COLLOQUIUM MATHEMATICUM

ON FREE SUBGROUPS OF UNITS IN QUATERNION ALGEBRAS II

BY
JAN KREMPA (Warszawa)

Abstract

Let $A \subseteq \mathbb{Q}$ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra $\mathrm{H}(A)$ to units of certain rings of generalized quaternions $\mathrm{H}(A, a, b)=\left(\frac{-a,-b}{A}\right)$, where $a, b \in A$. Next we show that there is an algebra embedding of the ring $\mathrm{H}(A, a, b)$ into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.

1. Generalized quaternions. We apply the notation of [2]. In particular, \mathcal{F} stands for a free group of rank two and $A_{n}=\mathbb{Z}[1 / n]$ for any $n \in \mathbb{N}$.

For any subring $A \subseteq \mathbb{Q}$ we consider not only the standard quaternion A-algebra $\mathrm{H}(A)$, but also a generalized quaternion algebra $\mathrm{H}(A, a, b)$, where $a, b \in A$ are positive numbers. By definition $\mathrm{H}(A, a, b)=\left(\frac{-a,-b}{A}\right)$ is an associative A-algebra free as an A-module, with base $1, i_{a}, j_{b}, k_{a b}$, and with multiplication given by

$$
\begin{equation*}
i_{a}^{2}=-a, \quad j_{b}^{2}=-b, \quad k_{a b}^{2}=-a b, \quad i_{a} j_{b}=-j_{b} i_{a}=k_{a b} \tag{1}
\end{equation*}
$$

Under this notation $\mathrm{H}(A)=\mathrm{H}(A, 1,1), i=i_{1}, j=j_{1}$ and $k=k_{1}$. Using (1) we have a natural embedding ε of $\mathrm{H}(A, a, b)$ into the algebra \mathbb{H} of real quaternions induced by

$$
\begin{equation*}
\varepsilon\left(i_{a}\right)=\sqrt{a} i, \quad \varepsilon\left(j_{b}\right)=\sqrt{b} j . \tag{2}
\end{equation*}
$$

Using this embedding we can apply the standard quaternion notation. In particular, for $\alpha=a_{0}+a_{1} i_{a}+a_{2} j_{b}+a_{3} k_{a b} \in \mathrm{H}(A, a, b)$ we can write

$$
\begin{align*}
\bar{\alpha} & =a_{0}-a_{1} i_{a}-a_{2} j_{b}-a_{3} k_{a b} \\
\mathrm{n}(\alpha) & =\alpha \bar{\alpha}=a_{0}^{2}+a a_{1}^{2}+b a_{2}^{2}+a b a_{3}^{2} \tag{3}
\end{align*}
$$

The unit group of an arbitrary ring R is denoted by $\mathrm{U}(R)$. For any $\alpha \in$ $\mathrm{H}(A, a, b)$, by (3), we know that $\alpha \in \mathrm{U}(\mathrm{H}(A, a, b))$ if and only if $\mathrm{n}(\alpha) \in \mathrm{U}(A)$, because in \mathbb{H} we have $\alpha^{-1}=\bar{\alpha} / \mathrm{n}(\alpha)$.

[^0]In [2] the following result was proved:
Theorem 1.1. Let $\mathbb{Z} \subset A \subseteq \mathbb{Q}$ be a subring. If $A=A_{2}$ then the group $\mathrm{U}(\mathrm{H}(A))$ is cyclic-by-finite. In any other case $\mathcal{F} \subseteq \mathrm{U}(\mathrm{H}(A))$.

We are going to extend this result. Because any subring of \mathbb{Q} is a localization of \mathbb{Z} at a subset of \mathbb{N}, we have

Proposition 1.2. Let $A \subseteq \mathbb{Q}$ and let $a, b, c, d \in A$ be positive numbers. Then $\mathrm{H}\left(A, a c^{2}, b d^{2}\right) \subseteq \mathrm{H}(A, \bar{a}, b)$. In particular, $\mathrm{H}(A, a, b) \subseteq \mathrm{H}\left(A, a^{\prime}, b^{\prime}\right)$, where $a^{\prime}, b^{\prime} \in \mathbb{N}$ and are square free.

If in generalized quaternions one of parameters is equal to 1 then a further reduction is possible.

Proposition 1.3. Let $A \subseteq \mathbb{Q}$ be a subring and $b \in \mathbb{N}$ be square free. If in \mathbb{N} we have $b=c d$, where d is a sum of two squares, then there exists an embedding of $\mathrm{H}(A, 1, b)$ into $\mathrm{H}(A, 1, c)$.

