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ON FREE SUBGROUPS OF UNITS IN QUATERNION ALGEBRAS II

BY

JAN KREMPA (Warszawa)

Abstract. Let A ⊆ Q be any subring. We extend our earlier results on unit groups of
the standard quaternion algebra H(A) to units of certain rings of generalized quaternions

H(A, a, b) =
(
−a,−b
A

)
, where a, b ∈ A. Next we show that there is an algebra embedding

of the ring H(A, a, b) into the algebra of standard Cayley numbers over A. Using this
embedding we answer a question asked in the first part of this paper.

1. Generalized quaternions. We apply the notation of [2]. In par-
ticular, F stands for a free group of rank two and An = Z[1/n] for any
n ∈ N.

For any subring A ⊆ Q we consider not only the standard quaternion
A-algebra H(A), but also a generalized quaternion algebra H(A, a, b), where
a, b ∈ A are positive numbers. By definition H(A, a, b) =

(−a,−b
A

)
is an

associative A-algebra free as an A-module, with base 1, ia, jb, kab, and with
multiplication given by

i2a = −a, j2
b = −b, k2

ab = −ab, iajb = −jbia = kab.(1)

Under this notation H(A) = H(A, 1, 1), i = i1, j = j1 and k = k1. Using
(1) we have a natural embedding ε of H(A, a, b) into the algebra H of real
quaternions induced by

ε(ia) =
√
a i, ε(jb) =

√
b j.(2)

Using this embedding we can apply the standard quaternion notation. In
particular, for α = a0 + a1ia + a2jb + a3kab ∈ H(A, a, b) we can write

α = a0 − a1ia − a2jb − a3kab,

n(α) = αα = a2
0 + aa2

1 + ba2
2 + aba2

3.(3)

The unit group of an arbitrary ring R is denoted by U(R). For any α ∈
H(A, a, b), by (3), we know that α ∈ U(H(A, a, b)) if and only if n(α) ∈ U(A),
because in H we have α−1 = α/n(α).
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In [2] the following result was proved:

Theorem 1.1. Let Z ⊂ A ⊆ Q be a subring. If A = A2 then the group
U(H(A)) is cyclic-by-finite. In any other case F ⊆ U(H(A)).

We are going to extend this result. Because any subring of Q is a local-
ization of Z at a subset of N, we have

Proposition 1.2. Let A ⊆ Q and let a, b, c, d ∈ A be positive numbers.
Then H(A, ac2, bd2) ⊆ H(A, a, b). In particular , H(A, a, b) ⊆ H(A, a′, b′),
where a′, b′ ∈ N and are square free.

If in generalized quaternions one of parameters is equal to 1 then a
further reduction is possible.

Proposition 1.3. Let A ⊆ Q be a subring and b ∈ N be square free. If
in N we have b = cd, where d is a sum of two squares, then there exists an
embedding of H(A, 1, b) into H(A, 1, c).

Proof. Let d = x2 + y2 where x, y ∈ N. Then the A-algebra homo-
morphism φ induced by φ(i) = i and φ(jb) = xjc + ykc is the required
embedding.

Corollary 1.4. Let Z ⊂ A ⊆ Q be a subring and let b ∈ A be a positive
element which is a sum of two squares in A. If A = A2 then U(H(A, 1, b))
is cyclic-by-finite. In any other case F ⊆ U(H(A, 1, b)).

Proof. By previous propositions we have an embedding η : H(A, 1, b)→
H(A, 1, 1) = H(A), as an A-algebra. Now it is not hard to check that the
image of η has finite additive index in H(A). From Lemma 4.2 in [3] it then
follows that the group U(H(A, 1, b)) has a finite index in the group U(H(A)).
Hence the claim becomes a consequence of Theorem 1.1.

Now we show that this corollary cannot be extended to all b ∈ N.
Proposition 1.5. Let b ∈ N be square free and let p ∈ N be a prime

of the form 4k + 3, where k ≥ 0. If p | b then the group U(H(Ap, 1, b)) is
cyclic-by-finite.

Proof. Let S = H(Ap, 1, b). Then the group 〈p〉 is a central subgroup of
U(S). Moreover, any u ∈ U(S) can be written in the form u = pkα, where
k ∈ Z and α = a0 + a1 + a2jb + a3kb ∈ H(Z, 1, b). We can assume that not
all ai’s are divisible by p and of course n(α) = pr for some r ≥ 0.

