R_{\alpha b c \beta}=\left(L_{R} g_{b c}-\frac{\gamma}{F} w_{b} w_{c}\right) g_{\alpha \beta} \tag{25}\\
S_{a b}=\mu_{1} g_{a b}-(n-p) \frac{\gamma}{F} w_{a} w_{b}, \quad \mu_{1}=\frac{\bar{\kappa}}{p}+(n-p) L_{R} . \tag{26}
\end{gather*}
$$

Proposition 4.1. Let $\bar{M} \times_{F} \tilde{N}$ be the warped product of semi-Riemannian spaces of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, such that (24) holds on U_{S}, with γ and w nonzero at every point of U_{S}. Then (21) is satisfied on U_{S} if and only if on U_{S} we have

$$
\begin{align*}
& \mu_{1}=\mu_{2}, \quad L_{2}=-\mu_{1} L_{1}, \quad \varrho_{1}=L_{3}, \tag{27}\\
& \varrho_{2}=\mu_{1}^{2} L_{1}, \quad \mu_{1} L_{R}=-\mu_{1}^{2} L_{1}+L_{3}, \quad \varrho_{3}=\mu_{1} L_{R} .
\end{align*}
$$

Proof. Applying (12), (14), (16), (25) and (26) to (21) we find that (21) holds on U_{S} if and only if on U_{S} we have

$$
\begin{gather*}
\left(\varrho_{1}-\mu_{1}^{2} L_{1}-\mu_{1} L_{2}-L_{3}\right) G_{a b c d}=-(n-p) \frac{\gamma}{F}\left(L_{2}+\mu_{1} L_{1}\right) \\
\quad \times\left(g_{a d} w_{b} w_{c}+g_{b c} w_{a} w_{d}-g_{a c} w_{b} w_{d}-g_{b d} w_{a} w_{c}\right), \\
\left(\varrho_{2}-\mu_{1} \mu_{2} L_{1}-\mu_{1} L_{2}-\mu_{2} L_{2}-L_{3}\right) G_{\alpha b c \beta} \tag{28}\\
=-(n-p) \frac{\gamma}{F}\left(\mu_{2} L_{1}+L_{2}\right) w_{a} w_{b} g_{\alpha \beta}, \\
\left(\varrho_{3}-\mu_{2}^{2} L_{1}-2 \mu_{2} L_{2}-L_{3}\right) G_{\alpha \beta \delta \gamma}=0 .
\end{gather*}
$$

From this we obtain our assertion easily.
As an immediate consequence of the above result and Lemma 3.1 of [16] we have the following

Theorem 4.2. Let $\bar{M} \times_{F} \widetilde{N}$ be the warped product of semi-Riemannian spaces of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, such that (24) holds on U_{S}, with γ and w nonzero at every point of U_{S}. In addition, suppose that $\mu_{1}=\mu_{2} \neq 0$ and $\mu_{1} L_{R}=\varrho_{3}$ on U_{S}. Define

$$
\begin{equation*}
L_{1}=\mu_{1}^{-2}\left(\varrho_{1}-\mu_{1} L_{R}\right), \quad L_{2}=-\mu_{1}^{-1}\left(\varrho_{1}-\mu_{1} L_{R}\right), \quad L_{3}=\varrho_{1} \tag{29}
\end{equation*}
$$

Then (21) is satisfied on U_{S}. Such a decomposition is unique on $U_{S} \cap U_{C}$.
From Proposition 2.3 we obtain

Corollary 4.1. If $\bar{M} \times_{F} \tilde{N}$ is the warped product of semi-Riemannian manifolds of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, satisfying (21) on $U_{S} \cap U_{C}$, then on $U_{S} \cap U_{C}$ we have (4), (5) and

$$
\begin{equation*}
L_{3}-L_{1}^{-1} L_{2}^{2}=\frac{\varrho_{1} \varrho_{3}-\varrho_{2}^{2}}{\varrho_{1}-2 \varrho_{2}+\varrho_{3}} \tag{30}
\end{equation*}
$$

Applying (8) and (9) in (21) we find

$$
\begin{aligned}
\frac{1}{2}\left(\frac{\bar{\kappa}}{p} \bar{g}-\frac{n-p}{2 F}\right. & T)
\end{aligned} \begin{aligned}
& \wedge\left(\frac{\bar{\kappa}}{p} \bar{g}-\frac{n-p}{2 F} T\right) \\
& =-\frac{L_{2}}{L_{1}} \bar{g} \wedge\left(\frac{\bar{\kappa}}{p} \bar{g}-\frac{n-p}{2 F} T\right)+\frac{1}{L_{1}}\left(\frac{\bar{\kappa}}{(p-1) p}-L_{3}\right) \bar{G}
\end{aligned}
$$