Proof. Let $d=x^{2}+y^{2}$ where $x, y \in \mathbb{N}$. Then the A-algebra homomorphism ϕ induced by $\phi(i)=i$ and $\phi\left(j_{b}\right)=x j_{c}+y k_{c}$ is the required embedding.

Corollary 1.4. Let $\mathbb{Z} \subset A \subseteq \mathbb{Q}$ be a subring and let $b \in A$ be a positive element which is a sum of two squares in A. If $A=A_{2}$ then $\mathrm{U}(\mathrm{H}(A, 1, b))$ is cyclic-by-finite. In any other case $\mathcal{F} \subseteq \mathrm{U}(\mathrm{H}(A, 1, b))$.

Proof. By previous propositions we have an embedding $\eta: \mathrm{H}(A, 1, b) \rightarrow$ $\mathrm{H}(A, 1,1)=\mathrm{H}(A)$, as an A-algebra. Now it is not hard to check that the image of η has finite additive index in $\mathrm{H}(A)$. From Lemma 4.2 in [3] it then follows that the group $\mathrm{U}(\mathrm{H}(A, 1, b))$ has a finite index in the group $\mathrm{U}(\mathrm{H}(A))$. Hence the claim becomes a consequence of Theorem 1.1.

Now we show that this corollary cannot be extended to all $b \in \mathbb{N}$.
Proposition 1.5. Let $b \in \mathbb{N}$ be square free and let $p \in \mathbb{N}$ be a prime of the form $4 k+3$, where $k \geq 0$. If $p \mid b$ then the group $\mathrm{U}\left(\mathrm{H}\left(A_{p}, 1, b\right)\right)$ is cyclic-by-finite.

Proof. Let $S=\mathrm{H}\left(A_{p}, 1, b\right)$. Then the group $\langle p\rangle$ is a central subgroup of $\mathrm{U}(S)$. Moreover, any $u \in \mathrm{U}(S)$ can be written in the form $u=p^{k} \alpha$, where $k \in \mathbb{Z}$ and $\alpha=a_{0}+a_{1}+a_{2} j_{b}+a_{3} k_{b} \in \mathrm{H}(\mathbb{Z}, 1, b)$. We can assume that not all a_{i} 's are divisible by p and of course $\mathrm{n}(\alpha)=p^{r}$ for some $r \geq 0$.

Assume $r \geq 2$. This implies that $p \mid\left(a_{0}^{2}+a_{1}^{2}\right)$, hence $p \mid a_{0}$ and $p \mid a_{1}$ because p is not a sum of two squares in \mathbb{N} (see [5, §13.5]). From (3) we then deduce that $p \mid\left(a_{2}^{2}+a_{3}^{2}\right)$. Hence, as above, $p \mid a_{2}$ and $p \mid a_{3}$, a contradiction to the choice of α.

In this way we proved that $r<2$. Hence we have only a finite number of elements α, and the group $\langle p\rangle$ has finite index in $\mathrm{U}(S)$.

On the other hand we have
Example 1.6. Consider the ring $R=\mathrm{H}\left(A_{2}, 1,3\right)$ and elements $\alpha=$ $1+j_{3}+2 k_{3}, \beta=1-2 j_{3}+k_{3}$. Then, from (3), $\mathrm{n}(\alpha)=\mathrm{n}(\beta)=16$. Hence $\alpha, \beta \in \mathrm{U}(R)$. Let $G=\langle\alpha, \beta\rangle$. Using the embedding $\varepsilon: R \rightarrow \mathbb{H}$ defined by (2) we obtain an embedding of G into $\mathrm{U}(\mathbb{H})$. Now, as in $\S 2$ of [2], we can apply a result of Świerczkowski to show that the group $\varepsilon(G)$ is free nonabelian with free generators $\varepsilon \alpha$ and $\varepsilon \beta$. Hence $G \simeq \mathcal{F}$.
2. Cayley numbers. In this section $\mathrm{C}(A)$ denotes the ring of classical Cayley numbers over a ring A. Hence $\mathrm{C}(A)=\mathrm{H}(A) \oplus \mathrm{H}(A) e$, where

$$
\begin{equation*}
(a+b e)(c+d e)=a c-b \bar{d}+(a d+b \bar{c}) e \tag{4}
\end{equation*}
$$

for all $a, b, c, d \in \mathrm{H}(A)$. Under this multiplication $\mathrm{C}(A)$ is an alternative ring, in which the set $\mathrm{U}(\mathrm{C}(A))$ of invertible elements is a Moufang loop (for details see [1]). Hence, any two-generated subloop of $\mathrm{U}(\mathrm{C}(A))$ is a subgroup.

We need the following classical result of Gauss in number theory (see [4, p. 45]):

Lemma 2.1. Let $n \in \mathbb{N}$. Then n can be represented as a sum of three squares of nonnegative integers if and only if n is not of the form $2^{k}(8 l+7)$, where $k, l \geq 0, k, l \in \mathbb{Z}$.