Assume r ≥ 2. This implies that p | (a2
0 + a2

1), hence p | a0 and p | a1
because p is not a sum of two squares in N (see [5, §13.5]). From (3) we then
deduce that p | (a2

2 + a2
3). Hence, as above, p | a2 and p | a3, a contradiction

to the choice of α.
In this way we proved that r < 2. Hence we have only a finite number

of elements α, and the group 〈p〉 has finite index in U(S).
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On the other hand we have

Example 1.6. Consider the ring R = H(A2, 1, 3) and elements α =
1 + j3 + 2k3, β = 1 − 2j3 + k3. Then, from (3), n(α) = n(β) = 16. Hence
α, β ∈ U(R). Let G = 〈α, β〉. Using the embedding ε : R→ H defined by (2)
we obtain an embedding of G into U(H). Now, as in §2 of [2], we can apply a
result of Świerczkowski to show that the group ε(G) is free nonabelian with
free generators εα and εβ. Hence G ' F .

2. Cayley numbers. In this section C(A) denotes the ring of classical
Cayley numbers over a ring A. Hence C(A) = H(A)⊕ H(A)e, where

(a+ be)(c+ de) = ac− bd+ (ad+ bc)e(4)

for all a, b, c, d ∈ H(A). Under this multiplication C(A) is an alternative
ring, in which the set U(C(A)) of invertible elements is a Moufang loop (for
details see [1]). Hence, any two-generated subloop of U(C(A)) is a subgroup.

We need the following classical result of Gauss in number theory (see [4,
p. 45]):

Lemma 2.1. Let n ∈ N. Then n can be represented as a sum of three
squares of nonnegative integers if and only if n is not of the form 2k(8l+7),
where k, l ≥ 0, k, l ∈ Z.

Theorem 2.2. Let A ⊆ Q be a subring and let a, b ∈ A be positive
numbers. Then there exists an A-algebra embedding of H(A, a, b) into C(A).

Proof. By Proposition 1.2 we can assume that a, b ∈ N and are square
free.

First let a = a2
1 + a2

2 + a2
3 and b = b20 + b21 + b22 + b23, where all ar, bs are

nonnegative integers. Consider the A-module mapping ϕ of H(A, a, b) into
C(A) such that ϕ(1) = 1 and

ϕ(ia) = a1i+ a2j + a3k, ϕ(jb) = (b0 + b1i+ b2j + b3k)e,

ϕ(kab) = ϕ(ia)ϕ(jb).

With the help of (4) and (1) it can be checked that ϕ is an embedding of
A-algebras.

If b is a sum of three squares in Z, then it is enough to observe first that
H(A, a, b) ' H(A, b, a) and then to apply the previous case.

Finally, suppose neither a nor b is a sum of three squares of nonnegative
integers. We can also assume that a ≤ b. Because a and b are square free, by
Lemma 2.1 we have a ≡ 7 mod 8 and b ≡ 7 mod 8. By the Legendre Four
Square Theorem (see [5, 4]) and our assumption we know that a is a sum of
four squares in N. Write

a = a2
1 + a2

2 + a2
3 + a2

4.
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It is easy to check that two ai’s, say a3 and a4, are odd. Set c = b−(a2
3 +a2

4).
Then c ∈ N and it is congruent to 5 modulo 8. Hence, by Lemma 2.1 we can
write c = c2

1 + c2
2 + c2

3 and consequently

b = a2
3 + a2

4 + c2
1 + c2

2 + c2
3.

Now we can define an A-module mapping ϕ of H(A, a, b) into C(A) by

ϕ(1) = 1, ϕ(ia) = a1i+ a2j + a3k + a4e,

ϕ(jb) = −a4k + (a3 + c1i+ c2j + c3k)e, ϕ(kab) = ϕ(ia)ϕ(jb).

Using (4) and (1) it can be checked that ϕ is an embedding of A-algebras.

As a consequence of the above theorem, Theorem 1.1 and Example 1.6
we obtain the following result, answering in particular a question from [2,
p. 27].

Corollary 2.3. Let Z ⊂ A ⊆ Q be a subring. Then F ⊆ U(C(A)).

Remark. From Theorem 1.1, Example 1.6 and [2] it is visible that there
is an effective construction of F ⊆ C(A) for any Z ⊂ A ⊆ Q.
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