In view of the last relation, we now consider on $U_{S} \cap U_{C}$ the following three cases:
(a) $T=\frac{2 F \bar{\kappa}}{p(n-p)} \overline{\bar{\kappa}}$,
(b) $\quad L_{3}=\frac{\bar{\kappa}}{(p-1) p}$,
(a) $T=\frac{2 F(\bar{\kappa}-p \lambda)}{p(n-p)} \bar{g}, \quad \lambda \in \mathbb{R}-\{0\}$,
(b) $\quad L_{3}=\frac{\bar{\kappa}}{(p-1) p}-\lambda^{2} L_{1}-2 \lambda L_{2}$,
(a) $\operatorname{rank}\left(\frac{\bar{\kappa}}{p} \bar{g}-\frac{n-p}{2 F} T\right)=1$,
(b) $\quad L_{3}=\frac{\bar{\kappa}}{(p-1) p}+L_{1}^{-1} L_{2}^{2}$.

We note that (33) is an immediate consequence of Proposition 2.1.
Proposition 4.2. Let $\bar{M} \times{ }_{F} \widetilde{N}$ be a warped product of semi-Riemannian manifolds of constant curvature $(\bar{M}, \bar{g}), p \geq 2$, and $(\widetilde{N}, \widetilde{g}), n-p \geq 2$, satisfying (21) on U_{S}.
(i) If (31) holds at $x \in U_{S}$ then at x we have $\kappa \neq 0$ and

$$
\begin{align*}
R \cdot R & =-\frac{\bar{\kappa}}{p(n-p)} Q(g, R) \tag{34}\\
L_{1} & =\frac{n-p}{n-p-1} \frac{1}{\kappa}\left(1+\frac{(n-2)(n-1)}{(p-1) p} \frac{\bar{\kappa}}{\kappa}\right) \tag{35}\\
L_{2} & =-\frac{n-1}{p(p-1)} \frac{\bar{\kappa}}{\kappa} \tag{36}
\end{align*}
$$

(ii) If (32) holds at $x \in U_{S}$ then at x we have $\kappa-n \lambda \neq 0$ and

$$
\begin{equation*}
R \cdot R=\frac{p \lambda-\bar{\kappa}}{p(n-p)} Q(g, R) \tag{37}
\end{equation*}
$$

$$
\begin{align*}
L_{1}= & \frac{n-p}{n-p-1} \frac{1}{\kappa-n \lambda}\left(1-\frac{(n-2) \lambda}{\kappa-n \lambda}\right. \tag{38}\\
& \left.+\frac{(n-2)(n-1)}{(p-1) p} \frac{\bar{\kappa}}{\kappa-n \lambda}\right)
\end{align*}
$$

$$
\begin{equation*}
L_{2}=\frac{n-p}{n-p-1} \frac{1}{(\kappa-n \lambda)^{2}}(\lambda(2 p \lambda-\kappa) \tag{39}
\end{equation*}
$$

$$
\left.+\frac{(n-1) \bar{\kappa}((n-2 p) \lambda-(n-p-1) \kappa)}{p(p-1)(n-p)}\right)
$$

(iii) If (33) holds at $x \in U$ then at x we have

$$
R \cdot R=0, \quad R=\frac{L_{1}}{2} S \wedge S, \quad \operatorname{rank}(T)=1, \quad L_{2}=L_{3}=\bar{\kappa}=0
$$

Proof. (i) From (31)(a) we have

$$
\begin{equation*}
\operatorname{tr} T=\frac{2 F \bar{\kappa}}{n-p} \tag{40}
\end{equation*}
$$

Next, applying (31)(a) and (40) to (8), (9) and (11) we find

$$
\begin{equation*}
R_{a \alpha \beta b}=-\frac{\bar{\kappa}}{p(n-p)} g_{a b} g_{\alpha \beta} \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\kappa=\frac{1}{F}\left(\widetilde{\kappa}-F \bar{\kappa}-(n-p-1)(n-p) \frac{\Delta_{1} F}{4 F}\right) \tag{42}
\end{equation*}
$$