Theorem 2.2. Let $A \subseteq \mathbb{Q}$ be a subring and let $a, b \in A$ be positive numbers. Then there exists an A-algebra embedding of $\mathrm{H}(A, a, b)$ into $\mathrm{C}(A)$.

Proof. By Proposition 1.2 we can assume that $a, b \in \mathbb{N}$ and are square free.

First let $a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$ and $b=b_{0}^{2}+b_{1}^{2}+b_{2}^{2}+b_{3}^{2}$, where all a_{r}, b_{s} are nonnegative integers. Consider the A-module mapping φ of $\mathrm{H}(A, a, b)$ into $\mathrm{C}(A)$ such that $\varphi(1)=1$ and

$$
\begin{aligned}
\varphi\left(i_{a}\right) & =a_{1} i+a_{2} j+a_{3} k, \quad \varphi\left(j_{b}\right)=\left(b_{0}+b_{1} i+b_{2} j+b_{3} k\right) e \\
\varphi\left(k_{a b}\right) & =\varphi\left(i_{a}\right) \varphi\left(j_{b}\right)
\end{aligned}
$$

With the help of (4) and (1) it can be checked that φ is an embedding of A-algebras.

If b is a sum of three squares in \mathbb{Z}, then it is enough to observe first that $\mathrm{H}(A, a, b) \simeq \mathrm{H}(A, b, a)$ and then to apply the previous case.

Finally, suppose neither a nor b is a sum of three squares of nonnegative integers. We can also assume that $a \leq b$. Because a and b are square free, by Lemma 2.1 we have $a \equiv 7 \bmod 8$ and $b \equiv 7 \bmod 8$. By the Legendre Four Square Theorem (see $[5,4]$) and our assumption we know that a is a sum of four squares in \mathbb{N}. Write

$$
a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}
$$

It is easy to check that two a_{i} 's, say a_{3} and a_{4}, are odd. Set $c=b-\left(a_{3}^{2}+a_{4}^{2}\right)$. Then $c \in \mathbb{N}$ and it is congruent to 5 modulo 8. Hence, by Lemma 2.1 we can write $c=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}$ and consequently

$$
b=a_{3}^{2}+a_{4}^{2}+c_{1}^{2}+c_{2}^{2}+c_{3}^{2}
$$

Now we can define an A-module mapping φ of $\mathrm{H}(A, a, b)$ into $\mathrm{C}(A)$ by

$$
\begin{gathered}
\varphi(1)=1, \quad \varphi\left(i_{a}\right)=a_{1} i+a_{2} j+a_{3} k+a_{4} e \\
\varphi\left(j_{b}\right)=-a_{4} k+\left(a_{3}+c_{1} i+c_{2} j+c_{3} k\right) e, \quad \varphi\left(k_{a b}\right)=\varphi\left(i_{a}\right) \varphi\left(j_{b}\right)
\end{gathered}
$$

Using (4) and (1) it can be checked that φ is an embedding of A-algebras.
As a consequence of the above theorem, Theorem 1.1 and Example 1.6 we obtain the following result, answering in particular a question from [2, p. 27].

Corollary 2.3. Let $\mathbb{Z} \subset A \subseteq \mathbb{Q}$ be a subring. Then $\mathcal{F} \subseteq \mathrm{U}(\mathrm{C}(A))$.
Remark. From Theorem 1.1, Example 1.6 and [2] it is visible that there is an effective construction of $\mathcal{F} \subseteq \mathrm{C}(A)$ for any $\mathbb{Z} \subset A \subseteq \mathbb{Q}$.

REFERENCES

[1] E. G. Goodaire, E. Jespers and C. Polcino Milies, Alternative Loop Rings, Elsevier, Amsterdam, 1996.
[2] J. Krempa, On free subgroups of units in quaternion algebras, Colloq. Math. 88 (2001), 21-27.
[3] -, Rings with periodic unit groups, in: Abelian Groups and Modules, A. Facchini and C. Menini (eds.), Kluwer, Dordrecht, 1995, 313-321.
[4] J.-P. Serre, Cours d'arithmétique, Presses Univ. de France, Paris, 1970.
[5] W. Sierpiński, Elementary Theory of Numbers, 2nd ed., revised by A. Schinzel, PWNPolish Sci. Publ., Warszawa, 1987.

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: jkrempa@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 16U60, 17D05; Secondary 16H05, 11D57.

 Work supported in part by Onderzoeksraad of Vrije Universiteit Brussel, Fonds voor Wetenschappelijk Onderzoek (Belgium), Flemish-Polish bilateral agreement BIL 01/31.