We note that κ is nonzero at x. Indeed, $\kappa=0$ implies $S=0$, i.e. $x \in M-U_{S}$, a contradiction. Further, we set

$$
\begin{equation*}
H=\frac{1}{2} T+F L_{R} \bar{g}, \quad L_{R}=-\frac{\bar{\kappa}}{p(n-p)} \tag{44}
\end{equation*}
$$

Evidently, $H=0$. Now, in view of Theorem 2.1 of [11], (34) holds at x. Next, combining (40)-(43) with (22), we obtain (36). Similarly, using (22) and (40)-(43) we get (35).
(ii) From (32) we have

$$
\begin{equation*}
\operatorname{tr} T=\frac{2 F(\bar{\kappa}-p \lambda)}{n-p} \tag{45}
\end{equation*}
$$

Substituting (32)(a) and (45) into (8), (9) and (11) we find

$$
\begin{equation*}
R_{a \alpha \beta b}=-\frac{\bar{\kappa}-p \lambda}{p(n-p)} g_{a b} g_{\alpha \beta} \tag{46}
\end{equation*}
$$

$$
\begin{gather*}
\text { (a) } S_{a d}=\lambda g_{a d}, \quad \text { (b) } S_{\alpha \beta}=\frac{\kappa-p \lambda}{n-p} g_{\alpha \beta} \tag{47}\\
\kappa=\frac{1}{F}\left(\widetilde{\kappa}-F \bar{\kappa}+2 p \lambda F-(n-p-1)(n-p) \frac{\Delta_{1} F}{4 F}\right)
\end{gather*}
$$

We note that $\kappa-n \lambda$ is nonzero at x. Indeed, $\kappa-n \lambda=0$ implies $S=\frac{\kappa}{n} g$, i.e. $x \in M-U_{S}$, a contradiction. Further, we set

$$
\begin{equation*}
H=\frac{1}{2} T+F L_{R} \bar{g}, \quad L_{R}=\frac{p \lambda-\bar{\kappa}}{p(n-p)} \tag{49}
\end{equation*}
$$

Evidently, $H=0$. Now, in view of Theorem 2.1 of [11], (37) holds at x. Next, putting (45)-(48) into (22), we obtain (39). Similarly, using (22) and (45)-(48) we get (38).
(iii) From (4), by (33)(b), we obtain

$$
\begin{equation*}
L_{R}=-\frac{(n-2) \bar{\kappa}}{p(p-1)}-\frac{L_{2}}{L_{1}} \tag{50}
\end{equation*}
$$

Further, from (33)(a) at x we have

$$
\begin{equation*}
\frac{1}{2} T=\frac{F \bar{\kappa}}{p(n-p)} \bar{g}+\beta w \otimes w, \quad \beta \in \mathbb{R} \tag{51}
\end{equation*}
$$

where w is a covector at x. Next, we set

$$
\begin{equation*}
H=\frac{1}{2} T+F L_{R} \bar{g} \tag{52}
\end{equation*}
$$

Applying (50) and (51) in (52) we find

$$
\begin{equation*}
H=-\left(\frac{(n-p-1)(n-1) \bar{\kappa}}{p(p-1)(n-p)}+\frac{L_{2}}{L_{1}}\right) F \bar{g}+\beta w \otimes w \tag{53}
\end{equation*}
$$

From Theorem 2.2 of [11] it follows that $\operatorname{rank}(H) \leq 1$. Hence, in view of our assumptions, $\operatorname{rank}(H)=1$. Thus at x we have

$$
\begin{equation*}
\frac{L_{2}}{L_{1}}=-\frac{(n-p-1)(n-1) \bar{\kappa}}{p(p-1)(n-p)} \tag{54}
\end{equation*}
$$

Inserting now (54) in (50) we get

$$
\begin{equation*}
L_{R}=-\frac{\bar{\kappa}}{p(n-p)} \tag{55}
\end{equation*}
$$

We also have the following relation ([11, Corollary 2.1]):

$$
\begin{equation*}
\frac{2 F \bar{\kappa}}{p(p-1)}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)=T_{a c} H_{b d}-T_{a b} H_{c d} . \tag{56}
\end{equation*}
$$

Since $H=\beta w \otimes w,(56)$ turns into

$$
\begin{equation*}
\frac{2 F \bar{\kappa}}{p(p-1)}\left(w_{c} \bar{g}_{a b}-w_{b} \bar{g}_{a c}\right)=w_{b} T_{a c}-w_{c} T_{a b} \tag{57}
\end{equation*}
$$

where w_{b} are the local components of the covector w. This, by (51), yields

$$
\begin{equation*}
\bar{\kappa}\left(w_{c} \bar{g}_{a b}-w_{b} \bar{g}_{a c}\right)=0 \tag{58}
\end{equation*}
$$

and, in consequence, $\bar{\kappa}=0$ at x. Thus (55) yields $L_{R}=0$ and $R \cdot R=0$. In addition, from (57) we get $\operatorname{rank}(T)=1$. Further, by (54), $L_{2}=0$. Similarly, (33)(b) gives $L_{3}=0$. Now (21) reduces at x to $R=\frac{L_{1}}{2} S \wedge S$. Our proposition is thus proved.

Remark 4.1. Necessary and sufficient conditions for a warped product to satisfy $R=\frac{L_{1}}{2} S \wedge S$ were found in [25, Proposition 2.2].

Example 4.1. Let $(\bar{M}, \bar{g}), p=\operatorname{dim} \bar{M} \geq 2$, be the manifold defined in Example 2.1 of [10] and let F be the function on \bar{M} defined by (9) of [10]. Further, let $(\widetilde{N}, \widetilde{g}), n-p=\operatorname{dim} \widetilde{N} \geq 2$, be a semi-Riemannian space of constant curvature l. We consider the warped product $\bar{M} \times{ }_{F} \widetilde{N}$ (see Example 3.2 of [10]). It satisfies the following relations, among others (see formulas (15)-(17) of [10]):

$$
\begin{align*}
& R_{a b c d}=\varrho_{1} G_{a b c d}, \quad R_{a \alpha \beta b}=\varrho_{2} G_{a \alpha \beta b}, \quad R_{\alpha \beta \gamma \delta}=\varrho_{3} G_{\alpha \beta \gamma \delta} \\
& \varrho_{1}=k, \quad \varrho_{2}=k(1-c \tau), \quad \varrho_{3}=\left(l-c_{1}\right) \tau^{2}-2 k c \tau+k \tag{59}\\
& k=\frac{\bar{\kappa}}{(p-1) p}>0, l=\frac{\widetilde{\kappa}}{(n-p-1)(n-p)}, \quad \tau=\frac{1}{\sqrt{F}}, c, c_{1} \in \mathbb{R}
\end{align*}
$$

In the following we will assume that $l>c_{1}$ and $c \neq 0$. This, together with the formulas (21) and (25) of [10], implies that $U_{S} \cap U_{C}=\bar{M} \times \widetilde{N}$. Further, $T=-2 k(1-c \tau) F \bar{g}$, whence

$$
\begin{equation*}
T=-2 F L_{R} \bar{g}, \quad L_{R}=k(1-c \tau) \tag{61}
\end{equation*}
$$

From Theorem 4.1 it follows that the curvature tensor R of $\bar{M} \times{ }_{F} \tilde{N}$ has a decomposition of the form (21), with L_{1}, L_{2} and L_{3} defined by (22). From Proposition 2.3 , by making use of (4), (5), (30), (60) and (61), we obtain

$$
\begin{align*}
R \cdot R & =k(1-c \tau) Q(g, R), \tag{62}\\
R \cdot R-Q(S, R) & =-(n-2) k\left(1-\frac{k c^{2}}{l-c_{1}}\right) Q(g, C) \tag{63}
\end{align*}
$$

We now prove that $\bar{M} \times{ }_{F} \widetilde{N}$ can be (locally) realized as a hypersurface in a semi-Riemannian space of constant curvature. We set

$$
\begin{equation*}
\frac{\mu}{n(n+1)}=k\left(1-\frac{k c^{2}}{l-c_{1}}\right), \quad \mu_{1}^{2}=\frac{k^{2} c^{2}}{l-c_{1}}, \quad \mu_{2}=\mu_{1}-\frac{k c \tau}{\mu_{1}} \tag{64}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\mu_{1} \mu_{2}=\mu_{1}^{2}-k c \tau, \quad \mu_{2}^{2}=\mu_{1}^{2}-2 k c \tau+\left(l-c_{1}\right) \tau^{2} \tag{65}
\end{equation*}
$$

Further, we define on $\bar{M} \times \widetilde{N}$ a symmetric (0,2)-tensor H by

$$
\begin{equation*}
H_{a b}=\mu_{1} g_{a b}, \quad H_{a \alpha}=0, \quad H_{\alpha \beta}=\mu_{2} g_{\alpha \beta} \tag{66}
\end{equation*}
$$

Now, using (59), (60) and (64)-(66) we get

$$
\begin{aligned}
R_{a b c d} & =\left(\frac{k^{2} c^{2}}{l-c_{1}}+\frac{\mu}{n(n+1)}\right) G_{a b c d}=\left(\mu_{1}^{2}+\frac{\mu}{n(n+1)}\right) G_{a b c d} \\
& =\frac{1}{2}(H \wedge H)_{a b c d}+\frac{\mu}{n(n+1)} G_{a b c d}, \\
R_{a \alpha \beta d} & =\left(k+\mu_{1} \mu_{2}-\mu_{1}^{2}\right) G_{a \alpha \beta d}=\left(\mu_{1} \mu_{2}+\frac{\mu}{n(n+1)}\right) G_{a \alpha \beta d} \\
& =\frac{1}{2}(H \wedge H)_{a \alpha \beta d}+\frac{\mu}{n(n+1)} G_{a \alpha \beta d}, \\
R_{\alpha \beta \gamma \delta} & =\left(\left(l-c_{1}\right) \tau^{2}-2 k c \tau+k\right) G_{\alpha \beta \gamma \delta}=\left(k+\varrho_{2}^{2}-\varrho_{1}^{2}\right) G_{\alpha \beta \gamma \delta} \\
& =\left(\mu_{2}^{2}+\frac{\mu}{n(n+1)}\right) G_{\alpha \beta \gamma \delta}=\frac{1}{2}(H \wedge H)_{\alpha \beta \gamma \delta}+\frac{\mu}{n(n+1)} G_{\alpha \beta \gamma \delta}
\end{aligned}
$$

Other local components of $R, H \wedge H$ and G are zero. Thus $R=\frac{1}{2} H \wedge H+$ $\frac{\mu}{n(n+1)} G$. In addition, using (7) and (66) we can check that H is a Codazzi tensor. Therefore $\bar{M} \times{ }_{F} \tilde{N}$ can be realized locally as a hypersurface in a semi-Riemannian space of constant curvature.

We finish the paper with some corrections to [10]. Namely, formula (34) of [10] should have the form

$$
\begin{align*}
Q(S, R)_{\alpha a b c d \beta}= & -\left(S_{d \alpha} R_{\beta a b c}+S_{d a} R_{\alpha \beta b c}+S_{d b} R_{\alpha a \beta c}+S_{d c} R_{\alpha a b \beta}\right. \tag{67}\\
& \left.-S_{\beta \alpha} R_{d a b c}-S_{\beta a} R_{\alpha d b c}-S_{\beta b} R_{\alpha a d c}-S_{\beta c} R_{\alpha a b d}\right) \\
= & S_{d b} R_{a \alpha \beta c}-S_{d c} R_{a \alpha \beta b}+S_{\beta \alpha} R_{d a b c} \\
= & k \tau^{2}\left(k c-(n-p) k c^{2}+(n-p-1)\left(l-c_{1}\right)\right) g_{\alpha \beta} G_{a b c d} .
\end{align*}
$$

We note that the definitions of $R \cdot R, Q(S, R)$ and $Q(g, C)$ and of other similar tensors in [10] and in the present paper differ in sign. Using [10, (26), (27), (32), (33), (35)] and (67) we obtain (63). Therefore assertion (v) of Theorem 4.1 of [10] should read: (v) $R \cdot R-Q(S, R)$ and $Q(g, C)$ are linearly dependent on N. This statement, together with Example 4.1, leads to the corrected version of the second part of Corollary 4.1 of [10]: the warped product $S^{p}(1 / \sqrt{k}) \times{ }_{F} S^{n-p}(1 / \sqrt{l}), p \geq 2, n-p \geq 2, k>0, l>0$, can be locally realized as a hypersurface in a space of constant curvature.

REFERENCES

[1] L. Alias, A. Romero and M. Sánchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, in: Geometry and Topology of Submanifolds, VII, World Sci., River Edge, NJ, 1995, 67-70.
[2] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Dekker, New York, 1981.
[3] J. K. Beem, P. E. Ehrlich and T. G. Powell, Warped product manifolds in relativity, in: Selected Studies, Physics-Astrophysics, Mathematics, History of Sciences, a volume dedicated to the memory of Albert Einstein, North-Holland, Amsterdam, 1982, 41-56.
[4] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk and L. Verstraelen, On some type of curvature conditions, in: Banach Center Publ. 57, Inst. Math., Polish Acad. Sci., 2002, 179-194.
[5] F. Defever, R. Deszcz and M. Prvanović, On warped product manifolds satisfying some curvature condition of pseudosymmetry type, Bull. Greek Math. Soc. 36 (1994), 43-67.
[6] F. Defever, R. Deszcz, M. Hotloś, M. Kucharski and Z. Șentürk, Generalisations of Robertson-Walker spaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 43 (2000), 13-24.
[7] F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken, On pseudosymmetric spacetimes, J. Math. Phys. 35 (1994), 5908-5921.
[8] R. Deszcz, Certain curvature characterizations of affine hypersurfaces, Colloq. Math. 63 (1992), 21-39.
[9] -, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1-34.
[10] -, Curvature properties of certain compact pseudosymmetric manifolds, Colloq. Math. 65 (1993), 139-147.
[11] -, On pseudosymmetric warped product manifolds, in: Geometry and Topology of Submanifolds, V, World Sci., River Edge, NJ, 1993, 132-146.
[12] R. Deszcz and M. Głogowska, Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), 87-101.
[13] -, 一, Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces, Publ. Inst. Math. (Beograd) (N.S.) 72 (86) (2002), 81-94.
[14] R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk and L. Verstraelen, A review on pseudosymmetry type manifolds, Dept. Math., Agricultural Univ. Wrocław, Ser. A, Theory and Methods, Report No. 84, 2000.
[15] R. Deszcz and M. Hotloś, On a certain subclass of pseudosymmetric manifolds, Publ. Math. Debrecen 53 (1998), 29-48.
[16] -, 一, On hypersurfaces in space forms with type number two, Dept. Math., Agricultural Univ. Wrocław, Ser. A, Theory and Methods, Report No. 102, 2002.
[17] R. Deszcz and M. Kucharski, On curvature properties of certain generalized Robert-son-Walker spacetimes, Tsukuba J. Math. 23 (1999), 113-130.
[18] R. Deszcz, P. Verheyen and L. Verstraelen, On some generalized Einstein metric conditions, Publ. Inst. Math. (Beograd) (N.S.) 60 (74) (1996), 108-120.
[19] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, World Sci., River Edge, NJ, 1991, 131-147.
[20] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation 23 (1991), 671-681.
[21] P. E. Ehrlich, Y.-T. Jung and S.-B. Kim, Constant scalar curvatures on warped product manifolds, Tsukuba J. Math. 20 (1996), 239-256.
[22] M. Głogowska, On some class of semisymmetric manifolds, Publ. Inst. Math. (Beograd) (N.S.) 72 (86) (2002), 95-106.
[23] S. W. Hawking, T. Hertog and H. S. Reall, Brane new world, Phys. Rev. D 62 (2000), 04351.
[24] J. Khoury, P. J. Steinhardt and D. Waldram, Inflationary solutions in the brane world and their geometrical interpretation, ibid. 63 (2001), 103505.
[25] D. Kowalczyk, On semi-Riemannian manifolds satisfying some curvature conditions, Soochow J. Math. 27 (2001), 445-461.
[26] -, On Schwarzschild type spacetimes, Dept. Math., Agricultural Univ. Wrocław, Ser. A, Theory and Methods, Report No. 83, 2000.
[27] D. Kramer, H. Stephani, E. Herlt, M. MacCallum and E. Schmutzer, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 1980.
[28] G. I. Kruchkovich, On some class of Riemannian spaces, Trudy Sem. po Vekt. i Tenz. Analizu 11 (1961), 103-128 (in Russian).
[29] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[30] E. Papantonopoulos and I. Pappa, Cosmological evolution of a brane universe in a type 0 string background, Phys. Rev. D 63 (2001), 103506.
[31] M. Sánchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativity Gravitation 30 (1998), 915-932.

Department of Mathematics
Agricultural University of Wrocław
Grunwaldzka 53
50-357 Wrocław, Poland
E-mail: rysz@ozi.ar.wroc.pl
dorotka@ozi.ar.wroc.pl

[^0]: 2000 Mathematics Subject Classification: 53B20, 53B30, 53B50, 53C25, 53C35, 53C80.
 Key words and phrases: pseudosymmetric manifold, pseudosymmetry type manifold, warped product, spacetime, Robertson-Walker spacetime, generalized Robertson-Walker spacetime, hypersurface.

 Research supported by the Agricultural University of Wrocław (Poland) grant 239/GW/2001.

